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Abstract

Spatial scan statistics are widely used for cluster detection analysis in geographical disease

surveillance. While this method has been developed for various types of data such as

binary, count, and continuous data, spatial scan statistics for matched case-control data,

which often arise in spatial epidemiology, have not been considered. We propose spatial

scan statistics for matched case-control data. The proposed test statistics consider the cor-

relations between matched pairs. We evaluate the statistical power and cluster detection

accuracy of the proposed methods through simulations compared to the Bernoulli-based

method. We illustrate the proposed methods using a real data example. The simulation

study clearly revealed that the proposed methods had higher power and higher accuracy for

detecting spatial clusters for matched case-control data than the Bernoulli-based spatial

scan statistic. The cluster detection result of the real data example also appeared to reflect a

higher power of the proposed methods. The proposed methods are very useful for spatial

cluster detection for matched case-control data.

Introduction

Spatial cluster detection is an important problem in spatial epidemiology. Among the various

statistical methods available, the spatial scan statistic [1] is one of the most widely used meth-

ods. Application of this method is not limited to geographical disease surveillance, but to vari-

ous areas, including criminology [2,3], entomology [4], and urban planning [5,6]. The spatial

scan statistic is defined as the maximum of likelihood ratio test statistics over a collection of

scanning windows. Numerous scanning windows are constructed on an entire study region

and each is a candidate for the most likely cluster. The likelihood ratio test statistic for compar-

ing the inside versus the outside of a window is formulated based on the data type to be ana-

lyzed. Different probability models for the spatial scan statistic have been proposed and

extensively used such as Poisson [1], Bernoulli [1], ordinal [7], multinomial [8], normal [9],

and exponential [10]. The freely available software SaTScan [11] can be used for the probability

models mentioned above.

In epidemiology, one frequently used retrospective observational study design is a case-

control study, in which cases with an outcome of interest are identified and a comparable con-

trol group is sampled. Further, controls matching each case can be selected to control for
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confounding variables. In some studies, cases and controls could be matched by their location

as well. When we are interested in spatial variation between cases and controls, however, we

should not consider their location information as a confounding variable. Matched case-con-

trol data require a specific form of analysis to consider dependency in responses within a

matched pair. However, there is no spatial scan statistic for matched case-control data. Some

studies have used the Bernoulli-based spatial scan statistic [12, 13]. Because the method was

developed for independent binary outcome data, it may be inappropriate to apply the Ber-

noulli-based method to matched case-control data.

In this paper, we propose two spatial scan statistics for matched case-control data. The test

statistics are constructed based on McNemar’s test statistic and Wald type test statistic for an

odds ratio. In the next section, we briefly review the Bernoulli-based spatial scan statistic and

then present the proposed methods. Through a simulation study, we evaluated the perfor-

mance of the proposed methods compared to that of the Bernoulli-based method in terms of

statistical power and detection accuracy. We illustrate the proposed methods using a real data

example of male lung cancer cases with matched controls in Seoul, Korea. We provide conclu-

sions and discussion in the final section.

Methods

Spatial scan statistic for binary data

For binary outcome data such as cases and non-cases of certain diseases, we can use the Ber-

noulli-based spatial scan statistic. The null and alternative hypotheses are written as

H0 : p ¼ q for all z 2 Z vs: Ha : p > q for some z 2 Z ð1Þ

where p and q are the probability of being a case inside and outside the scanning window z,

respectively, and Z denotes the collection of all scanning windows. Scanning windows are con-

structed at every location with varying sizes by including the nearest neighbor one by one, up

to certain limit. Usually 50% of total population is set as the maximum value of scanning win-

dow size. Given window z, the test statistic is expressed as

LRðzÞ ¼

cz
nz

� �cz nz � cz
nz
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where cz and nz denote the number of cases and observations within z, respectively, and C and

N are the total number of cases and observations over the whole study area, respectively. I() is

an indicator function to indicate the high or low rate. To search for a cluster with a low rate

(Ha: p<q), the inequality sign in the indicator function should be in the opposite direction. If

we want to search for clusters with either high or low rates, the indicator function is elimi-

nated. Because the denominator in the above formula does not depend on z, the term (C/
N)C((N-C)/N)N-C can be eliminated.

