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Abstract
Peritoneal dialysis was first employed in patients with acute renal failure in the 1940s and since
the 1960s for those with end-stage renal disease. Its popularity increased enormously after the in-
troduction of continuous ambulatory peritoneal dialysis in the end of 1970s. This stimulated both
clinical and basic research. In an ideal situation, this should lead to cross-fertilization between the
two. The present review describes two examples of interactions: one where it worked out very well
and another where basic science missed the link with clinical findings. Those on fluid transport are
examples of how old physiological findings on absorption of saline and glucose solutions were
adopted in peritoneal dialysis by the use of glucose as an osmotic agent. The mechanism behind
this in patients was first solved mathematically by the assumption of ultrasmall intracellular pores
allowing water transport only. At the same time, basic science discovered the water channel
aquaporin-1 (AQP-1), and a few years later, studies in transgenic mice confirmed that AQP-1 was
the ultrasmall pore. In clinical medicine, this led to its assessment in patients and the notion of
its impairment. Drugs for treatment have been developed. Research on biocompatibility is not a
success story. Basic science has focussed on dialysis solutions with a low pH and lactate, and
effects of glucose degradation products, although the first is irrelevant in patients and effects of
continuous exposure to high glucose concentrations were largely neglected. Industry believed the
bench more than the bedside, resulting in ‘biocompatible’ dialysis solutions. These solutions have
some beneficial effects, but are evidently not the final answer.
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Introduction

Peritoneal dialysis as treatment for patients with acute
renal failure was first employed in the 1940s [1]. At that
time, clinicians had very limited knowledge on the patho-
physiology of this treatment and it was even suggested
that a process of active urea excretion was involved in its
effectiveness.

The use of peritoneal dialysis for patients with end-
stage renal disease stems from the 1960s, but it was not
very popular, mainly due to its relative insufficiency, per-
itoneal protein losses and the risk for peritonitis. This
changed markedly after the introduction of continuous
ambulatory peritoneal dialysis in the end of 1970s. The
enormous increase in the number of patients and lack of
knowledge created much interest in peritoneal dialysis
(PD) research, both clinical and basic.

Cross-fertilization between basic and clinical science in
medicine creates an ideal environment for the develop-
ment of new treatments and necessary improvements.
Regrettably, this situation hardly exists for dialysis treat-
ment, including peritoneal dialysis. It is typically a situation
where patients were already treated before any scientific
investigation on its feasibility had been done. Evidently, this
situation has changed. However, a recent PubMed search

using ‘peritoneal dialysis’ and ‘experimental studies’ as
entries yielded 200 hits, of which 26 had nothing to dowith
PD and 15 were not traceable and had no available ab-
stract. Of the remaining 159 papers, 61 were experimental
studies in animals, 42 reviews, 37 studies in patients, 11
in vitro studies and 8 on kinetic modelling. Replacing exper-
imental studies by ‘cell culture’ added another 144 studies.
The average number of non-clinical studies on peritoneal
dialysis is 10 per year. Only a very limited number of these
have been translated into clinical practice.
Just three studies mention ‘from bench to bedside’ in

their title [2–4]. All of these are on the biocompatibility of
new dialysis solutions.
Two items are present in peritoneal dialysis, where

there has been an important cross-talk between exper-
imental and clinical studies on the mechanisms of fluid
transport and on biocompatible dialysis solutions. A
review is given on both of these.

Mechanisms of fluid transport and an assessment
in patients

The administration of isotonic fluid in the peritoneal cavity
of rabbits leads to their absorption. Already in 1921, it was
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shown that this effect was time dependent and especially
present when NaCl 0.9% was used, compared with
glucose 5% [5]. The difference was likely due to differ-
ences in the diffusion rates of these solutes.

Vasoconstriction by intraperitoneal epinephrine de-
creased the absorption rates. Boen [6, 7] was the first
person to describe these crystalloid osmotic effects in
patients with acute renal failure who were treated with
peritoneal dialysis. It appeared that the addition of 2.5–
4% glucose to an isotonic dialysis solution induced the
removal of water from the body. In contrast, water equili-
brium was present in most patients when 1.5–2% was

added to the solution with electrolytes only. Water
removal by crystalloid osmosis could even be increased to
the development of hypernatraemia during the exclusive
use of 8% glucose, applied for the treatment of patients
with pulmonary oedema [8].

