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Abstract: An Ag(I) metallacycle obtained unexpectedly during the preparation of Pd(II) complexes
of the bifunctional ligand 5-([2,2′-bipyridin]-5-yl)pyrimidine-2-amine (L) has been characterized
using X-ray structure determination as a binuclear, metallacyclic species [Ag2L2](SbF6)2, where
both the bipyridine and pyrimidine-N donors of L are involved in coordination to the metal. The
full coordination environment of the Ag(I) defines a case of highly irregular 4-coordination. In the
crystal, the Ag-metallacycles assemble into one-dimensional supramolecular metalladynamers linked
together by hydrogen-bonding interactions.

Keywords: supramolecular chemistry; metalladynamers; H-bond polymers; metallacycles

1. Introduction

In the last three decades, a great deal of effort has been devoted to the preparation
and further investigation of metallosupramolecular assemblies in the solid state, because
they not only extend the range of new structures, which can be designed to possess partic-
ular physical and chemical properties but often lead to unexpected applications of such
materials [1–3]. In this context, the control of the self-assembly process between labile
metal ions and multidentate ligands is a key objective in the development of new metallo-
supramolecular materials based on the simultaneous use of distinct dynamic linkages [4–6].
Clearly, this process is related to a variety of factors, such as the number, type, and spatial
disposition of the binding sites of ligands; the stereoelectronic preferences of metal ions; the
solvent used; and the nature of counter ions. [7,8]. The combination of all of these factors
leads to numerous metallosupramolecular complexes with various structural topologies
and fascinating physicochemical properties [9–15].

Among the various types of supramolecular linkages employed in the generation of
complex assemblies, coordination and hydrogen bonds are the most widely employed [16–21].
It is worth noting that despite the incredible progress made in this area of chemistry
in recent years, the simultaneous application of both these bonds for the generation of
topologically non-trivial supramolecular architectures remains challenging, especially
with the use of highly labile metal ions, such as Ag(I) [22–26]. In fact, little attention
has been paid to the generation of supramolecular assemblies produced by means of
simultaneous hydrogen and coordination bonding with Ag(I) as their metal centers [27–29].
Ag(I) is an interesting metal, with several coordination geometries having been described,
such as linear [30], T-shaped [31], trigonal [32], distorted tetrahedral [33], and octahedral
geometries [34], and each particular geometry is usually a consequence of the coordination
properties of the ligands [35]. In this context, the application of this labile metal ion with a
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ligand containing two distinct chelating groups—i.e., pyrimidine and bipyridine—with an
additional functional moiety promoting hydrogen bonds remains unexplored.

The bifunctional ligand 5-([2,2′-bipyridin]-5-yl)pyrimidin-2-amine, L (Scheme 1), con-
tains both a strong chelation site of the 2,2′-bipyridine type and a strong H-bond acceptor–
donor (ADDA) site, a combination anticipated to be of particular utility in the supramolec-
ular chemistry of metal ion complexes. We have shown that with the octahedral metal
ion Fe(II) [36], it is possible to isolate both the meridional and facial forms of its tris(ligand)
complexes, in which only the bipyridine site is directly bound to the metal and the aminopy-
rimidine unit is free to become involved in supramolecular interactions which differ greatly
for the two isomers. In contemplating extension of this work to metal ions with different
coordination preferences, our first choice was that of a square-planar Pd(II), one of the most
versatile and widely used sources of efficient metallocatalysts [37–41]. Again (Scheme 1),
it was expected that two isomers, here cis and trans, might form and that fractional crys-
tallization might be required in their separation. In the event, fractional crystallization of
the product mixture obtained by reacting Pd(SbF6)2, obtained in situ by reacting PdCl2
with AgSbF6 in aqueous acetonitrile, with L did produce two distinct materials, the first a
poorly crystalline mixture of the Pd(II) complexes and the second being the unexpected
Ag(I)-based metallacycle, [Ag2L2](SbF6)2. We have also found that isolated Ag(I) complex,
self-assembles in the solid state and forms extended 1D supramolecular polymer, consisting
of macrocyclic monomers linked together by means of H-bonding interactions.

