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Abstract: In this research, we proposed a miniaturized two-element sensor array inspired by Ormia
Ochracea for sound direction finding applications. In contrast to the convectional approach of using
mechanical coupling structures for enlarging the intensity differences, we exploited an electrical
coupling network circuit composed of lumped elements to enhance the phase differences and extract
the optimized output power for good signal-to-noise ratio. The separation distance between two
sensors could be reduced from 0.5 wavelength to 0.1 wavelength 3.43 mm at the operation frequency
of 10 kHz) for determining the angle of arrivals. The main advantages of the proposed device include
low power losses, flexible designs, and wide operation bandwidths. A prototype was designed,
fabricated, and experiments examined within a sound anechoic chamber. It was demonstrated that
the proposed device had a phase enhancement of 110◦ at the incident angle of 90◦ and the normalized
power level of −2.16 dB at both output ports. The received power levels of our device were 3 dB
higher than those of the transformer-type direction-finding system. In addition, our proposed device
could operate in the frequency range from 8 kHz to 12 kHz with a tunable capacitor. The research
results are expected to be beneficial for the compact sonar or radar systems.

Keywords: biomimetic miniaturized microphone array; sound direction finding; sonar; coupling
network; Ormia Ochracea

1. Introduction

Recently, miniaturizatioxns of sensor or antenna arrays have attracted lots of attention in the
areas of military and modern communications for providing indoor/outdoor localizations [1,2],
beam scanning, searching, and direction finding [3]. The wide applications include underwater
sonar [4,5], radar system [6], seismic monitoring [7], and smart antennas [8]. Direction finding
techniques have long been used to determine the angel of arrivals (AOA) of incident waves via the
received time differences or intensity differences of each element of the arrays. In general, the distances
between each element of an array should be at least half a wavelength for obtaining a distinguishable
phase difference or time difference in order to determine the AOA [9]. However, for low frequency
applications, the sizes of arrays can be very large in the ranges of km such as very high frequency (VHF)
antenna arrays or acoustic sonar arrays. Various researchers have investigated miniaturized arrays in
order to reduce the size of array and maintain accurate determinations of AOA. Miniaturized arrays
for AOA determinations become an important topic in the acoustic and radio frequency (RF) fields.

Most mammals with hearing capabilities can locate sound sources based on the interaural
time differences (ITDs) or interaural intensity differences (IIDs) received by two acoustic cues
due to large-size heads [10]. For tiny insects such as Ormia Ochracea, Miles et al. found that
Ormia Ochracea with the size of 1 cm could distinguish the AOA of the incident sounds with the
wavelength of 7 cm attributed to the coupling mechanisms within their front heads [11–13]. In fact,
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the coupling structures of Ormia Ochracea were composed of spring, mass, and damper which could
amplify the ITDs or IIDs between two ears for AOA determinations. Therefore, Ormia Ochracea
inspired coupling mechanisms are beneficial for reducing the receiving apertures of microphone
or sensors arrays. Various applications have been developed such as Microelectromechanical
Systems (MEMS) directional microphones [14–17], MEMS direction finding sensors [18–22],
ultrasonic transducers [23], optical-based directional microphones [24,25], optical sensors [26], and
micromachined diaphragms [27–29]. Based on the mechanical-coupling induced two vibration
modes such as rocking and bending modes, the differences of the time and intensities of two output
membranes can be utilized to determine the AOA where the bending mode happens when the two
membranes move in the same direction and the rocking mode happens when they move in opposite
directions. One disadvantage of mechanical coupling structures is that they often require complicated
manufacturing processes and can not be easily adjusted for operating in different frequencies [30].