The clinical effects of glucose as a crystalloid osmotic
agent was supported by some experimental studies, in
dogs [9] and rats [10], in which Staverman’s reflection
coefficients were calculated as 1− sieving coefficient
under the assumption of the presence of a uniform pore
system for small-solute transport.

Values for glucose of 0.92 [9] and 0.32 [10] have been
reported, comparing the transport of NaCl with that of
glucose. In contrast, when different osmotic agents were
used and compared with their effect on fluid transport,
the osmotic reflection coefficient for glucose was only
0.02–0.05 in cats [11] and rats [12].

Comparison of the osmotic effects of a 1.36% glucose
with a 3.86% glucose dialysis solution in patients showed
similar results as in the animals [13, 14]. The obvious dis-
crepancy between the very low reflection coefficients for
glucose, found in experimental and clinical studies, led to
the assumption that the vascular wall of peritoneal capil-
laries did not consist of small interendothelial pores and
an occasional large pore only, but that there had to be an
additional system of ultrasmall intracellular pores that
would allow the transport of water, but not of solutes with
radii exceeding 5 Ǻ [15, 16], such as glucose which has
a radius of ∼3 Ǻ. The peritoneal reflection’s coefficient of
glucose would therefore be 1.0 for transport through
these assumed ultrasmall pores. This mathematical
concept of a three-pore system has gained wide accep-
tance in clinical practice [17]. One of the attractions of the

Fig. 1. Aquaporin-1 is present in human peritoneal endothelial cells of
capillaries and venules. Stained with a human antiserum, kindly provided
by P. Agre.

Fig. 2. A schematic representation of the pathways of peritoneal fluid transport. From: Coester AM et al. NDT Plus 2009;2:104–110.
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model is that it could explain the ‘so-called’ sieving of
sodium, which means that crystalloid osmosis removes
water at a faster rate than Na+, leading to a decrease in the
dialysate Na+ concentration during a hypertonic exchange
[18] and in its extreme form to hypernatraemia [8].

Unaware of peritoneal dialysis, the later Nobel prize
winner Peter Agre found by serendipity a new 28 000 Da
integral membrane protein in red blood cells and renal
tubules [19]. Expression in Xenopus oocytes showed that

it was a water channel [20]. The protein was renamed to
aquaporin-1 (AQP-1) and appeared to be various epithelia
and non-fenestrated endothelia [21]. We [22] and others
[23] subsequently showed its presence in endothelial cells
of peritoneal capillaries and venules, as shown in Figure 1.
The final proof that AQP-1 was indeed the postulated ul-
trasmall pore came from experiments with AQP-1 knock-
out mice. These animals had no Na+ sieving, but otherwise
normal peritoneal solute transport [24].