The scanning window associated with the maximum value of LR(z) is defined as the most

likely cluster. The Monte Carlo hypothesis testing is the standard method for obtaining a p-

value for the most likely cluster. In addition to the most likely cluster, we often report second-

ary clusters with high values of LR(z). The p-values of secondary clusters are typically obtained

in the same manner. The Bernoulli-based spatial scan statistic is available on SaTScan.

Spatial scan statistics for matched case-control data
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Spatial scan statistics for matched case-control data

When we have binary outcome data from a matched case-control study, it may not be appropri-

ate to use the Bernoulli-based spatial scan statistic described above. The Bernoulli-based scan

statistic is used for independent observations. The case and control within a matched pair are

not independent. In addition, the hypotheses should be expressed in a different manner from

(1) because the probability of being a case is not meaningful in matched case-control data.

Suppose that we have n matched pairs, each of which was formed from one case and one

control. Given window z, there are four possible statuses for each case-control pair with

respect to whether they belong to z or not, as shown in Table 1. Both the case and control can

belong to z, only one can, or neither could. Table 1 shows the probability (data) structure for

the four possible states. For example, π11(n11) denote the probability (number of pairs) of

belonging to window z for both the case and control. Then, we can express the hypotheses to

search for clusters with high rates as follows.

H0 : p1þ ¼ pþ1 for all z 2 Z vs: Ha : p1þ > pþ1 for some z 2 Z ð2Þ

or H0 : p10 ¼ p01 for all z 2 Z vs: Ha : p10 > p01 for some z 2 Z: ð3Þ

The situations satisfying the null hypotheses in (2) and (3) are referred to as marginal homoge-

neity and symmetry, respectively. Equivalently, we may write the hypotheses in (3) using an

odds ratio (OR = π10/π01) as

H0 : p10=p01 ¼ 1 for all z 2 Z vs: Ha : p10=p01 > 1 for some z 2 Z: ð4Þ

Here, we propose utilizing McNemar’s test statistic and Wald-type test statistic for the OR to

define spatial scan statistics for matched case-control data. We define the first test statistic

given z as

Tð1Þz ¼
ðn10 � n01Þ

2

n10 þ n01

I n10 > n01ð Þ

and the second test statistic given z as

Tð2Þz ¼
flogðn10=n01Þg

2

1=n10 þ 1=n01

I n10 > n01ð Þ:

The area with the maximum value of Tð1Þz or Tð2Þz over z2Z becomes the most likely cluster. Tð1Þz

is simply the McNemar’s test statistic. Tð2Þz is the squared Wald test statistic for log OR. log(n10/

n01) is the conditional maximum likelihood (ML) estimate of log OR (log(π10/π01)), and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n10 þ 1=n01

p
is its standard error estimate. To search for clusters with low rates, we use the

indicator function with the reversed inequality sign.

Although Tð1Þz and Tð2Þz are known to follow a chi-square distribution asymptotically, we do

not know the null distributions of Tð1Þ ¼ maxz2ZTð1Þz or Tð2Þ ¼ maxz2ZTð2Þz . As for the standard

Table 1. Probability (data) structure for the matched case-control data with respect to belonging to window z (in)

or not (out).

For a given z Control

in out

Case in π11 (n11) π10 (n10) π1+ (n1+)

out π01 (n01) π00 (n00) π0+ (n0+)

π+1 (n+1) π+0 (n+0) 1 (n)

https://doi.org/10.1371/journal.pone.0221225.t001
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spatial scan statistics, we use Monte Carlo hypothesis testing procedure for the statistical infer-

ence of the clusters detected using the proposed methods. Under the null hypothesis, we gener-

ate a large number of data sets by randomly permuting the locations of observations with

matching ids fixed. Then, we calculate the maximum values of test statistics for each data set.

