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1 	 | 	 INTRODUCTION

Moving	about	 in	 the	world	during	daily	 life	 requires	ex-
ecuting	 and	 successfully	 shifting	 between	 a	 variety	 of	
functional	tasks,	such	as	rising	from	a	chair	or	bed,	walk-
ing,	turning,	and	navigating	stairs.	This	multi-	task	nature	
of	 daily	 life	 is	 recognized	 clinically,	 with	 many	 clini-
cal	 tests	 of	 mobility	 assessing	 multiple	 functional	 tasks	

(e.g.,	 Timed-	Up-	and-	Go	 test	 [Podsiadlo	 &	 Richardson,	
1991],	Berg	Balance	test	[Berg	et	al.,	1995],	Mini	BESTest	
[Franchignoni	 et	 al.,	 2010]).	 In	 contrast,	 the	 neuromus-
cular	 control	 underlying	 the	 execution	 of	 and	 coordina-
tion	between	different	functional	tasks	is	less	understood.	
Although	 the	 neuromuscular	 control	 of	 different	 func-
tional	 tasks	 have	 been	 studied	 in	 isolation	 (e.g.,	 loco-
motion	[Cappellini	et	al.,	2006],	standing	[Maurer	et	al.,	
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Abstract
Moving	about	in	the	world	during	daily	life	requires	executing	and	successfully	
shifting	between	a	variety	of	functional	tasks,	such	as	rising	from	a	chair	or	bed,	
walking,	turning,	and	navigating	stairs.	Moreover,	moving	about	during	daily	life	
requires	not	only	navigating	between	different	functional	tasks,	but	also	perform-
ing	these	tasks	in	the	presence	of	mental	distractions.	However,	little	is	known	
about	 underlying	 neuromuscular	 control	 for	 executing	 and	 shifting	 between	
these	different	 tasks.	 In	this	study,	we	 investigated	muscle	coordination	across	
walking,	 turning,	and	chair	 transfers	by	applying	motor	module	(a.k.a.	muscle	
synergy)	analysis	 to	 the	Timed-	Up-	and-	Go	 (TUG)	 test	with	and	without	a	 sec-
ondary	cognitive	dual	task.	We	found	that	healthy	young	adults	recruit	a	small	
set	of	common	motor	modules	across	the	subtasks	of	the	TUG	test	and	that	their	
composition	is	robust	to	cognitive	distraction.	Instead,	cognitive	distraction	im-
pacted	motor	module	activation	timings	such	that	they	became	more	consistent.	
This	work	is	the	first	 to	demonstrate	motor	module	generalization	across	mul-
tiple	tasks	that	are	both	functionally	different	and	crucial	 for	healthy	mobility.	
Overall,	 our	 results	 suggest	 that	 the	 central	 nervous	 system	 may	 draw	 from	 a	
“library”	of	modular	control	strategies	to	navigate	the	variety	of	movements	and	
cognitive	demands	required	of	daily	life.
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2006]),	little	is	known	about	how	neuromuscular	control	
compares	 across	 different	 functional	 tasks.	 A	 better	 un-
derstanding	 of	 neuromuscular	 control	 across	 different	
functional	 tasks	 will	 provide	 valuable	 insight	 into	 the	
strategies	that	enable	us	to	successfully	navigate	the	many	
tasks	required	for	daily	life.

Motor	 module	 analysis	 is	 commonly	 used	 to	 investi-
gate	neuromuscular	 control	 strategies	during	movement	
(e.g.,	 Barroso	 et	 al.,	 2016;	 Cheung	 et	 al.,	 2005;	 Cheung,	
Piron,	et	al.,	2009;	D’Avella	&	Bizzi,	2005;	Dominici	et	al.,	
2011;	 Ivanenko	 et	 al.,	 2004;	 Santuz	 et	 al.,	 2020;	 Steele	
et	al.,	2015;	Torres-	Oviedo	&	Ting,	2007).	Motor	modules	
or	muscle	synergies,	are	groups	of	coactive	muscles	flex-
ibly	 recruited	 over	 time	 to	 meet	 the	 biomechanical	 de-
mands	required	of	a	functional	task	(Ting	et	al.,	2015).	To	
date,	 motor	 module	 analysis	 has	 primarily	 been	 used	 to	
investigate	 neuromuscular	 control	 within	 a	 single	 func-
tional	 task.	 Such	 studies	 provide	 evidence	 that	 similar	
motor	modules	are	recruited	within	the	same	functional	
task	 under	 different	 task	 demands,	 such	 as	 level	 ver-
sus	 inclined	running	(Saito	et	al.,	2018),	varied	pedaling	
speeds	(Hug	et	al.,	2011),	straight	versus	curved	walking	
(Chia	 Bejarano	 et	 al.,	 2017),	 and	 reactive	 balance	 with	
different	 stance	 positions	 (Torres-	Oviedo	 &	 Ting,	 2010).	
In	 each	 case,	 changing	 musculoskeletal	 configurations	
or	mechanical	demands	were	addressed	with	changes	in	
temporal	activation	and/or	incorporation	of	task-	specific	
motor	modules	rather	than	a	new	set	of	modules	for	each	
condition.	While	this	implies	that	the	nervous	system	may	
rely	on	a	common	set	of	motor	modules	to	accomplish	a	
variety	of	conditions	for	a	particular	task,	we	do	not	know	
whether	 this	motor	module	generalizability	extends	 to	a	
broader	range	of	functionally	different	tasks.

Motor	 module	 generalization,	 or	 recruiting	 common	
motor	 modules	 across	 functionally	 different	 tasks,	 may	
enable	 the	 successful	 execution	 and	 switching	 between	
tasks.	 Initial	 evidence	 for	 motor	 module	 generalization	
comes	 from	 animal	 studies,	 where,	 for	 example,	 frogs	
were	 found	 to	 recruit	 common	 motor	 modules	 across	
walking,	 swimming,	 and	 jumping	 tasks	 (D’Avella	 et	 al.,	
2003).	Although	seemingly	all	locomotive	tasks,	the	joint	
mechanics	required	to	produce	them	are	different	in	each	
task.	 More	 recently,	 evidence	 that	 such	 motor	 module	
generalization	 also	 occurs	 in	 humans	 has	 emerged.	 In	
particular,	 we	 recently	 found	 that	 young	 adults	 recruit	
common	motor	modules	across	standing	reactive	balance	
and	unperturbed	walking	(Allen	et	al.,	2020)	and	that	re-
duced	generalization	across	these	two	functionally	differ-
ent	tasks	was	associated	with	impaired	gait,	balance,	and	
mobility	performance	in	both	neurotypical	and	neurologi-
cally	impaired	populations	(e.g.,	young	adults	[Allen	et	al.,	
2020],	stroke	[Allen	et	al.,	2019],	PD	[Allen	et	al.,	2017]).	
Such	 a	 relationship	 provides	 support	 for	 motor	 module	

generalization	 as	 a	 neuromuscular	 control	 strategy	 for	
successful	mobility	during	daily	life.	However,	the	extent	
to	which	motor	modules	are	generalized	across	the	wider	
range	 of	 functional	 tasks	 encountered	 during	 daily	 life	
(e.g.,	walking,	turning,	chair	transfers)	remains	unclear.