Based on the analogy between the mechanical and electrical engineering, the mechanical
coupled-ear structure can be substituted with an equivalent electrical coupling circuit. Xu et al.
proposed an Ormia Ochracea inspired miniaturized microphone arrays with an electrical coupling
network composed of transformers, inductors, and capacitors for sound source localizations [31,32].
The equivalent coupling circuit included two excitation modes such as the common and differential
modes that were similar to the two aforementioned resonant modes of the mechanical coupled-ear.
Via the common and differential modes, the received intensities of the outputs were amplified for
detections of incident angles of sounds where the two microphones were separated with a small
distance of 7 mm (i.e., 0.4 wavelength) [31]. However, transformer-based coupling circuits might cause
additional losses within the circuit and reduce the available power level at the outputs. Zhang et al.
developed an electrical coupling filter with two inputs and two outputs for miniaturized microphone
arrays [30]. In addition to sound localizations, Behdad et al. applied electrical coupling circuits to
miniaturizations of antenna arrays for direction finding applications [33–39]. Instead of enlarging the
intensity differences, they focused on the phase enhancements between two antennas for determining
the AOA of incident electromagnetic waves. Akcakaya et al. presented a biologically inspired
miniaturized antenna array based on the multi-input-multi-output filter and Cramer–Rao lower bound
technique [40].

In this research, we proposed a miniaturized two-element sensor array composed of two
microphones acting as the receiving sensors and a pure lumped-element coupling network circuit
for acoustic directional finding applications. The two microphones were separated from each other
with a distance of 0.1 wavelength 3.43 mm) corresponding to the operation frequency of 10 kHz.
The electric coupling circuit was a four port coupling network with two inputs and two outputs where
the two inputs were connected to the two microphones. There was a trade-off between the phase
differences and the extracted power at the two output ports. By appropriately matching the common
and differential modes of the excitations, the coupling circuit could extract the maximum received
power at the two output ports. On the contrary, the output amplitude of the differential mode should
be maximized to obtain a large phase enhancement. Compared to conventional sensor arrays with the
separation distance of at least of 0.5 wavelength, our proposed coupling network could sacrifice a small
amount of power to enhance the output phase difference for miniaturization. Therefore, the coupling
network circuit was optimized to have a relative large phase enhancement and extract the maximum
received power at two output ports. The advantages of the proposed miniaturized sensor array include
low power losses, flexible designs, easy fabrications, and wide operation bandwidths.

This paper is organized as follows. In the next section, we present the miniaturized directional
finding system and the design procedures of the electrical coupling network which are optimized to
have a large phase enhancement and extract the maximum received power. A prototype is designed,
fabricated, and experimentally examined within an anechoic chamber for characterizing the system.
Subsequently, our proposed device is compared with a transformer-based acoustic direction finding
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system. Then, a tunable lumped element is applied in our coupling network circuit to increase the
operation frequency ranges. Important results are summarized at the end of the paper.

2. Biomimetic Miniaturized Microphone Array

Figure 1 shows the block diagram of the biomimetic miniaturized microphone array composed
of two commercial available microphones and an electrical coupling network circuit. The two
microphones have omnidirectional patterns and are separated with a distance of d for receiving
sounds. When illuminated by a plane sound wave with an incident angle of θ, there is a time difference,
∆tin, between the received sound waves, ψ1

in and ψ2
in, obtained from the two microphones due to the

separation distance. Where θ is measured from the boresight direction and θ = 0 indicates a normal
incident sound wave. As the separation distance decreases, the time difference and corresponding
phase difference, φout (θ)=∠ ψ2

out−∠ ψ1
out, become small. Then, the received sound signals are delivered

to the electrical coupling network circuit for phase enhancement. Via an optimized matching of the
common and differential modes, the input phase difference received by the two microphones are
amplified at the outputs of the coupling network circuit. The output sound signals, ψ1

out and ψ2
out,

with a large time difference, ∆tout, and the corresponding phase difference, φout (θ)=∠ ψ2
out −∠ ψ1

out,
are transferred to the microprocessor for determining the incident angles of sounds.
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Figure 1. Block diagram of the two-element microphone array where the two microphone is separated
with a small distance, d. Based on the electrical coupling network circuit, the input time difference
received by the two microphones are amplified at the outputs for determining the incident angles
of sounds.

