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between the C57BL/6N and the C57BL/6C 
substrains (Mekada et al., 2009).

Given the status of “C57BL/6” as a stand-
ard genetic background for behavioral stud-
ies with mutants (Crawley et al., 1997), it is 
important to compare the substrains and 
describe any differences. Indeed a number 
of studies demonstrated significant differ-
ences between C57BL/6J and C57BL/6N 
on measures of ethanol preference, con-
ditioned fear, motor coordination, and 
pain sensitivity (Blum et al., 1982; Bryant 
et al., 2008). Matsuo et al. (2010) provide a 
valuable extension of this earlier work by 
conducting a comprehensive comparison 
of C57BL/6J, C57BL/6N, and C57BL/6C. 
They achieved this in two ways: (1) with a 
conventional analysis of the three substrains 
on a battery of behavioral tasks, and (2) by 
taking advantage of a large data inventory 
the Miyakawa laboratory has accumulated 
in the course of studying many different 
mutant lines that were backcrossed onto 
one of the three C57BL/6 backgrounds 
(Takao et al., 2007). Because this laboratory 
employs rigorously controlled test proce-
dures and applies a fairly consistent battery 
of behavioral tests to phenotype mutants, it 
was feasible to combine data across studies 
and conduct a large-scale analysis. Another 
plus point was that information was avail-
able on a comprehensive array of behavioral 
phenotypes, including measures of neu-
romuscular strength, pain sensitivity, motor 
coordination, anxiety-like behavior, loco-
motion, social interaction, startle respon-
sivity, antidepressant-sensitive behaviors, 
and spatial working memory.

Corroborating earlier work, the major 
finding from Matsuo et al.’s comparison 
was that these three substrains do indeed 
behave differently. Interestingly, differ-
ences were not seen across the board, but 
were restricted to certain phenotypes, and 
were especially robust for locomotor activ-
ity (relatively high in C57BL/6J), anxiety-
related behaviors (lowest in C57BL/6J) and 
prepulse inhibition of startle (relatively high 
in C57BL/6N). Because all three substrains 
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Many of the inbred mouse strains employed 
in behavioral neuroscience exhibit differ-
ences in phenotypes ranging from fear 
regulation to spatial learning to alcohol 
preference (Belknap et al., 1993; Owen 
et al., 1997; Bothe et al., 2005; Hefner et al., 
2008). The patterns, although not always the 
degree, of some phenotypic variations are 
quite stable across time, across studies, and 
across laboratories (Wahlsten et al., 2006). 
The good news is that these strain differ-
ences offer a tractable and potentially very 
fruitful means to uncover genetic influences 
on behavior. The tougher news to swallow 
relates to many of the extremely powerful 
mutant mouse tools the field has become 
heavily invested in. This issue is that the 
genetic background of these mutants can 
be a major, and oftentimes unpredictable, 
determinant of not only the penetrance, 
but also the direction of behavioral results 
obtained with, for example, transgenics and 
targeted gene mutants (Holmes and Hariri, 
2003). Those critical of the field might point 
to this as more evidence of behavioral stud-
ies being unpredictable and “soft.” On the 
contrary, in so-called “harder” sciences 
such as oncology (Krentz et al., 2009) and 
immunology (Bygrave et al., 2004), the 
profound influence of genetic background 
is accepted as being part and parcel of the 
gene × gene interactions (epistasis) that 
underlie  complex phenotypes.

How to get a handle on this issue? A 
good starting point is the careful charac-
terization and comparison of strain phe-
notypes. Fortunately, much work has been 
done and discussed in this regard across 
various behavioral domains. An issue that 
has not been so well broached in the litera-
ture is whether substrains within a single 

strain also exhibit variation. While we often 
use shorthand such as “B6” and “129” to 
describe strains, there are in fact multiple 
substrains of many of the more commonly 
used inbred strains. The “129” family is par-
ticularly diverse, with numerous substrains 
across four separate genetic lineages, and 
with known phenotypic differences (e.g., 
Simpson et al., 1997; Bothe et al., 2004; 
Camp et al., 2009). Diversity within the 129 
substrain can become an issue when trying 
to sort through the “flanking gene” problem 
that results when genes from a 129 embry-
onic stem cell donor get passed along with a 
targeted mutation (Gerlai, 1996). However, 
there are also multiple substrains of inbred 
strains more commonly used as genetic 
backgrounds for backcrossing, including 
the ever popular C57BL/6 (Figure 1).

Substrains come about for the simple 
reason that with only minimal romantic 
encouragement, mice breed. Then their 
descendents breed and their descendents 
breed and so on… With time, isolation 
and a little spontaneous genetic drift, a 
founder pair can produce a new substrain 
in as little as three generations (something 
to bear in mind if you’re breeding mice in-
house without “refreshing” the gene pool 
with an intermittent backcross to a bona fide 
C57BL/6J – see Crusio et al., 2009). This 
is more or less what twice happened with 
C57BL/6. The founder, C57BL/6J, strain 
traces its origins to Clarence Little’s breed-
ing at The Jackson Laboratory in the 1920s 
(hence the suffix “J” for Jackson). Substrains 
subsequently arose both by accident and 
design. For example, C57BL/6N was devel-
oped in the middle of the last century at the 
National Institutes of Health (“N” suffix for 
NIH), and C57BL/6C appears to have been 
derived from C57BL/6N in the 1970s at the 
National Cancer Institute (“C” suffix for 
Cancer). Previous studies have noted dif-
ferences in genetic polymorphisms between 
the C57BL/6J and C57BL/6N substrains 
(Bothe et al., 2004; Tsang et al., 2005; Zurita 
et al., 2010) although at least one analysis of 
common SNP markers found no difference 
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ful, thoughtful work like Matsuo et al.’s 
study will hopefully help us make sense of 
this reality.
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Figure 1 | While ostensibly the same, there is growing evidence of significant phenotypic 
differences between substrains of the C57BL/6 inbred mouse.
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