Moving	about	during	daily	life	requires	not	only	nav-
igating	 between	 different	 functional	 tasks,	 but	 also	 per-
forming	these	tasks	in	the	presence	of	mental	distractions	
(i.e.,	 cognitive-	motor	 dual	 tasking).	 Putting	 on	 a	 jacket	
while	carrying	on	a	conversation	or	walking	through	store	
aisles	while	trying	to	remember	the	items	on	a	grocery	list	
are	common	examples	of	cognitive-	motor	dual	tasking	in	
everyday	life.	Because	the	biomechanical	requirements	of	
any	functional	task	are	the	same	with	or	without	cognitive	
distraction,	it	is	likely	that	the	same	motor	modules	are	re-
cruited	in	both	scenarios.	Instead,	the	mental	distraction	
may	pull	away	some	of	the	cognitive	resources	normally	
used	to	plan	and	generate	movement,	muddying	the	typi-
cal	command	signals	and	leading	to	changes	in	temporal	
motor	module	activation.	It	is	known	that	dual-	task	con-
ditions	 result	 in	 increased	 variability	 in	 gait	 parameters	
(e.g.,	stride	time	[Montero-	Odasso	et	al.,	2012],	or	swing	
time	[Hausdorff	et	al.,	2008]	in	older	adults)	but	the	im-
pacts	on	muscle	activation	or	motor	module	recruitment	
are	not	well	characterized.	However,	 increased	gait	vari-
ability	suggests	that	the	motor	module	activations	produc-
ing	gait	may	also	become	more	variable	(e.g.,	from	step	to	
step	during	walking).	Identifying	the	differences	in	motor	
module	recruitment	between	distracted	and	undistracted	
tasks	 may	 provide	 valuable	 insight	 into	 neuromuscular	
control	strategies	for	achieving	common	daily	tasks.

In	 this	 study,	 we	 analyzed	 electromyography	 (EMG)	
collected	from	the	hip,	knee,	and	ankle	muscles	in	young	
adults	 performing	 the	 Timed-	Up-	and-	Go	 (TUG)	 test	 to	
investigate	motor	module	generalization	across	different	
functional	tasks.	The	TUG	test	is	a	commonly	used	clinical	
mobility	test	in	which	subjects	stand	up	from	a	chair,	walk	
3 meters,	turn	around	a	cone,	and	walk	back	to	the	chair	
to	sit	down	(Podsiadlo	&	Richardson,	1991).	We	chose	to	
examine	 muscle	 activity	 during	 the	TUG	 test	 because	 it	
contains	a	variety	of	 functional	 tasks	 that	are	 important	
for	daily	 life.	In	particular,	 the	TUG	test	 includes	transi-
tional	subtasks	like	chair	transfers	and	turns	that	are	crit-
ical	 for	 independence	but	also	a	common	source	of	 falls	
(Crenshaw	&	Al,	2017;	Hyndman	et	al.,	2002;	Robinovitch	
et	al.,	2013).	Our	overall	hypothesis	is	that	healthy	young	
adults	recruit	from	a	“library”	of	motor	modules	to	meet	
the	multi-	task	demands	of	daily	life	and	that	motor	mod-
ule	composition	is	robust	to	cognitive	distractions.	Based	
on	 this	 hypothesis,	 we	 predicted	 that	 (1)	 young	 adults	
would	recruit	a	small	number	of	common	motor	modules	
across	the	subtasks	of	the	TUG	test	(sit-	to-	stand,	walking,	
turning,	 and	 stand-	to-	sit)	 and	 that	 when	 performing	 a	
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secondary	cognitive	task	(2)	the	number	and	composition	
of	 these	motor	modules	would	not	change,	 (3)	but	 their	
recruitment	timing	and	level	of	activation	would	become	
more	variable.

2 	 | 	 METHODS

2.1	 |	 Participants

Thirteen	healthy	young	adults	(5 M,	21.4 ± 1.6 years)	par-
ticipated	in	this	study.	Inclusion	criteria	were	age	between	
18	and	35 years	old.	Exclusion	criteria	were	any	diagnosed	
neurological	 or	 psychological	 conditions,	 musculoskel-
etal	 conditions,	 sensory	 deficits,	 stroke,	 traumatic	 brain	
injury,	 or	 a	 concussion	 or	 other	 injury	 within	 a	 year	 of	
participation.	All	participants	provided	written	informed	
consent	before	participating	according	 to	an	experimen-
tal	protocol	approved	by	the	institutional	review	board	of	
West	Virginia	University.

2.2	 |	 Data collection and processing

Each	subject	performed	the	TUG	test	(illustrated	in	Figure	
1a)	 first	 while	 walking	 normally	 (TUG)	 and	 then	 while	
counting	backwards	by	three's	(TUGC).	For	TUGC,	sub-
jects	 were	 instructed	 to	 pay	 equal	 attention	 to	 both	 the	

counting	and	walking	tasks.	Subjects	self-	selected	which	
direction	 they	 turned	 around	 the	 cone	 until	 10	 trials	 of	
one	 turn	 direction	 were	 completed.	 Then	 we	 instructed	
them	to	 turn	 the	opposite	direction	 for	an	additional	10	
trials.	 Turning	 direction	 when	 sitting	 back	 down	 in	 the	
chair	 was	 not	 enforced.	 Some	 trials	 were	 removed	 be-
fore	 analyzing	 due	 to	 experimental	 or	 equipment	 error	
(n = 25,	5%	of	 total	 trials)	or	 subject	error	 (e.g.,	kicking	
the	 cone,	 n  =21,	 4%	 of	 total	 trials).	 In	 both	 conditions,	
each	subject	completed	the	TUG	test	with	at	least	six	good	
trials	for	each	turn	direction	around	the	cone	(avg:	TUG	
9.46 ± 1.42,	TUGC	10.12 ± 1.30).