2.1. Designs of Coupling Network Circuit

Figure 2 shows the equivalent circuit model of the proposed miniaturized microphone array
composed of two microphones and an electrical coupling circuit shown in Figure 1. If two microphones
are placed closely to each other, the mutual coupling effect plays an important role in the received
sound signals. This mutual coupling can be utilized to enhance the output phase difference of the
microphone array via a coupling network circuit described later.

In general, the frequency response of a single microphone is characterized by its impedance.
For taking into account the mutual coupling effect, we introduce the well-known networking concept
of the microwave engineering for characterizing the two-microphone array with an admittance matrix
expressed below [35]:

Y11 = G11 + jB11, (1)

Y12 = G12 + jB12, (2)
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where an admittance is defined as the inverse of the impedance. G11(B11) is the real (imaginary) part of
the admittance of each microphone and G12(B12) is the real (imaginary) part of the mutual admittance
between two microphones. The two outputs of the microphone array are connected to the electrical
coupling network as shown in Figure 2.
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Figure 2. The equivalent circuit model of the miniaturized microphone array where each microphone
is modeled as a Norton equivalent current source. The mutual coupling between two adjacent
microphones is modeled as a voltage dependent current source and the electrical coupling network is
composed of 10 lumped elements.

The electrical coupling network circuit is a four-port network with two inputs connected to
the microphone array and two outputs connected to the loads or the microprocessor. Based on
the microwave engineering theory, the coupling network can be described by the scattering matrix
represented as a [S]4×4 matrix containing ten independent variables. With the assumption of being
lossless, reciprocal, and symmetric, the coupling network is simplified with six independent variables,
B1 to B6 which can be optimized to provide a phase enhancement and an adequate power at
output ports.

Each microphone is modeled as a Norton equivalent current source and the mutual coupling
between two adjacent microphones is modeled as a voltage control current source. The two
microphones are assumed to be identical under illuminations of a plane sound wave, the input signals
received by individual microphones, Isc1 = ejα and Isc2 = e−jα, have the same amplitude, but a phase
difference of 2α due to the separation distance where α = πdsin(θ)/λ. The input signals obtained
from the microphone array can be represented as the common mode and differential mode [41] shown
in Figure 3 expressed as:

Ic =
Isc1(θ) + Isc2(θ)

2
, (3)

Id =
Isc1(θ)− Isc2(θ)

2
, (4)
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where Ic (Id) is the common (differential) mode short-circuit current. The common and differential
mode short-circuit currents are functions of the incident angles. For incident angles close to boresight
direction (θ ≈ 0), these short-circuit currents can be further simplified as:

Ic

∣∣∣
θ=0
≈ 1, (5)

Id

∣∣∣
θ=0
≈ jα. (6)

As shown in Figure 3a, the maximum available power obtained by the microphone array can be
transferred to the 50 Ohms loads by matching the electrical coupling network with the admittance of
the microphone array in the common modes. With the assumption of the lossless circuit, no power is
consumed within the coupling circuit and the magnitude of the output common mode voltage has
a maximum value of |Vmax

oc |.
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Figure 3. The equivalent circuit model of (a) common mode and (b) differential mode.

To characterize the phase enhanced sensitivity of the coupling network, the output phase
differences of the miniaturized microphone array consisted of coupling network circuit is compared
with that of the regular microphone array without the coupling network where each microphone is
separated from each other with the same distance of the miniaturized microphone array. Therefore,
the phase enhancement factor is defined as η = s/s0, where s is the slope of the output phase of
the coupling network circuit and s0 is the slope of the output phase of the regular microphone array
without the coupling network circuit. For normal incident sound waves (i.e., boresight direction),
s and s0 can be expressed as:

s =
dφout

dθ
=

(
dφout

d(2α)