In that way, we obtain empirical null distributions of the proposed test statistics. The Monte

Carlo-based p-value for the detected cluster is the rank of the maximum value of the test statis-

tics from the real data set among all data sets divided by the number of all data sets.

Results

Simulation study

We conducted a simulation study to evaluate the performance of the proposed methods. We

used the area of Seoul, the capital city of South Korea, as the whole study region. Seoul is com-

posed of 25 districts. We created a true cluster consisting of 5 districts in the northwest area as

shown in Fig 1. The cluster include “Jongno-gu” district with 4 nearest neighbors. We set the

total number of matched pairs to 100, 200, and 400. When searching for clusters, we set the

maximum scanning window size to 50% of total number of matched pairs. We considered 5

different scenarios for the probabilities of πab as shown in Table 2. The first scenario was

included to evaluate whether the proposed methods adequately control the type I error rate.

Across the 4 scenarios except for the first one, the odds ratios (ORs) (π10/π01) are different,

while the unconditional marginal ORs (π1+π+0/ π0+π+1) are the same. The unconditional mar-

ginal OR refers to the OR as if we deal with the data from an unmatched case-control study.

The 4 scenarios provide different information on the magnitude of risk for the cluster. How-

ever, the unconditional marginal OR cannot account for this.

At each scenario, (n11,n10,n01,n00) were first generated from a multinomial distribution

with index n and parameter (π11,π10,π01,π00). We set the same identification number to each

pair of case and control to indicate matching from 1 to n. Then, each of cases and controls of

the first n11 pairs were randomly assigned to one of 5 districts of the true cluster. Cases and

controls of n10 pairs were randomly assigned to districts inside and outside the true cluster,

respectively. Similarly, cases and controls of n01 pairs were randomly assigned to districts out-

side and inside the true cluster, respectively. Both the cases and controls of n00 pairs were ran-

domly assigned to districts outside the true cluster.

We compared the performance of the two proposed methods to that of the Bernoulli-based

method. We estimated the power, sensitivity, and positive predicted value (PPV) from 1000

replications. Power was estimated as the number of rejected data sets out of 1000. For the first

scenario (OR = 1), power is the type I error rate. Because power cannot show the accuracy of

detected clusters, sensitivity and PPV were used to evaluate how accurately the methods can

detect clusters. Sensitivity was defined as the proportion of districts detected correctly among

the districts in the true cluster and PPV as the proportion of districts detected correctly among

the districts in the detected cluster. These are commonly used when reporting simulation

results in studies on spatial scan statistics [7–10, 14–17]. Larger values of sensitivity and PPV

indicate higher accuracy of detected clusters. Sensitivity and PPV were estimated as the aver-

age among the rejected samples.

Both the proposed methods and the Bernoulli-based method controlled the type I error rate

less than the nominal level of 0.05. Estimated type I error rates for T(1) and T(2) were 0.030,

0.036, and 0.042, and 0.028, 0.034, and 0.039 for the number of matched pairs = 100, 200, and

400, respectively. The Bernoulli model had the type I error rates of 0.034, 0.026, and 0.041.

Tables 3–5 show the simulation results listing the estimated power, sensitivity, and PPV

with the number of matched pairs = 100, 200, and 400, respectively. Overall, the two proposed

Spatial scan statistics for matched case-control data
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methods showed higher power, sensitivity, and PPV than the Bernoulli-based method. More-

over, the power of the proposed methods increased as the OR increased. However, the Ber-

noulli-based method showed similar performances across different scenarios because we

assumed the same marginal OR.

Fig 1. A true cluster created for the simulation study.

https://doi.org/10.1371/journal.pone.0221225.g001

Table 2. Five different scenarios assumed for the probability structure in the simulation study.