Three-	dimensional	 marker	 position	 was	 collected  at	
100  Hz	 with	 a	 10	 camera	 Vicon	 motion	 capture	 system	
and	a	modified	plug-	in	gait	marker	 set	with	31 markers	
placed	on	the	head,	trunk,	pelvis,	thigh,	shank,	and	foot	
segments.	Marker	data	 from	the	heels,	 toes,	and	clavicle	
were	used	to	segment	the	TUG	test	into	four	subtasks:	Sit-	
to-	Stand,	Walk,	Turn,	and	Stand-	to-	Sit.	The	two	walking	
portions	were	combined	into	one	subtask	and	turn	direc-
tions	for	both	the	Turning	and	Stand-	to-	Sit	subtasks	were	
considered	 separately	 (e.g.,	 right	 turn	vs.	 left	 turn)	 for	a	
maximum	total	of	six	subtasks.	Turning	direction	during	
Stand-	to-	Sit	was	not	enforced;	some	subjects	consistently	
chose	one	direction	for	every	trial	and	therefore	only	had	
five	different	subtasks. Details	of	TUG	segmentation	are	
listed	in	Table	1	and	an	example	can	be	found	in	the	sup-
plementary	material	(Figure	S1).

F I G U R E  1  The	Timed-	Up-	and-	Go	
(TUG)	test.	(a)	In	the	TUG	test,	subjects	
get	up	from	a	chair,	walk	around	a	cone	
3 m	away,	walk	back	to	the	chair,	and	sit	
back	down.	(b)	Example	muscle	activity	
from	selected	muscles	(tibialis	anterior	
[TA],	lateral	gastrocnemius	[LGAS],	
vastus	lateralis	[VLAT],	and	biceps	
femoris	long	head	[BFLH])	during	the	
TUG	test	with	labeled	subtasks.	Gray	
boxes	indicate	the	walking	portions	
of	TUG,	while	white	sections	indicate	
Sit-	to-	Stand,	Turn,	and	Stand-	to-	Sit.	(c)	
The	subtask	proportions	used	during	
activation	analyses	(see	Section	2.3.2)
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Surface	 EMG	 data	 were	 collected	 at	 1000  Hz	 from	
12 muscles	per	leg:	gluteus	maximus	(GMAX),	gluteus	me-
dius	(GMED),	tensor	fasciae	latae	(TFL),	adductor	magnus	
(ADD),	biceps	 femoris	 long	head	 (BFLH),	 rectus	 femoris	
(RFEM),	 vastus	 lateralis	 (VLAT),	 medial	 and	 lateral	 gas-
trocnemius	 (MGAS	 and	 LGAS),	 soleus	 (SOL),	 peroneus	
longus	(PERO),	and	tibialis	anterior	(TA).	EMG	data	were	
high-	pass	filtered	at	35 Hz	(third-	order	Butterworth	filter),	
demeaned,	 rectified,	 and	 then	 low-	pass	 filtered	 at	 10  Hz	
(third-	order	 Butterworth	 filter)	 using	 custom	 MATLAB	
scripts	(example	EMG	in	TUG,	Figure	1b).	For	each	subject,	
leg,	and	condition,	separate	EMG	matrices	were	generated	
by	concatenating	data	from	all	trials	for	that	condition	end-	
to-	end	to	form	an	m × t	matrix,	where	m	is	the	number	of	
muscles	 and	 t	 is	 the	 number	 of	 timepoints	 (equal	 to	 the	
number	of	trials × the	number	of	timepoints	per	trial).	For	
each	condition	(TUG	and	TUGC),	there	were	6	or	7	differ-
ent	EMG	matrices	per	subject	and	leg	-		each	subtask	plus	
the	full	TUG	test.	Those	subjects	who	consistently	turned	
in	the	same	direction	when	sitting	back	down	had	6 matri-
ces,	whereas	those	who	mixed	their	turning	direction	when	
sitting	down	had	7.	Each	EMG	matrix	was	 then	normal-
ized	to	the	maximum	observed	value	for	each	muscle	in	the	
EMG	matrix	for	the	full	TUG	test.

2.3	 |	 Motor modules 
extraction and analysis

Motor	modules	were	separately	extracted	from	the	EMG	
data	 matrix	 for	 each	 subject,	 leg	 (left	 vs.	 right),	 condi-
tion	 (TUG	 vs.	 TUGC),	 and	 subtask	 (i.e.,	 the	 full	 TUG	
test	 and	 each	 TUG	 subtask)	 using	 nonnegative	 ma-
trix	 factorization	 (MATLAB’s	 “nnmf”	 function,	 with	
the	 following	 options:	 “mult”	 algorithm,	 50	 replicates,	
MaxIter = 1000,	TolFun = 1e-	6,	and	TolX = 1e-	4).	Motor	
modules	were	extracted	such	 that	EMG = W × C + ε,	
where	 W	 is	 an	 m  ×  n	 matrix	 of	 the	 n	 motor	 module	
weights	 for	 m	 muscles,	 C	 is	 an	 n  ×  t	 matrix	 contain-
ing	the	activation	coefficients	for	each	module,	and	ε	is	

the	 EMG	 reconstruction	 error.	 Motor	 module	 weights	
(W)	are	time-	invariant,	while	the	activation	coefficients	
(C)	may	vary	across	trials	as	needed	to	reconstruct	the	
observed	EMG.	To	ensure	equal	weight	of	each	muscle	
during	the	extraction	process	and	avoid	biasing	toward	
muscles	with	high	variance	and	amplitude,	the	data	for	
each	muscle	were	scaled	to	unit	variance	before	motor	
module	 extraction	 and	 then	 rescaled	 to	 original	 units	
afterwards	 (Torres-	Oviedo	&	Ting,	2007).	After	extrac-
tion,	 module	 weights	 (W’s)	 and	 activation	 coefficients	
(C’s)	were	normalized	such	that	the	peak	weight	in	each	
module	was	equal	to	1.