∣∣∣
α=0

)(
d(2α)

dθ

∣∣∣
θ=0

)
, (7)

s0 =
d
dθ

(2α)
∣∣∣
θ=0

= 2π
d
λ

, (8)

where the output phase difference φout is the substraction of phases between the two output voltage,
Vo1 and Vo2. Then, the s can be expressed as:

η , lim2α→0

[
∠Vo1−∠Vo2

2α

]
= lim2α→0

[
1

2α∠
Voc+Vod
Voc−Vod

]
= Re

[
1
jα

Vod
Voc

]
. (9)

The phase enhancement factor depends on the output common and differential voltages. Since the
output common mode voltage is a constant and the output differential mode voltage is a function of
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incident angle, the phase enhancement factor can be maximized by enlarging the magnitude of the
output differential mode voltage and the phase between the differential mode and common mode
should be 90◦. In other words, there is a maximum value of the phase enhancement factor by both
matching the common and differential modes. However, there is a trade-off between the maximum
phase enhancement and the output power. The goal of this research is to design the coupling network
circuit for the microphone array with a large phase enhancement which is not the maximum value
and an acceptable output power. To characterize the output power at both 50 ohms loads for different
incident angles of sounds, the normalized output power, Pn

out, is defined as:

Pn
out =

Pout

P0
, (10)

where Pout is the output power of each output load of the coupling network circuit. P0 is the available
power obtained by each element of the microphone array for normal incident angles.

2.2. Increase the Operation Frequency Bandwidth

For the aforementioned miniaturized microphone array, the coupling network circuit was
designed to have a large output phase enhancement operating at a narrow frequency range by
matching the common and differential modes. The narrow operation bandwidth occurred for most
mechanical [25,42] and electrical coupling networks [39,43]. This was due to the fact that, if the
operation frequency deviated from the desired frequency, the output phase difference was not enhanced
due to the mismatches of the common and differential modes. Figure 4 shows the simulated output
phase differences of the our device operated at different frequencies from 8 to 12 kHz. The electrical
coupling network was a narrow band circuit and provided a phase enhancement at the designed
frequency of 10 kHz. For other operation frequencies, no phase enhancements were observed. Similar
to other bio-inspired direction finding devices, the miniaturized microphone array with a narrow band
coupling network can not be used for incident sounds with wide bandwidth.

Figure 4. The simulated output phase enhancement of the microphone array with the
pure-lumped-element based coupling network operated at different frequencies from 8 to 12 kHz.
The coupling network only provided a phase enhancement at the designed operation frequency where
the common and differential modes were matched appropriately.

Figure 5 shows the simulated output phase differences versus different frequencies for the incident
angles of 30◦, 60◦, and 90◦. As can be observed, the output phase differences was enhanced significantly
near 10 kHz and relatively small when deviated from 10 kHz, indicating that the proposed circuit
network had a narrow operation bandwidth.
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Figure 5. The simulated output phase differences versus different frequencies for the incident angles of
30◦, 60◦, and 90◦.

For increasing the operation bandwidth of the miniaturized microphone array, we proposed
an electronic tunable coupling network circuit by substituting the fixed-value lumped elements with
electronic tunable lumped elements. The idea was to match the common and differential modes for
output phase enhancements at different frequencies via adjusting the values of the lumped elements.
Since the output phase enhancement was sensitive to the Y parameter of B6, we chose the B6 element
as the tunable element for the wideband design of the coupling network circuit. The goal was to tune
the value of the element to have nearly the same output phase enhancements at different frequencies
where the values of B6 at different operation frequencies were listed in Table 1. Figure 6 shows the
simulated output phase enhancement of the microphone array with an electronic tunable coupling
network circuit which can provide a wide operation frequency range from 8 to 12 kHz. Therefore,
the bio-inspired microphone array with a tunable coupling network circuit can be exploited for
wideband direction finding applications. Note that the separation distance between two microphones
remained the same value for different operation frequencies since both microphones were mounted on
the PCB board with a fixed distance. For the tunable frequency range from 8 kHz to 12 kHz, the fixed
distance corresponded to 0.08 wavelength to 0.12 wavelength indicating that the microphone array had
a miniaturized dimension of approximate 0.1 wavelength. For broad band applications, the separation
distance could be varied to maintained 0.1 wavelength to achieve miniaturized microphone arrays.