Scheme 1. Anticipated synthesis of the cis and trans isomers of [PdIIL2](SbF6])2 accompanied by the inadvertent formation
of [Ag2L2](SbF6)2.

2. Results

While the reaction of Pd(SbF6)2 with the ligand L, 5-([2′,2′′-bipyridin]-5′-yl) pyrimidin-
2-amine does indeed give rise to isomeric forms of the complex [PdL2]2+ (Scheme 1; work
to be reported elsewhere), on the very first occasion that it was conducted an apparent
excess (0.1 equiv.) of AgSbF6 in the reaction mixture led to these isomers being produced
along with the Ag(I) complex.

Thus, a suspension of the ligand in CH3CN was mixed at room temperature with a
CH3CN:H2O (1:1) solution of Pd(SbF6)2, generated in situ from PdCl2 and AgSbF6, and
stirred until a clear yellow solution had formed. As the color appeared consistent with the
binding of the bipyridine unit to Pd(II), ESI-MS analysis (Supplementary Figures S3 and S4
in ESI) showed a dominant peak for the ion [PdIIL2(SbF6)]+ the solution was evaporated
to dryness and the residue redissolved in pure CH3CN. A vapor diffusion of diethylether
into this solution with the intention of isolating the [PdIIL2](SbF6)2 presumed to be present
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initially provided poorly crystalline material, but on removing this and allowing the super-
natant to evaporate slowly, small, pale-yellow crystals were obtained. These proved to be
almost completely insoluble in any solvent, indicating that the species originally formed
in CH3CN was no longer present. The exact nature of this material was established by
X-ray structure determination (and subsequent chemistry). Thus, the isolated crystalline
complex proved not to be a chelate complex of Pd(II) but a diargentacycle, (bis[5-([2′,2′′-
bipyridin]-5′-yl)pyrimidin-2-amine])disilver(I) bis(hexafluoroantimonate), [Ag2L2](SbF6)2,
involving Ag(I) in a four-coordinate environment provided by not only the two N-donors
of the bipyridine unit but also by one pyrimidine-N and one fluorine of [SbF6]− (Figure 1a).
The crystal and structure refinement data for this complex are given in Table 1. Unlike
the Fe(II) complexes of L, the ligand here acts as a triple N-donor by bridging the two
Ag(I) centers. The binuclear complex unit is centrosymmetric, with Ag-N bond lengths
which vary significantly—namely, Ag1-N3 2.151(10); Ag1-N4 2.385(10); and Ag1-N5
2.217(10) Å—covering a range similar to that of the known [Ag(2,2′-bipyridine)2]+ species [42].
Within the diargentacycle unit, the Ag···Ag separation is 7.879(2) Å and while there is a
shorter separation of 4.862(2) Å between Ag centers in adjacent diargentacycles (Figure 1b),
both clearly indicate a lack of metal-metal interactions.

Figure 1. (a) ORTEP representation of the stoichiometric unit of [Ag2L2](SbF6)2 (Ag1-N3 2.151(10); Ag1-N4 2.385(10); and
Ag1-N5 2.217(10) Å). Atom numbering is given for the asymmetric unit and the displacement probability ellipsoids are
shown at the 50% level, (b) Ag···Ag separations within one molecule and between adjacent molecules (H-atoms have been
omitted for clarity).

Table 1. Crystal and structure refinement data for [Ag2L2](SbF6)2.

Chemical Formula C28H22F12N10Ag2Sb2

Formula weight/g mol−1 1182.85
Crystal system monoclinic

Space group P21/n
a/Å 8.7047(2)
b/Å 10.6721(3)
c/Å 18.4607(5)
α/◦ 90
β/◦ 103.255(3)
γ/◦ 90

V/Å3 1669.26(8)
Z 2

2Θ Range/◦ 9.638–151.172

Index ranges
h = –10→10

k = 0→12
l = 0→23

Dx/g cm−3 2.359
µ/mm−1 22.961

Temperature/K 100.0(1)
F(000) 1128.0
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Table 1. Cont.