We	 extracted	 1–	12  motor	 modules	 from	 each	 EMG	
matrix	and	selected	the	minimum	number	needed	to	suf-
ficiently	 reconstruct	 the	 original	 data.	 Module	 numbers	
were	chosen	such	that	the	95%	confidence	interval	of	the	
overall	variance	accounted	for	(VAF)	was	greater	than	90%	
(Cheung	 et	 al.,	 2009),	 where	VAF	 is	 the	 squared	 uncen-
tered	Pearson's	correlation	coefficient	between	the	recon-
structed	EMG	(W × C)	and	the	original	EMG	(Zar,	1999).	
95%	confidence	intervals	on	VAF	were	generated	using	a	
bootstrapping	procedure	(250 samples	with	replacement)	
(Cheung,	d’Avella,	et	al.,	2009;	Efron	&	Tibshirani,	1994).	
We	then	examined	motor	module	generalization	and	the	
impact	of	the	cognitive	task	as	follows:

2.3.1	 |	 Generalization	of	motor	modules	
across	tasks

To	 investigate	 motor	 module	 generalization	 during	 the	
TUG	test,	we	used	a	clustering	analysis	 to	group	similar	
modules	 recruited	 during	 the	 TUG	 subtasks.	 For	 each	
subject	we	determined	(1)	the	level	of	motor	module	gen-
eralization	across	TUG	subtasks,	(2)	the	level	of	similarity	
between	clustered	motor	modules,	and	(3)	the	level	of	sim-
ilarity	 between	 modules	 recruited	 during	 TUG	 subtasks	
to	those	recruited	during	the	full	TUG	test.	Examples	of	
these	metrics	are	shown	in	Figure	2	and	their	calculations	
are	described	below.

T A B L E  1 	 Criteria	used	to	separate	subtasks	of	the	TUG	test

Event
Marker 
Used Definition Explanation

1-	TUG	start Clavicle Local	minimum	in	X	direction start	of	forward	movement

2-	walk	1 start Toe local	minimum	in	Z	direction first	toe-	off

3-	turn	start heel local	minimum	in	Z	direction last	heel	strike	before	turning	(feet	
facing	straight	ahead)

4-	turn	stop toe local	minimum	in	Z	direction last	toe-	off	before	walking	straight	(feet	
facing	straight	ahead)

5-	walk	2 stop heel local	minimum	in	Z	direction last	heel	strike	before	turning	to	sit

6-	TUG	stop clavicle local	minimum	in	X	direction end	of	backward	movement
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Motor module generalization
Motor	 modules	 recruited	 during	 TUG	 subtasks	 in	 the	
normal	condition	were	separately	pooled	for	each	sub-
ject	and	leg	and	then	sorted	with	a	clustering	algorithm	
(Cheung	et	al.,	2005).	The	“cluster”	 function	 from	the	
MATLAB	Statistics	and	Machine	Learning	Toolbox	was	
used	 to	 cluster	 the	 modules,	 with	 the	 distance	 metric	
Minkowski	 order	 p  =  3	 and	 Ward's	 linkage	 option.	
The	 number	 of	 clusters	 within	 each	 group	 was	 deter-
mined	as	the	minimum	number	such	that	each	cluster	
contained	no	more	 than	one	motor	module	 from	each	
subtask	(Allen	et	al.,	2019;	Cheung	et	al.,	2005;	Cheung,	
Piron,	 et	 al.,	 2009).	 Generalization	 of	 motor	 modules	

across	subtasks	was	calculated	as	a	percentage	and	de-
fined	as,

where	c	 is	 the	number	of	clusters,	ni	 is	 the	number	of	
modules	recruited	during	the	ith	subtask,	T	is	the	total	
number	 of	 subtasks	 (5	 or	 6	 per	 subject,	 depending	
on	 whether	 a	 subject	 turned	 in	 both	 directions	 in	 the	
Stand-	to-	Sit	turns	or	not),	and	nmin	is	the	smallest	num-
ber	of	modules	recruited	in	that	subject	and	leg	during	

module generalization = 100 ∗

�

1 −
c − nmin
∑T

i=1 ni

�

F I G U R E  2  Example	of	clustered	motor	modules	for	a	representative	subject's	left	leg.	The	first	six	columns	contain	the	motor	modules	
recruited	during	each	TUG	subtask.	Modules	in	the	same	row	were	clustered	together.	The	second	column	from	the	right	shows	the	average	
modules	for	each	cluster	and	the	last	column	contains	the	motor	modules	from	the	full	TUG	test.	In	this	example,	the	subject	had	five	
clusters	and	91.6%	generalization.	There	are	four	common	motor	modules	between	the	full	TUG	test	and	the	cluster	averages,	giving	80%	in	
common
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any	subtask.	Figure	2	illustrates	a	representative	subject	
whose	modules	were	sorted	into	five	clusters	with	91.7%	
generalization.

Within- cluster motor module similarity
To	assess	module	 similarity	within	each	cluster,	we	cal-
culated	the	cluster	consistency	as	the	pairwise	linear	cor-
relation	 coefficient	 between	 all	 modules	 in	 each	 cluster	
and	averaged	for	each	subject	and	leg.	Module	pairs	with	
r ≥ 0.7079,	the	critical	r	value	for	α = 0.01	(for	n = 12 mus-
cles,	n–	2 = 10 degrees	of	freedom,	two-	tailed	test),	were	
considered	similar.

Similarity between subtask and full TUG motor modules
Finally,	to	determine	the	similarity	of	modules	identified	
during	 the	TUG	subtasks	 to	modules	 from	the	 full	TUG	
test,	motor	modules	from	the	full	TUG	test	were	compared	
to	 averaged	 modules	 from	 each	 cluster	 using	 Pearson's	
correlation	coefficients,	again	with	a	similarity	threshold	
of	r ≥ 0.7079	(example	comparison	illustrated	in	Figure	2).

2.3.2	 |	 Effects	of	a	cognitive	task	on	motor	
module	recruitment

To	characterize	 the	effects	of	a	 secondary	cognitive	 task	
on	motor	module	recruitment,	we	compared	both	the	spa-
tial	and	temporal	aspects	of	motor	modules	recruited	dur-
ing	TUG	versus	TUGC.