Figure 6. The simulated output phase enhancement of the microphone array with an electronic tunable
coupling network circuit that could can provide a wide operation frequency range from 8 to 12 kHz.
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Table 1. The tuning values of B6 in the frequency range from 8 to 12 kHz.

Freq. (kHz) 8 9 10 11 12

B6 (µF) 4.4 3.4 2.7 2.2 1.8

3. Fabrications and Measurements

3.1. Microphones

The miniaturized microphone array was designed to operate at the frequency of 10 kHz for sound
direction finding applications. We exploited two commercial-available MEMS analog microphones
(model: MMA204 from Merry Inc., Taiwan). The characteristics of MMA204 microphones included the
sensitivity of−38 dB (0 dB = 1 V/Pa), frequency response from 50 Hz to 20 kHz, signal-to-noise ratio of
65 dB, required supply voltage from 1.5 V to 3.6 V, and size of 3.35 mm × 2.5 mm ×0.98 mm. The two
microphones were surface mounted on a FR-4 PCB substrate with a separation distance of 3.43 mm
(i.e., 0.1λ0) where λ0 is the wavelength of the incident sound wave. The FR-4 PCB substrate used
throughout this research had the dielectric constant of εr = 4.4 and a thickness of 1.6 mm. Figure 7a,b
show the front and back sides of the two microphones, respectively. direct current (DC) bias voltages
of 3.3 V were provided to the two microphones. Since the sound detecting components were on the
bottom of the microphones, two holes were drilled for receiving the incident sounds on the back side
of the PCB board. A calibrated low-frequency vector network analyzer (model: E5061B from Keysight
Tech., SR, CA, USA) was utilized to measure the impedance matrix ([Z]) of the fabricated microphone
array. The measured Y matrix (i.e., admittance matrix) converted from the scattering matrix was shown
in Table 2. G11 and B11 were the real and imaginary parts of the admittance component, Y11. G12 and
B12 were the real and imaginary parts of the admittance component, Y12. These values were exploited
for designing the coupling network circuit.

Output signal of

microphone 2

(a)

(b)

DC bias for 

microphone 1

DC bias for 

microphone 2

DC bias for 

microphone 1

DC bias for 

microphone 2

Output signal of

microphone 2

Output signal of

microphone 1

Output signal of

microphone 1

3.43 mm

Figure 7. The photographs of (a) the front side and (b) the back side of the microphone array.
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Table 2. The measured Y matrix of the fabricated two-element microphone array.

DMMA204 Microphone Array Unit: Millisiemens (mS)

G11 = Re(Y11) −1.27

G12 = Re(Y12) 18.7

B11 = Im(Y11) −0.132

B12 = Im(Y12) 0.328

3.2. Coupling Network Circuit

Based on Equation (9), the phase enhancement factor was calculated and chose as η = 10 for the
coupling network circuit. The two inputs of the coupling network circuit were connected to the two
outputs of the microphone arrays shown in Figure 7. The coupling network circuit was composed
of six independent Y-parameters including B1 to B6. The goal was to obtain a phase difference of
100 degrees between two output signals of the coupling network circuit and extract maximum output
power for direction finding applications. Via an optimization of circuit simulations, the Y parameters
of B1 to B6 were obtained and listed in Table 3. Then, the ideal Y parameters were transformed into
practical capacitances and inductances operating at the frequency of 10 kHz. The coupling network
circuit was implemented with 10 surface mounted inductors and capacitors fabricated on the FR4
PCB substrate connected by microstrip lines. Figure 8 shows the photograph of the coupling network
circuit composed of surface mounted lumped element implemented via the FR-4 PCB substrate and
microstrip lines. The geometric dimensions of the transmission lines were provided in Table 4.