Chemical Formula C28H22F12N10Ag2Sb2

Reflections collected 3325
Independent reflections 3325
Reflections with I > 2σ(I) 2955

Rint merged
Number of refined parameters 246

R[F2 > 2σ(F2)] 0.065
wR(F2) 0.191

Silver(I) is somewhat notorious for its variety of coordination numbers and the irregu-
larity of its coordination sphere [43], and the present complex provides further examples.
The coordination geometry is very irregular, with the Ag displaced only slightly (0.209 (2) Å)
from the plane of the three N-donors, but the bond angles N3-Ag1-N4 120.9◦, N3-Ag1-N5
161.8◦, and N4-Ag1-N5 72.5◦ are very far from those for a trigonal environment. The
displacement of Ag is clearly towards the fourth donor atom provided by the [SbF6]−. One
NH atom does lie close to what might be considered a coordination site, which would give
the Ag a nearly square-planar N3H environment, but the estimated Ag···H distance of
2.7 Å seems too long for any agostic interaction [44] to be significant.

While there are different forms of coordination of the ligand L to Ag(I) and Fe(II), the
complexes of [Ag2L2](SbF6)2 and mer-[FeIIL3](BF4)2·9H2O [36] in the solid state share a
common mode of interaction involving the amino-pyrimidine units, where just half of the
capacity of one unit, as ADDA H-bonding entities, is used in the formation of single-strand
polymers (Figure 2).

Figure 2. (a) Portion of the polymer formed by the [FeIIL3](BF4)2·9H2O, (b) portion of the polymer formed by
the [Ag2L2](SbF6)2.
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In the silver complex structure, two independent single-stranded H-bond polymer
units can be observed, running along the [110] and [1–10] crystallographic directions
(Figure 3). These strands are cross linked by the multiple F···HN and F···HC interactions
of the [SbF6]− units in addition to their coordination to Ag(I), all evident on the Hirshfeld
surface [45] (calculated using CrystalExplorer) [46] of the anion formally present. A full
listing of the H-bonding interactions within the structure of [Ag2L2](SbF6)2 is given in
Table 2. Un-like the structure of mer-[FeIIL3](BF4)2·9H2O, that of [Ag2L2](SbF6)2 shows no
evidence of significant apparent void space (Figure S6).

Figure 3. (a) Single-stranded H-bonded polymer system; (b) the lattice, viewed along the [100] direction, showing adjacent
non-covalently linked polymer systems running along the [110] and [1–10] directions.

Table 2. Hydrogen bond geometry in [Ag2L2](SbF6)2.

D—H···A D—H [Å] H···A [Å] D···A [Å] D—H···A [◦]

C9—H9···F3 ii 0.95 2.69 3.558 (14) 152
N1—H1A···N2 iii 0.81 2.17 2.954 (13) 163
N1—H1B···F4 iv 0.88 2.37 2.914 (13) 120

C12—H12···F5 viii 0.95 2.84 3.452 (14) 123
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Table 2. Cont.

D—H···A D—H [Å] H···A [Å] D···A [Å] D—H···A [◦]

C11—H11···F6 vii 0.95 2.56 3.147 (14) 120
C6—H6···F5 v 0.95 2.64 3.264 (12) 124
C6—H6···F3 v 0.95 2.45 3.364 (13) 162

C13—H13···F6 vi 0.95 2.72 3.307 (15) 121
C14—H14···F6 vi 0.95 2.58 3.250 (13) 128
C14—H14···F4 vi 0.95 2.57 3.507 (15) 170

C2—H2···F5 v 0.95 2.47 3.301 (13) 146
Symmetry codes: (ii) x − 1/2, −y + 3/2, z − 1/2; (iii) −x + 1, − y + 2, −z + 1; (iv) −x + 1/2, y + 1/2, −z + 3/2; (v) x + 1/2, −y + 3/2,
z − 1/2; (vi) x − 1/2, −y + 1/2, z − 1/2; (vii) −x + 1, −y + 1, −z + 1; (viii) x +1/2, −y + 1/2, z − 1/2.