We	 analyzed	 spatial	 effects	 by	 comparing	 (1)	 motor	
module	 number	 and	 (2)	 motor	 module	 composition	 be-
tween	 TUG	 and	 TUGC.	 The	 number	 of	 motor	 modules	
recruited	 during	 TUG	 and	 TUGC	 were	 compared	 using	
paired	t-	tests	for	the	full	TUG	test	and	each	of	its	subtasks	
(7	total).	Motor	module	composition	(W’s)	from	TUG	and	
TUGC	for	the	full	TUG	and	each	subtask	were	compared	
using	 Pearson's	 correlation	 coefficients,	 where	 module	
pairs	with	correlation	coefficients	r ≥ 0.7079	were	consid-
ered	the	same.	We	also	identified	how	many	modules	were	
common	between	TUG	and	TUGC	by	calculating	the	per-
centage	of	common	modules,	defined	as,

for	each	subject,	leg,	and	subtask.
We	analyzed	temporal	effects	by	comparing	motor	mod-

ule	recruitment	variability	between	TUG	and	TUGC.	Motor	
module	 activation	 coefficients	 (C’s)	 for	 each	 module	 were	
first	separated	by	trial.	Each	trial	was	then	time-	normalized	
to	 be	 the	 same	 number	 of	 data	 points	 and	 such	 that	 the	
lengths	of	the	chair	transfers	and	walking-	turning	portions	
were	consistent.	Specifically,	for	each	trial	we	calculated	the	

proportion	of	each	segment	as	subtask time	/	TUG time.	We	
then	averaged	these	values	across	all	trials	and	subjects	and	
rounded	 to	 the	 nearest	 whole	 number	 for	 each	 TUG	 seg-
ment	(Figure	1c).	Each	trial	was	then	normalized	to	be	1024	
points	long,	with	154	data	points	in	sit-	to-	stand,	532	points	
in	walking-	turning,	and	338	points	in	stand-	to-	sit.	See	Figure	
S2	and	“Normalization	of	Motor	Module	Activations”	in	the	
Supplementary	Material	for	an	example	and	further	details.	
We	then	separated	the	trials	based	on	“kinematic	strategy,”	
defined	as	the	sequence	of	first	step	leg,	turn	direction,	and	
Stand-	to-	Sit	 turn	direction.	We	separated	 trials	 in	 this	way	
because	the	shapes	of	motor	module	activation	curves	vary	
based	on	the	TUG	kinematic	strategy	used	(e.g.,	which	leg	
was	 used	 to	 take	 the	 first	 step)	 without	 representing	 true	
changes	in	motor	module	recruitment.	To	account	for	this,	
we	only	compared	the	time-	normalized	module	activations	
from	sequences	that	a	subject	used	in	both	TUG	and	TUGC.	
Specifically,	the	average	root-	mean-	square	error	(RMSE)	of	
module	activations	from	common	motor	modules	across	all	
subjects,	legs,	and	tasks	were	compared	using	a	paired	t-	test.	
See	Figure	S3,	Table	S2,	and	“Kinematic	Strategy	Separation”	
in	the	Supplementary	Material	for	an	example	and	further	
details.

2.3.3	 |	 Effects	of	dual	task	on	TUG	and	
counting	performance

Finally,	to	investigate	dual-	task	effects	on	cognitive	perfor-
mance	(i.e.,	counting	backwards	by	threes	from	a	random	
number),	 we	 compared	 the	 counting	 score	 and	 count-
ing	rate	during	TUGC	to	baseline	counting	performance.	
Baseline	 counting	 performance	 was	 collected	 while	 sub-
jects	were	seated	in	the	chair	for	15 s	(minimum	2	base-
line	 trials).	 Subjects	 were	 instructed	 to	 repeat	 the	 given	
number	and	then	for	each	TUGC	trial,	the	counting	score	
was	calculated	as	# correct/total # of counts	and	the	count-
ing	rate	as	total # of counts/time.	Counting	scores	during	
both	TUGC	and	the	baseline	were	highly	skewed	toward	
1	 (Shapiro–	Wilk	 (sw)	 test	 statistics:	 baseline	 sw  =  0.50,	
p < 0.001,	TUGC	sw = 0.82,	p = 0.01),	so	they	were	com-
pared	 using	 a	 Wilcoxon	 signed	 rank	 test	 (α  =  0.025).	
Counting	rates	during	TUGC	and	the	baseline	 fit	within	
a	normal	distribution	and	were	compared	using	a	paired	
t-	test	 (baseline	 sw  =  0.97,	 p  =  0.88,	 TUG	 sw  =  0.92,	
p = 0.22).	TUG	performance	times	with	and	without	the	
cognitive	task	were	compared	using	a	paired	t-	test.

3 	 | 	 RESULTS

Subjects	recruited	a	small	number	of	unique	modules	that	
were	similar	across	TUG	subtasks.	Motor	modules	from	

% common = 100 ∗
#common

sum total in TUG and TUGC − #common
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TUG	subtasks	were	grouped	into	a	small	number	of	clus-
ters	(avg	5.6 ± 0.99,	Figure	3a),	leading	to	a	high	percent-
age	generalization	 (avg	89.23 ± 3.41%,	Figure	3b).	Most	
clusters	were	consistent	across	subtasks	(avg	0.80 ± 0.06,	
Figure	 3d),	 with	 only	 two	 of	 the	 11  subjects	 having	 an	
average	 cluster	 consistency	 below	 the	 0.7079  similar-
ity	 threshold	 in	 one	 of	 their	 legs	 (avgs	 for	 each	 subject:	
0.60,	0.70).	The	averaged	motor	modules	across	all	 sub-
tasks	 within	 each	 cluster	 were	 very	 similar	 to	 modules	
recruited	during	the	full	TUG	test	(avg	r = 0.789 ± 0.115,	
Figure	3c).

Motor	 module	 composition	 was	 unchanged	 when	
performing	 the	 TUG	 test	 with	 the	 secondary	 cognitive	
task	of	counting	backwards	by	threes.	Subjects	recruited	
an	 average	 of	 4.5  motor	 modules	 during	 TUG	 (Figure	
4),	 which	 was	 not	 significantly	 different	 during	TUGC	
(p  =  0.75,	 Figure	 5a	 and	 Supplementary	 Data	 Table	
S3).	Similarly,	there	was	no	significant	difference	in	the	
number	 of	 motor	 modules	 recruited	 during	 TUG	 and	
TUGC	 for	 any	 TUG	 subtask	 (see	 Supplementary	 Data	
Table	S3	 for	all	 t-	test	 results).	Subjects	 recruited	motor	
modules	with	similar	compositions	during	TUG	versus	
TUGC.	 Motor	 modules	 were	 highly	 similar	 during	 full	
TUG	(93.7 ± 0.1%,	Figure	5a).	Modules	were	also	simi-
lar	in	each	subtask	(avg	across	all	subtasks:	78.7 ± 0.2),	
though	 there	 was	 more	 inter-	subject	 variability	

(range  =  17%–	100%,	 Figure	 5b).	 Further,	 most	 module	
pairs	were	more	strongly	correlated	 than	 the	similarity	
threshold,	 illustrated	 in	 a	 histogram	 of	 pooled	 correla-
tion	coefficients	(Figure	5c).