Table 3. Values of the six Y-parameters of the coupling network circuit exploited in circuit simulations
(unit: S).

B1 B2 B3 B4 B5 B6

2.65 0.23 5.31 −0.08 4.08 −0.17

Input signal 

from microphone 1

Output signal 1 Output signal 2

l1

l2

l2

l2

l1

l1

l1

l1

l3
l4

l5

l3

Input signal 

from microphone 2

Figure 8. The coupling network circuit implemented with 10 lumped elements and transmission lines
on the FR4 printed circuit board (PCB) substrate.

Table 4. Geometric dimensions of the microstrip lines (unit: mm).

l1 l2 l3 l4 l5

10 20 7.2 5.5 6.3
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3.3. Field Test Examinations

The field tests of the fabricated miniaturized microphone array were conducted in the sound
anechoic chamber at the acoustic lab of Science and Ocean Engineering Department, National
Taiwan University. Figure 9a shows the experimental setup. The speaker and the microphone array
were separated with a distance of 60 cm (i.e., 18λ) for incident plane waves shown in Figure 9b.
The waveform generator (model: Agilent, SCC, CA, USA 33500B Series) was exploited to excite the
commercial available speak (Pioneer TS-D1602R, Torrance, CA, USA) for generating continuous sound
waves with the sound pressure level of 80 dB. Two DC power supplies (model: GWinstek PPE-3323
DC) were utilized for the MEMS microphones with 3.3 V and he amplifier circuit with ±15 V. The
oscilloscope (model: Keysight DSOX2012A) with two synchronized channels was used to extract the
phase differences between two received signals. Figure 10 shows the simulated and measured phase
differences between the two outputs of the coupling network circuit and a regular microphone without
the coupling network for an incident angle of sound wave from –90◦ to 90◦. The incident angle was
varied and measured every 10◦. Since the separation distance between the two microphones of the
regular two-element microphone array was smaller than half wavelength, the simulated and measured
output phase differences were small and could not be used for determining the AOA. For our device
with a coupling network circuit, the simulated output phase differences were 113◦ for the incident
angle of 90◦ and −114◦ for the incident angle of −90◦. The measured output phase differences of
our devices were 110.12◦ for the incident angle of 90◦ and −110.34◦ for incident angle of −90◦. The
simulation results matched with the measurement results. There was a small output phase difference
of −1.78◦ for normal incident (θ = 0◦) due to the fabrication tolerances and imperfect symmetry.

(a) (b)

Figure 9. (a) the experiment setup for the field tests of the microphone array; (b) side view indicating
the distance between the speaker and the microphone array.

The simulated and measured normalized output power of each output port of our device for
different incident angles was shown in Figure 11. The measurement and simulation results had
a similar trend with some deviations. For output port 1, the maximum measured normalized output
power was −2.16 dB for the incident angle of 90◦ which was slightly smaller than the simulated result
of −1.92 dB. The minimum measured normalized output power was −6.75 dB for the normal incident
angle (θ = 0◦) which was higher than the simulated value. For output port 2, the maximum measured
normalized power was −2.74 dB for the incident angle of 90◦ similar to the measured results of output
port 1. The minimum measured normalized power was −7.13 dB for the normal incident sound
(θ = 0◦) which was lower than the simulated value. The discrepancies between the simulated and
measured results might be due to the fabrication tolerances, imperfect symmetry, and values deviations
of the off-shelf lumped elements. In addition, the simulated normalized output power of each output
port of the microphone array without the coupling network circuit was provided for comparisons.
It could be observed that our proposed device scarified partial output power and maintained sufficient
output power for phase enhancements.
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Figure 10. The measured and simulated output phase differences of the proposed miniaturized
microphone array with the coupling network circuit and the regular microphone array without the
coupling network.
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Figure 11. The measured and simulated normalized output power at each output port of the coupling
network circuit of the miniaturized microphone array. The simulated normalized output power of the
miniaturized microphone array was provided for comparisons.