(π11, π10, π01, π00) π10/π01 π1+π+0/ π0+π+1

(0.25, 0.25, 0.25, 0.25) 1 1

(0.05, 0.25, 0.15, 0.55) 1.67 1.71

(0.10, 0.20, 0.10, 0.60) 2 1.71

(0.15, 0.15, 0.05, 0.65) 3 1.71

(0.18, 0.12, 0.02, 0.68) 6 1.71

https://doi.org/10.1371/journal.pone.0221225.t002
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We observed some consistent patterns in the results using the two proposed methods. T(1)

showed higher power than T(2) except for the case of π10/π01 = 1.67. PPV was always higher in

results from T(1) than from T(2). T(2) showed higher sensitivity than T(1) except for π10/π01 = 6.

Although the difference in performance between the two proposed methods was marginal,

T(1) appeared to perform slightly better under the scenarios we assumed.

Real data example

We used national health insurance service national sample cohort data, which is a randomly

selected sample from population-based cohort data set containing insurance eligibility, medi-

cal treatments, medical care institutions, and general health examinations [18]. The data com-

prise approximately 2.2% of total eligible Korean population. Residential area information was

available at the district level. From the sample cohort data, we identified 173 male cases diag-

nosed with lung cancer at general health examination for the year of 2013 in Seoul. Next, we

randomly selected 173 controls with age-group matched to each case.

We applied the two proposed methods and the Bernoulli-based method to the data. The

Bernoulli-based method revealed no significant clusters, while the two proposed methods

detected a significant cluster consisting of 11 districts in the midwest area of Seoul, with a p-

Table 3. Estimated power, sensitivity, and PPV with the number of matched pairs = 100 (highest value across three methods is shown in bold).

(π11, π10, π01, π00) T(1) T(2) Bernoulli-based

(0.05, 0.25, 0.15, 0.55) Power 0.153 0.156 0.113

Sensitivity 0.799 0.842 0.720

PPV 0.623 0.603 0.683

(0.10, 0.20, 0.10, 0.60) Power 0.196 0.190 0.110

Sensitivity 0.820 0.854 0.691

PPV 0.689 0.633 0.676

(0.15, 0.15, 0.05, 0.65) Power 0.249 0.187 0.085

Sensitivity 0.865 0.882 0.664

PPV 0.760 0.605 0.596

(0.18, 0.12, 0.02, 0.68) Power 0.349 0.207 0.078

Sensitivity 0.908 0.886 0.562

PPV 0.793 0.567 0.586

https://doi.org/10.1371/journal.pone.0221225.t003

Table 4. Estimated power, sensitivity, and PPV with the number of matched pairs = 200 (highest value across three methods is shown in bold).

(π11, π10, π01, π00) T(1) T(2) Bernoulli-based

(0.05, 0.25, 0.15, 0.55) Power 0.289 0.303 0.184

Sensitivity 0.845 0.863 0.837

PPV 0.732 0.715 0.781

(0.10, 0.20, 0.10, 0.60) Power 0.375 0.372 0.232

Sensitivity 0.864 0.888 0.799

PPV 0.764 0.744 0.734

(0.15, 0.15, 0.05, 0.65) Power 0.563 0.548 0.210

Sensitivity 0.923 0.930 0.766

PPV 0.865 0.817 0.684

(0.18, 0.12, 0.02, 0.68) Power 0.811 0.678 0.158

Sensitivity 0.958 0.925 0.747

PPV 0.921 0.803 0.683

https://doi.org/10.1371/journal.pone.0221225.t004
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value equal to 0.047 and 0.044, respectively (Fig 2). The observed counts for the matched pairs

with respect to whether they were inside or outside the cluster were n11 = 19, n10 = 53, n01 =

25, and n00 = 76. The conditional ML estimate for the OR was 2.12. The cluster is the region

with higher odds of male lung cancer than the remaining region, adjusting for age-group. In

fact, the same area was the most likely cluster when the Bernoulli-based method was used, but

the statistical significance was not obtained (p-value = 0.09). As shown in the simulation study,

the result may reflect that the proposed methods have higher power than the Bernoulli-based

spatial scan statistic for matched case-control data.