In	contrast,	motor	module	activation	became	more	con-
sistent	across	repetitions	of	the	TUG	test	when	counting	
backwards	by	threes.	Motor	module	activation	variability	
was	significantly	lower	in	TUGC	than	in	TUG	(avg	rmse	
for	TUG:	0.066 ± 0.010,	TUGC:	0.061 ± 0.011,	p = 0.008,	
Figure	6b).

Importantly,	the	shape	of	the	motor	module	activation	
curves	varied	depending	on	which	leg	took	the	first	step,	
the	turn	direction,	around	the	cone,	and	the	turn	direction	
when	sitting	back	down	(e.g.,	Figure	6a).	Although	most	
subjects	used	only	two	sequences	(one	for	each	turn	direc-
tion	around	the	cone),	a	smaller	subset	used	3–	4	(Figure	
6c)	because	 they	switched	 their	 turn	direction	when	sit-
ting	 down	 or	 varied	 the	 first	 step	 leg.	 Only	 the	 module	
activations	from	trials	with	similar	sequences	were	com-
pared	between	TUG	and	TUGC	(avg	8.9 ± 2.1	 trials	per	
sequence;	Figure	6d).

Dual	task	affected	TUG	time	but	not	counting	perfor-
mance.	The	addition	of	a	secondary	cognitive	task	led	to	a	
significant	but	small	difference	in	TUG	performance	time	
(TUG:	6.76 ± 0.93 s,	TUGC:	7.11 ± 1.10 s,	p = 0.02,	Figure	
7a).	Counting	score	(base:	0.93 ± 0.13,	TUGC:	0.93 ± 0.20,	

F I G U R E  3  Motor	module	
clustering	results.	For	all	panels,	
each	dot	represents	one	subject	and	
leg	(n = 13).	(a)	Motor	modules	were	
grouped	into	a	small	number	of	clusters	
across	all	subjects,	(b)	leading	to	a	high	
percentage	generalization.	(c)	Motor	
modules	recruited	during	the	full	TUG	
test	were	well	matched	with	the	cluster	
averages	and	(d)	Motor	modules	within	
each	cluster	were	similar	to	each	other,	
producing	a	high	cluster	consistency
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p = 0.23,	Figure	7b)	and	counting	rate	(base:	0.6590 ± 0.24,	
TUGC:	0.0.63 ± 0.16 counts/s,	p = 0.31,	Figure	7c)	were	
not	different	between	the	baseline	trial	and	TUGC.

4 	 | 	 DISCUSSION

The	central	nervous	system	may	rely	on	generalizable	con-
trol	strategies	to	meet	the	multi-	task	demands	of	daily	life.	
In	support	of	this	hypothesis,	we	show	here	that	healthy	
young	 adults	 recruit	 a	 small	 set	 of	 generalizable	 motor	
modules	across	the	subtasks	of	the	TUG	test	and	that	the	
composition,	but	not	the	activation,	of	those	motor	mod-
ules	is	robust	to	cognitive	distraction.	This	work	is	the	first	
to	demonstrate	motor	module	generalization	across	mul-
tiple	tasks	that	are	both	functionally	different	and	crucial	
for	healthy	mobility.

4.1	 |	 Generalization of motor modules 
across tasks

Consistent	 with	 our	 hypothesis,	 our	 data	 suggest	 that	
young	 adults	 recruit	 a	 small	 set	 of	 generalizable	 motor	
modules	 across	 several	 functional	 tasks	 important	 for	
moving	 about	 in	 the	 world	 during	 daily	 life	 -		 walking,	
turning,	and	getting	in	and	out	of	a	chair.	Prior	work	has	
demonstrated	that	the	same	motor	modules	are	recruited	
to	perform	a	single	task	under	varying	demands	(e.g.,	ped-
aling	at	different	speeds	[Hug	et	al.,	2011]	or	maintaining	
balance	 under	 different	 postural	 configurations	 [Torres-	
Oviedo	&	Ting,	2010]).	Here,	we	expand	upon	this	prior	
work	to	demonstrate	that	many	of	the	same	motor	mod-
ules	are	recruited	to	perform	different	tasks.

Generalizing	 the	 recruitment	 of	 motor	 modules	
may	 enable	 the	 successful	 execution	 of	 similar	 basic	

F I G U R E  4  Number	of	motor	modules	recruited	during	the	TUG	test	and	its	subtasks.	The	number	of	modules	did	not	change	between	
TUG	and	TUGC	for	the	full	TUG	test,	or	any	of	the	subtasks.	(n = 13,	paired	t-	test	p = 0.75).
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mechanical	 demands	 required	 of	 different	 tasks.	 Except	
for	turning,	the	tasks	we	examined	are	dominated	by	sag-
ittal	 plane	 motion	 that	 likely	 require	 the	 achievement	 of	
similar	basic	mechanical	demands	such	as	plantarflexion,	
leg	support,	and	center-	of-	mass	stabilization.	Even	though	
our	 180°	 turning	 task	 includes	 substantial	 non-	sagittal	
plane	motion,	its	successful	performance	also	requires	the	
achievement	 of	 many	 of	 these	 same	 demands.	 However,	
how	these	demands	must	be	met	and	coordinated	together	
to	 achieve	 successful	 task	 performance	 varies	 between	
tasks.	For	example,	walking	and	sit-	to-	stand	both	involve	
propelling	 the	center	of	mass	 forward	and	extending	 the	
limbs	 while	 keeping	 the	 foot	 fixed;	 however,	 sit-	to-	stand	
uses	symmetric	movements	and	includes	a	larger	vertical	
COM	movement,	while	walking	alternates	leg	movements	
and	requires	stability	during	single	leg	stance	(Cahill	et	al.,	
1999;	 Winter,	 1995).	 To	 meet	 these	 varying	 coordination	
requirements,	we	found	that	young	adults	modulated	the	
recruitment	(i.e.,	activation	timing)	and	not	the	structure	
of	the	motor	modules.	We	also	found	that	most	subjects	re-
cruited	a	plantarflexor	module,	knee	extensor	module,	and	
a	dorsiflexor	module	across	all	tasks.	These	motor	modules	
are	similar	to	those	previously	identified	as	important	for	
meeting	 the	 mechanical	 demands	 of	 walking	 (Allen	 &	
Neptune,	 2012;	 Clark	 et	 al.,	 2010;	 Neptune	 et	 al.,	 2009).	
Follow-	up	studies	are	needed	to	determine	whether	these	
generalized	motor	modules	are	indeed	recruited	to	produce	
similar	basic	mechanical	demands	across	different	tasks.