Fig. 3. The development of our knowledge on fluid transport in peritoneal dialysis. The years are approximations.
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The discovery of AQP-1 markedly changed our under-
standing of peritoneal fluid transport, as illustrated in
Figure 2. Clinicians, not only interested in physiology but
also in pathophysiology, always think that the presence of
a structure with a function implies that pathology is likely
to occur. Clinical assessment of AQP-1 can be done by
determination of free water transport (FWT), which is the
transport of water, without dissolved solutes and electro-
lytes. The crystalloid pressure gradient is the most impor-
tant driving force. Therefore, these measurements have to
be done with a 3.86% glucose solution or another osmotic
agent that creates a similar osmotic gradient, for instance
glycerol [25]. When sodium in dialysate and plasma is
measured in the beginning of the dwell, for instance after
60 min, the D/P ratio of this electrolyte gives a rough esti-
mation of FWT, because the diffusion of sodium is so low
that it can be neglected. The first observations using this
principle in PD patients with severe ultrafiltration failure
were published in 1995 [26]. The International Society of
Peritoneal Dialysis (ISPD) subsequently decided to estab-
lish a committee on ultrafiltration failure that published
an update of the current insights in peritoneal physiology
[27] and made some recommendations [28]. The most
important were those on the definition of ultrafiltration
failure and the regular assessment of peritoneal function.
Ultrafiltration failure was defined as the presence of
a drained volume of <400 mL after a 4-h dwell with a
3.86/4.25% glucose dialysis solution, the ‘3 × 4 rule’. The
validity of using 400 mL, instead of 300 or 500 mL, was
confirmed later [29]. For regular assessment, the commit-
tee advised to modify the peritoneal equilibration test
(PET) [30] by the use of a 3.86/4.25% glucose solution and
by taking a dialysate and blood sample after 60 min.
When the intraperitoneal volume is also determined at
the time the Na+ measurements are done, FWT can be
calculated from sodium kinetics assuming that isotonic
fluid transport, including that of Na+, occurs through the
small interendothelial pores without hindrance. FWT is
then determined, as the difference between the net ultra-
filtered volume at that time minus the volume transported
through the small pores. The intraperitoneal volume, for
instance 60 min, can be determined by the addition of an
intraperitoneal volume marker [31] or by drainage, as
described in the ‘fastPET’ [32].

A simplification of the technique in combination with
the PET, allowing the simultaneous assessment of both
FWT and small-solute transport, was described in 2009
[33]. It consists of a modified PET (3.86% glucose) with
temporary drainage after 60 min, followed by reinfusion.
The drained volume is determined by weighing; a dialy-
sate and a plasma sample are taken for Na+ measure-
ment. After reinfusion, the dwell is completed to 4 h, after
which normal drainage is applied for the measurement of
net ultrafiltration and determination of solute transport.
The usefulness of this ‘two-in-one’ protocol has recently
been described [34].

The assessment of FWT in chronic PD patients revealed
that its impairment is a cause of ultrafiltration failure in
43% of patients with late ultrafiltration failure [35].

This can be caused by a less-effective osmotic gradient,
for instance to a reduced osmotic conductance to glucose
[36, 37]. A reduced peritoneal ultrafiltration coefficient
and/or a decreased reflection coefficient both contribute
to the osmotic conductance. It is likely that fibrotic altera-
tions in peritoneal tissues affect the ultrafiltration coeffi-
cient, while the reflection coefficient is largely dependent
on AQP-1. The expression of AQP-1 is probably not

reduced in ultrafiltration failure [38], but its function may
be impaired, because it is especially present in venules.
This is supported by the notion that venular subendothelial
hyalinosis is a phenomenon that has exclusively been de-
scribed in peritoneal tissues of long-term peritoneal dialysis
patients, not in any other pathological condition [39].

Possibilities for the treatment of AQP-1 failure are emer-
ging, but still experimental. Corticosteroids in high
dosages induce AQP-1 expression in the rat peritoneum
[40] and increased FWT in three PD patients, who were
treated with corticosteroids after kidney transplantation
[41]. It is unknown if corticosteroids have an effect
in patients with ultrafiltration failure, associated with im-
paired FWT. Very recently, an AQP-1 agonist has been devel-
oped, but data on its potential use have to be awaited [42].

The history of mechanisms of fluid absorption and
removal is a fascinating example of how developments
can take place from bench to bedside by a route that

Fig. 5. Omental tissue of a stable PD patient after 25 months of treatment.
Stained for collagen IV. From: Mateijsen MAM et al. Perit Dial Int 1999: 19:
517–525.

Fig. 4. Electron microscopic picture of a peritoneal capillary of a stable
peritoneal dialysis (PD) patient. Note the diabetiform lamellation of the
endothelial basement membrane.
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starts with relatively simple experiments in animals, later
followed by careful clinical observations in patients with
acute renal failure. These developments are summarized
schematically in Figure 3. The transfer from acute to
chronic treatment and the notion that fluid removal can
be problematic in some patients encourage mathematical
calculations that lead to a hypothesis. The unrelated dis-
covery of a new protein by serendipity that appears to be a
water channel confirms the hypothesis in knock-out mice.
Clinical assessment finally enables the problem of

ultrafiltration failure to be identified in individual patients.
Strategies for treatment are discussed below and those
for prevention are discussed in the next section.