Discussion and conclusion

We have proposed two spatial scan statistics for matched case-control data in this paper. The

methods are based on McNemar’s test statistic and Wald-type test statistic for the OR. There-

fore, we accounted for the correlation in responses within a matched pair. If we use the Ber-

noulli-based spatial scan statistic for matched case-control data, we ignore the correlation, and

the cluster detection test results will suffer from low power.

The simulation study clearly revealed that the proposed methods had higher power and

higher accuracy for detecting spatial clusters for matched case-control data than the Bernoulli-

based spatial scan statistic. The cluster detection result for the male lung cancer data also

appeared to reflect a higher power of the proposed methods. The method based on McNemar’s

test statistic appeared to perform slightly better than the other proposed method, although the

difference was marginal.

We have considered searching for clusters with high rates expressed with OR>1. We might

be interested in clusters with low rates, i.e., OR<1. Because an OR is symmetric about 1, the

reciprocal of an OR represents the same strength of association in opposite direction. Search-

ing for clusters with OR<1 for cases relative to controls is identical to searching clusters with

OR>1 for controls relative to cases. We can see this symmetry in the test statistics as well. Both

the test statistic values of Tð1Þz and Tð2Þz remain the same even if n10 and n01 are switched except

the identity function part. We can use the proposed methods to search for clusters with low

rates by only switching the direction of inequality sign in the identity function.

Here, we focused on the simplest situation of 1:1 matching, where one control was matched

to each case. When multiple controls were matched to a single case (M:1 matching), we can

still use the Wald-type test statistic for the regression coefficient from conditional logistic

Table 5. Estimated power, sensitivity, and PPV with the number of matched pairs = 400 (highest value across three methods is shown in bold).

(π11, π10, π01, π00) T(1) T(2) Bernoulli-based

(0.05, 0.25, 0.15, 0.55) Power 0.585 0.598 0.586

Sensitivity 0.886 0.897 0.882

PPV 0.849 0.811 0.849

(0.10, 0.20, 0.10, 0.60) Power 0.737 0.743 0.648

Sensitivity 0.923 0.928 0.878

PPV 0.859 0.848 0.821

(0.15, 0.15, 0.05, 0.65) Power 0.920 0.914 0.689

Sensitivity 0.966 0.969 0.865

PPV 0.944 0.927 0.837

(0.18, 0.12, 0.02, 0.68) Power 0.996 0.995 0.684

Sensitivity 0.993 0.983 0.842

PPV 0.981 0.943 0.820

https://doi.org/10.1371/journal.pone.0221225.t005
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regression modeling. We may rewrite the hypotheses in (4) and test statistic Tð2Þz as H0:β = 0

for all z2Z vs. Ha:β>1 for some z2Z in a conditional logistic regression model as follows.

logitðPðYit ¼ 1ÞÞ ¼ ai þ bxit; i ¼ 1; . . . ; n; t ¼ 1; 2 ð5Þ

where xit = 1 if subject t (t = 1 if case and t = 2 if control) in matched pair i belongs to z and

xit = 0 otherwise, and

Tð2Þz ¼
b̂2

1=n10 þ 1=n01

I b̂ > 0
� �

:

For 1:1 matched data, the OR (π10/π01) is identical to exp(β). The conditional logistic model

(5) can be extended to M:1 matched data. We only need to modify the model using t = 1,. . .,M

Fig 2. The most likely cluster detected by the two proposed methods.

https://doi.org/10.1371/journal.pone.0221225.g002
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+1 to indicate one case and M controls. We can estimate β and the estimate’s standard error

based on the conditional ML method. Then, the Wald-type test statistic can be constructed in

the same manner. However, further evaluation in a simulation study is warranted to evaluate

the method.

We only considered circular windows. Other shapes of scanning windows such as elliptic

or irregular windows have been extensively studied [17, 19–24]. It would be interesting to eval-

uate the proposed methods using other shapes of windows. In addition to the proposed test

statistics in this paper, it may be possible to use other types of test statistics for matched case-

control data.

In conclusion, the proposed methods are very useful for spatial cluster detection for

matched case-control data.
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