Although	 many	 motor	 modules	 were	 generalized	
across	all	tasks,	task-	specific	modules	did	emerge	during	
turning.	The	emergence	of	task-	specific	modules	is	con-
sistent	with	prior	work.	For	example,	Ivanenko	and	col-
leagues	observed	the	emergence	of task-	specific	modules	
when	walking	while	performing	an	additional	task	(e.g.,	
picking	up	an	object	or	stepping	over	an	obstacle;	Ivanenko	
et	al.,	2005).	However,	the	emergence	of	turning-	specific	
motor	modules	differs	from	a	study	by	Chia	Bejarano	and	
colleagues	in	which	similar	motor	modules	were	recruit-
ing	 during	 walking	 and	 turning	 (Chia	 Bejarano	 et	 al.,	
2017).	 The	 contrasting	 results	 likely	 stem	 from	 differ-
ences	in	the	differing	radii	of	the	turns	and	the	mechani-
cal	demands	they	require.	In	(Chia	Bejarano	et	al.,	2017),	
subjects	 walked	 around	 a	 circle	 with	 a	 1.2  m	 radius,	
whereas	in	the	current	study	subjects	turn	tightly	around	
a	cone	or	pivot	on	one	leg	to	change	direction	180°	(see	
the	left	turns	in	Figure	2).	Such	a	tight	turn	may	involve	
much	 more	 weight	 shifting	 and	 stepping	 changes	 than	
walking	 around	 a	 wider	 curve,	 and	 therefore	 are	 more	
likely	 to	 require	 additional	 motor	 module	 recruitment.	
For	 example,	 the	 inside	 turn	 leg	 would	 have	 increased	
demand	for	both	stability	and	directing	the	turn.	In	our	
study,	the	turning-	specific	modules	were	often	composed	
primarily	of	hip	muscles	(GMAX,	GMED,	ADD);	GMED	
specifically	is	known	to	be	important	for	pelvic	stability	
during	single	leg	stance	(Gottschalk	et	al.,	1989;	Semciw	
et	al.,	2013)	and	contributes	to	mediolateral	control	of	the	

F I G U R E  5  Motor	module	similarity	
during	TUG	and	TUGC.	(n = 13)	Motor	
module	composition	was	very	similar	
during	TUG	and	TUGC,	leading	to	a	
high	percentage	common	during	(a)	the	
full	TUG	test	and	(b)	each	of	its	subtasks	
and	(c)	very	high	correlation	coefficients	
between	all	pairs	of	modules	(pooled	
across	all	subjects	and	subtasks,	the	gray	
line	represents	the	cutoff	for	significant	
similarity,	r ≥ 0.7079)
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center-	of-	mass	 (Pandy	 et	 al.,	 2010).	 The	 recruitment	 of	
such	a	module	 is	 consistent	with	 increased	demand	 for	
stability	 and	 frontal	 plane	 movements	 during	 this	 turn	
that	 may	 not	 be	 achievable	 using	 the	 generalized	 mod-
ules	on	their	own.	As	turns	are	a	common	source	of	falls	
for	 people	 with	 mobility	 impairments	 (e.g.,	 Crenshaw	
&	 Al,	 2017;	 Robinovitch	 et	 al.,	 2013;	 Stack	 &	 Ashburn,	
1999),	some	of	this	difficulty	could	stem	from	an	inability	
to	appropriately	recruit	turning-	specific	motor	modules.	
Overall,	our	 results	 suggest	 that	 the	nervous	 system	re-
uses	and	modifies	the	same	control	strategies	to	execute	
and	 shift	 between	 similar	 tasks.	 When	 the	 mechanical	

demands	for	a	task	cannot	be	met	by	that	module	set,	ad-
ditional	modules	must	be	recruited.

Although	 the	method	used	 to	 cluster	modules	across	
tasks	has	been	used	both	by	us	and	others	in	previous	stud-
ies	(e.g.,	Allen	&	Franz,	2018;	Allen	et	al.,	2019;	Cheung	
et	al.,	2005;	Sawers	et	al.,	2017),	it	is	not	without	its	limita-
tions.	In	particular,	motor	modules	were	clustered	primar-
ily	 based	 on	 their	 dominant	 muscles	 and	 contributions	
from	other	muscles	could	vary	between	modules	within	a	
cluster.	It	is	for	this	reason	that	we	included	a	cluster	sim-
ilarity	metric,	in	which	we	found	that	modules	placed	in	
each	cluster	were	highly	consistent	in	almost	all	subjects	

F I G U R E  6  Temporal	dual	task	effects.	(a)	Example	module	activations	from	the	left	leg	of	one	subject	in	two	kinematic	strategies.	
(b)	Average	root	mean	squared	error	of	motor	module	activations	during	TUG	and	TUGC	(n = 26 legs,	paired	t-	test	p = 0.008).	Module	
variability	was	significantly	lower	in	TUGC	than	normal	TUG.	(c)	Number	of	kinematic	strategies	(sequences)	used	by	each	subject.	Across	
all	trials,	most	subjects	used	2–	3	different	kinematic	strategies,	but	only	had	1–	2 strategies	used	in	both	TUG	and	TUGC.	(d)	Number	of	
trials	used	in	RMSE	analysis,	ranged	from	4	to	13	trials	per	kinematic	sequence

(a)

(b) (c) (d)
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(9	 of	 11  subjects).	 Based	 on	 this	 intracluster	 similarity,	
we	do	not	believe	this	clustering	algorithm	limitation	af-
fects	our	main	conclusion	 that	participants	draw	from	a	
small	library	of	motor	modules	to	execute	different	tasks.	
However,	future	studies	should	explore	the	impacts	of	dif-
ferent	clustering	algorithms	on	motor	module	groupings.

4.2	 |	 Dual task effects

Consistent	 with	 our	 hypothesis,	 we	 found	 that	 motor	
module	 number	 and	 composition	 are	 robust	 to	 cogni-
tive	distraction.	Moreover,	we	found	that	both	TUG	and	
counting	performance	were	not	affected	by	the	cognitive-	
motor	dual	task	condition.	Though	we	identified	a	statis-
tically	 significant	 increase	 in	 TUG	 performance	 timing	
in	the	dual-	task	condition,	the	increased	time	of	0.35s	is	
substantially	 lower	 than	 the	 minimal	 detectable	 change	
that	is	on	the	order	of	seconds	not	sub-	seconds	(e.g.,	1s	in	
individuals	with	knee	osteoarthritis	[Alghadir	et	al.,	2015]	
and	 3s	 in	 stroke	 survivors	 [Flansbjer	 et	 al.,	 2005]).	 The	
lack	of	meaningful	change	in	TUG	time	or	counting	per-
formance	 suggests	 that	 our	 young	 adult	 population	 was	
able	to	successfully	focus	on	the	counting	task	enough	to	
keep	their	performance	consistent	without	compromising	
TUG	performance.