Biocompatible dialysis solutions

Long-term peritoneal dialysis may lead to alterations
in peritoneal tissues that consist of neoangiogenesis

Fig. 7. The morphology of the peritoneum of rats exposed to a conventional dialysis solution for 20 weeks. Left panel: parietal peritoneum, picosirius red.
Mid-left: parietal peritoneum, antifactor VIII staining. Mid-right: omentum: α-smooth muscle actin. Right panel: omentum, picosirius red. Note the
similarities with the studies in humans (Figs 5 and 6).

Fig. 6. The same section of parietal peritoneum of a patient with encapsulating peritoneal sclerosis, stained with picosirius red (stains fibrillary collagen),
anticollagen IV (stains basement membranes) and α-smooth muscle actin (stains myofibroblasts). From: Mateijsen MAM et al. Perit Dial Int 1999;19: 517–
525.
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(43, with diabetiform vascular changes, as shown in
Figure 4 [44]), subendothelial hyalinosis [39], loss of me-
sothelial cells and fibrotic alterations, inducing thickening
of the submesothelial zone of the parietal peritoneum,
and also a more general increase in fibrosis [43]. These al-
terations are shown in Figure 5. The neoangiogenesis and
the amount of fibrosis are related [43], which is
uncommon, for instance, in tumours. Also, peritoneal
deposition of advanced glycosylation end products is
present: both submesothelial and perivascular [45, 46].

They show co-localization with vascular endothelial
growth factor [46]. These abnormalities may proceed to,
or be complicated by encapsulating peritoneal sclerosis

[47]. Some histological features are shown in Figure 6.
Encapsulating peritoneal sclerosis develops in 2–3% of
an unselected population of incident PD patients [48].
Although death and renal transplantation are the main
reasons for discontinuation of peritoneal dialysis [49],
peritonitis and membrane problems, such as ultrafiltration
failure and encapsulating peritoneal sclerosis, are also
important reasons for discontinuation of peritoneal
dialysis. The peritoneal alterations can be reproduced in a
long-term (20 weeks) rat model of daily peritoneal
exposure to the commercially available glucose-based
conventional dialysis solutions, as shown in Figures 7 and
8. In principle, membrane failure can be caused by perito-
nitis and by the continuous exposure to dialysis solutions
[50]. Only a few quantitative data are available on possible
relationships between the severity of peritonitis and/or
causative microorganisms and the induction of mem-
brane failure [51]. The clinical observation that membrane
failure can occur in some long-term patients who never
had peritonitis, and the results of long-term exposure in
our rat model, points to the importance of exposure to
dialysis solutions. These are regarded as bioincompatible,
because of the extremely high glucose concentrations,
presence of glucose degradation products (GDPs), lactate
and acidity.

This subject has induced a number of in vitro studies,
especially in cell cultures. A large amount of various cell
types have been used, such as peripheral polymorphonuc-
lear cells, peripheral monocytes, peritoneal macrophages,
cultured human mesothelial cells, mouse fibroblasts and
human fibroblasts. All these studies have their limitations.
First, the duration of exposure is mostly short, and sec-
ondly, the glucose concentrations are markedly lower
than those used in peritoneal dialysis, because the cells
would not survive otherwise. Finally, only the cells present
in the peritoneum are probably relevant in peritoneal
dialysis. All cultured cells appeared to be very sensitive to
the combination of lactate and a low pH, because this
caused a partially irreversible decrease in the intracellular
pH [52, 53]. However, the importance in patients is ques-
tionable, because patients always have a residual dialy-
sate volume in their peritoneal cavity after drainage [54].

Fig. 8. Electron microscopic picture of a peritoneal capillary of a rat after
20 weeks exposure to a conventional dialysis solution. The nucleus in the
lumen is from a white blood cell. Note the diabetiform lamellation of the
endothelial basement membrane and the similarities with the human
material (Fig. 4). From: ref. [43].