3.4. Compared with Transformer-Type Microphone Arrays

In general, Ormia Ochracea-inspired mechanical coupling networks are composed of springs,
masses, and dampers where dampers can consume some input acoustic energy and reduce the
maximum available input energy obtained from the sensors or microphones. Analogously to the
mechanical coupling network, the equivalent electrical coupling network circuits are consisted of
lossy transformers and lumped-elements for mimicking the hearing mechanisms where transformers
can transform the current outputs to voltage outputs of the coupling circuits [31–33]. Although the
lossy electrical coupling network can provide a large output phase difference for direction findings
applications, it can not extract the full available energy obtained from the sensors or antennas to the
output port. In other words, some energy is consumed within the lossy coupling network circuit.

In this section, we compared the pure-lumped-element based coupling network and the
transformer-based coupling network in terms of the output phase differences and the normalized
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output power for developing miniaturized microphone array. Figure 12 shows the equivalent circuit
model of the transformer-based microphone array where the coupling network was composed of
transformers with 1:3 turn ratio and lumped elements. The two microphones were separated with
a distance of 0.1 wavelength and the two input sound sources obtained from the two microphones
were Isc1 = e(jα) and Isc1 = e(−jα). For comparing the output power of the lossless and lossy
coupling network, the transformer-based coupling circuit was designed to have the same output
phase differences as our device. The electrical parameters of the transformer-based coupling network
circuit were X1 with the value of 21 S and X2 with the value of 20 S.

jX
1

jX
1

jX
2

50 Ω 50 Ω

Coupling

Network

I
sc1

I
sc2

1:3 1:3

Figure 12. The equivalent circuit model of the transformer-based microphone array where the coupling
network was composed of lossy transformers and lumped elements.

The simulated output phase differences for different incident angles of our device and the
transformer-based microphone array were shown in Figure 13. Both of them had similar output phase
differences verse the incident angles of sounds. For our device, the output phase differences were
113.78◦ for incident angle of 90◦ and−114.72◦ for the incident angle of−90◦. For the transformer-based
coupling network, the output phase difference were 113.79◦ for the incident angle of 90◦ and −114.74◦

for the incident angle of −90◦.

Figure 13. The simulated phase differences of our proposed work and the transformer-based
microphone array.

Figure 14 shows the comparisons of the simulated normalized output power between our device
and the transformer-based microphone array. For output port 1, the maximum normalized power of
our device and the transformer-based microphone array were −1.92 dB and −5.89 dB, respectively, for
the incident angle of 90◦. For output ports 2, the maximum normalized power of our device and the



Sensors 2019, 19, 3469 13 of 15

transformer-based microphone array were −1.85 dB and −5.82 dB, respectively, for the incident angle
of −90◦. The output power of the transformer type microphone array was approximately 4 dB below
that of our device due to power loss of the transformers.

(d
B
)

Figure 14. Comparisons of the simulated normalized output power at two output ports between
our device and the transformer-based microphone array. The output power of the transformer
type microphone array was approximately 4 dB below than that of our device due to power loss
of the transformers.

4. Conclusions

In this research, we presented a biomimetic miniaturized two-element microphone array with
an electrical coupling network circuit for enhancing the output phase differences for sound direction
finding applications. Two microphones were separated with a small distance of 0.1 wavelength and the
small phase differences were amplified by matching the common and differential modes. A prototype
was designed, fabricated, and experimentally examined within an acoustic anechoic chamber. The
experimental results demonstrated a large phase enhancement and acceptable normalized output
power. The coupling network can be improved by including tunable elements for wideband
applications. The proposed miniaturized microphone array can be expanded to more than two elements
for more accurate determinations of angle of arrivals. It was demonstrated that the proposed coupling
network circuit could enhance the output phase differences of microphone arrays. The prototype based
on RF4 PCB substrate was a proof of concept which could be further miniaturized with an ASIC chip.
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