Although	 motor	 module	 number	 and	 composition	
did	not	change	in	the	presence	of	a	cognitive	distraction,	
motor	 module	 activation	 became	 more	 consistent.	 This	
result	 is	 in	 contrast	 with	 our	 hypothesis	 that	 activation	
would	become	more	variable	when	cognitively	distracted.	
Our	finding	that	motor	module	activations	became	more	
consistent	 when	 performing	 the	TUG	 test	 with	 a	 cogni-
tive	 distraction	 could	 mean	 that	 subjects	 allowed	 their	
movements	 to	 become	 more	 automatic	 while	 they	 fo-
cused	 on	 the	 counting	 task,	 despite	 instructions	 to	 pay	
equal	attention	to	both	counting	and	TUG	performance.	
Movements	 like	 walking	 require	 both	 automatic	 and	

executive	control,	but	healthy	young	adults	rely	on	more	
automatic	control	than	other	populations.	In	populations	
that	use	less	automatic	control	for	walking,	such	as	older	
adults,	walking	and	cognitive	tasks	compete	for	executive	
control	 resources,	 impeding	 performance	 in	 both	 tasks	
(Clark,	2015).	However,	healthy	young	adults	likely	have	
enough	automaticity	and	processing	capacity	to	devote	at-
tention	 to	 the	 cognitive	 task	 while	 relying	 on	 automatic	
control	to	perform	the	TUG	test.	Our	results	of	increased	
recruitment	consistency	are	also	in	agreement	with	recent	
work	demonstrating	increased	dynamic	stability	of	motor	
modules	under	dual	task	conditions	without	correspond-
ing	effects	on	center	of	mass	stability	(in	anterior/poste-
rior	or	mediolateral	directions	[Walsh,	2021]),	suggesting	
an	adjustment	by	the	nervous	system	to	prioritize	stability	
during	cognitive	distractions.

Alternatively,	 the	 increased	 activation	 consistency	
could	be	related	 to	 the	 instructions,	order	of	 tasks,	and/
or	 difficulty	 of	 the	 cognitive	 task.	 TUGC	 trials	 were	 al-
ways	performed	second,	and	subjects	may	have	been	more	
confident	paying	less	attention	to	their	movements	than	if	
TUGC	had	occurred	first.	Additionally,	subjects	may	not	
pay	much	attention	to	their	initial	TUG	performance	but	
become	 more	 focused	 during	 TUGC	 because	 of	 the	 in-
structions	given.	For	the	normal	TUG	test,	subjects	were	
given	no	instructions	about	their	focus,	and	may	have	al-
lowed	 their	 minds	 to	 wander	 during	 this	 repetitive	 and	
unchallenging	task.	During	TUGC,	they	were	told	to	pay	
equal	 attention	 to	 both	 the	 counting	 and	TUG	 and	 may	
therefore	 have	 given	 the	 TUG	 performance	 more	 atten-
tion	than	they	had	previously,	leading	to	more	consistent	
motor	module	activations.	Finally,	it	is	also	possible	that	
our	 findings	 are	 influenced	 by	 the	 difficulty	 of	 the	 cog-
nitive	task.	In	particular,	 the	serial	subtraction	by	threes	
may	have	been	too	easy	 for	our	young	adult	population.	
Decker	and	colleagues	demonstrated	a	U-	shaped	relation-
ship	 between	 cognitive	 demand	 and	 gait	 control	 (mea-
sured	through	step	length	and	width	variabilities	[Decker	

F I G U R E  7  Dual	Task	Costs	of	the	TUG	test.	(a)	There	was	a	small	but	significant	increase	in	TUG	performance	time	with	the	added	
counting	task	(n = 13,	paired	t-	test	p = 0.02).	There	was	no	change	in	either	(b)	counting	accuracy	(n = 13,	Wilcoxon	signed	rank	test	
p = 0.23)	or	(c)	the	counting	speed	(n = 13,	paired	t-	test	p = 0.22)	from	baseline	to	TUGC

(a) (b) (c)



12 of 14 |   CAREY et al.

et	al.,	2016]);	more	changes	in	motor	module	activations	
could	emerge	with	more	difficult	dual	task	conditions.

Though	 the	 underlying	 reasons	 for	 the	 change	 in	
motor	module	activations	in	the	presence	of	cognitive	dis-
traction	remain	unclear,	our	results	do	suggest	 that	cog-
nitive	distraction	can	impact	motor	module	recruitment.	
Careful	 follow-	up	 studies	 could	 clarify	 the	 responses	 by	
incorporating	a	variety	of	cognitive	distractions	and	con-
trolling	for	practice	effects.	Understanding	how	cognitive	
distractions	 impact	 motor	 module	 recruitment	 and	 acti-
vation	would	provide	further	insight	into	the	underlying	
neuromuscular	control	mechanisms	in	both	healthy	and	
balance	impaired	populations	who	may	be	more	affected	
by	cognitive	dual	tasking.

5 	 | 	 CONCLUSIONS

Our	 results	 support	 the	 hypothesis	 that	 healthy	 young	
adults	recruit	from	a	“library”	of	motor	modules	to	meet	
the	 multi-	tasks	 demands	 of	 daily	 life.	 Specifically,	 we	
found	 that	 a	 small	 number	 of	 common	 motor	 modules	
was	 recruited	 during	 walking,	 turning,	 and	 chair	 trans-
fers	 and	 that	 their	 structure	 was	 robust	 to	 cognitive	 dis-
traction.	 Achieving	 different	 mechanical	 and	 cognitive	
demands	 were	 accomplished	 through	 changes	 in	 motor	
module	activation.	This	work	is	the	first	step	toward	a	full	
characterization	of	motor	module	recruitment	patterns	in	
healthy	adults	across	a	wide	range	of	daily	life	tasks.	Our	
results	provide	a	basis	for	interpreting	the	effects	of	motor	
module	changes	on	mobility	and	fall	risk	during	daily	life	
that	occur	in	populations	with	neural	or	musculoskeletal	
injuries.
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