Fig. 9. Omental tissue of a rat stained with α-smooth muscle actin after 20 weeks exposure to a conventional lactate-buffered dialysis solution (left
panel) and after 20 weeks exposure to a similar, but pyruvate-buffered dialysis solution (right panel). Note the differences in the number of blood vessels
and the amount of fibrosis.
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When dwells of >1 h are used, this residual fluid will have
a normal pH. Consequently, there is immediate dilution of
the instilled acidic fluid to pH >6, whereby the toxicity is
markedly reduced [55]. An important study is that of Wies-
lander et al., who showed that heat sterilization of dialysis
fluids had a deleterious effect on the viability of mouse
fibroblasts, due to the formation of GDPs, among which
aldehydes and dicarbonyl compounds [56]. Toxicity to
glucose and to GDPs is difficult to separate in vivo. All
in vitro studies have been done with extremely high con-
centrations of GDPs, compared with their concentrations
in peritoneal dialysis solutions. The above-discussed inves-
tigations are the only in vitro studies that went from bench

to bedside, because the development of ‘biocompatible’
peritoneal dialysis solutions was based on their results.
Clinical investigations had shown in the meantime that

the cumulative exposure to glucose was associated with
the development of peritoneal membrane failure [57] and
also that the duration of peritoneal dialysis was associated
with an increase in effluent concentrations of the advanced
GDP, pentosidine [58]. Serial peritoneal biopsies are imposs-
ible in PD patients, and peritoneal transport is often not an
accurate echo of the morphological changes in the mem-
brane. Therefore, this research has focussed on the
measurement of substances in peritoneal effluent that are
locally produced or released and reflect the status of one or

Fig. 10. Omental tissue of a rat after 20 weeks exposure to a conventional lactate-buffered dialysis solution (upper panels) and also after 20 weeks
exposure to a similar ‘biocompatible’ bicarbonate/lactate-buffered dialysis solution. The left panels are stained with picosirius red, the right panels with
α-smooth muscle actin. Note the marked differences in fibrosis, but the number of vessels in the right-lower panel is reduced, but not normal.
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more tissues. Cancer antigen 125, which is a measure of
mesothelial cell mass in stable PD patients, was the first
one used for this purpose [59]. A review on the current
status of effluent biomarkers is given in ref. [60].

It follows from the morphological and clinical data that,
reducing the exposure to glucose, perhaps in combination
with avoiding exposure to very high lactate concentrations
[61], is by far the most logical approach to preserving the
peritoneal membrane. This can be done by using icodex-
trin for the long dwell and by replacing glucose in one
short dwell by an amino acid-based solution. Experimen-
tal solutions, using pyruvate as a buffer, were very effec-
tive in reducing the peritoneal alterations in rats, as
illustrated in Figure 9, and the use of combinations of
osmotic agents, all in a low dose, together with either a
bicarbonate/lactate buffer or pyruvate had all beneficial
effects [62–64], as shown in Figure 10. However, despite
their favourable effects on peritoneal morphology in the
rat, they have never been produced for use in PD patients.
In contrast, industry believed the bench more than the
bedside and decided to produce dialysis solutions with a
higher pH than in the conventional ones, bicarbonate,
lactate or a combination of buffer substance and a
reduced content of GDPs. These ‘biocompatible’ solutions
caused less inflow pain than the conventional ones and
generally had no effect on peritoneal transport. In all of
them, a marked effect was present on effluent bio-
markers: an increase of CA 125 and a decrease of hyaluro-
nan—the ground substance of the peritoneum. The
overall results have recently been reviewed [3].

The above-discussed studies are not an example of
cross-fertilization between bench and bedside, but show
what can happen when results of in vitro studies are

accepted without knowing the bedside. A summary of
these diverging pathways is given in Figure 11. For optimal
treatment, basic scientists should know more of clinical
studies and patient care, whereas nephrologists should
have knowledge on the achievements of the bench, but
also on the weaknesses of studying artificial situations.

Conflict of interest statement. None declared.
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