3. Materials and Methods
3.1. General Methods

Basic chemicals and solvents were purchased from commercial sources and were
used without further purification. The 1H NMR spectra were acquired on Bruker Fourier
300 or 600 spectrometers equipped with a 1H 5 mm probe and referenced to the solvent
residual peaks (CD3CN/D2O, DMSO-d6). NMR solvents were purchased from Deutero
GmbH (Kastellaun, Germany) and used as received. The ESI-MS spectra were recorded
on a Bruker Impact HD Q-TOF spectrometer in the positive ion mode. Powder X-ray
diffraction patterns (PXRD) were recorded on a BRUKER D8-Focus Bragg–Brentano X-ray
powder diffractometer equipped with a Cu sealed tube (λ = 1.54178 Å) at room temperature.
Experimental and calculated powder patterns from the crystal structures were analyzed
using the Kdif software [47].

3.2. Details of the Crystal Structure Solution and Refinement

Single-crystal diffraction data for the [Ag2L2](SbF6)2 were collected on a Rigaku
XtaLAB Synergy-R diffractometer with a rotating anode using a CuKα radiation source
(λ = 1.54184 Å). The low temperature was achieved using the Cryostream cooling system.
Data collection and data reduction were performed using the CrysAlis PRO software [48].
The structure was solved and refined using SHELXT-2015 (intrinsic phasing method) and
SHELXL-2015 (least-squares method), respectively [49,50]. Olex2 provided the support
for the full structural analysis of the complex [51]. A twin matrix −1 0 0 0 −1 0 0.973
0 1, which corresponds to a 180◦ rotation about the [001] reciprocal lattice direction, was
also determined using the Olex2 software. The measured crystal was identified as a
non-merohedral twin. The refinement process was performed using the diffraction data
written in the HKLF 5 format. The BASF parameter was refined at 0.0964(17). All non-
hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen
atoms were positioned geometrically in their calculated positions and refined using the
riding hydrogen model.

3.3. Experimental Data for the Complex [PdIIL2](SbF6)2

The complex (bis[5-([2,2′-bipyridin]-5-yl)pyrimidin-2-amine]-palladium(I) bis(hexa-
fluoroantimonate)-[PdIIL2](SbF6)2 was prepared using simple procedures, analogous to
those used to obtain the iron(II) complex [36]. A suspension of the ligand L (25.0 mg,
0.1 mmol, 2.00 equiv.) in MeCN (5 mL), was stirred for 10 min at room temperature.

Then, the Pd(SbF6)2 salt was prepared by mixing PdCl2 (0.05 mmol, 1 equivalent)
dissolved in 2.5 mL of MeCN, and AgSbF6 (0.105 mmol, 2.1 equivalent) dissolved in 2.5 mL
of H2O. The mixture was stirred for 15 min at room temperature and then filtered through
a syringe filter. This freshly generated Pd(SbF6)2 (0.05 mmol, 1.00 equivalent) was added
to the ligand in the CH3CN and the resulting clear yellow solution was stirred at room
temperature for 30 min. The solution was then evaporated to dryness under reduced
pressure and the residue redissolved in MeCN (1 mL). The addition of diethylether (10 mL)
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produced a pale-yellow precipitate, which was collected by centrifugation, washed with
diethyl ether (20 mL) and dried in vacuo, providing a yellow solid (20 mg, yield 34%). HR-
MS (TOF-MS) calculated for C28H22F6N10PdSb+ [M-(SbF6)]+: m/z = 841.0011; observed:
m/z = 841.0090.

3.4. Experimental Data for the Complex [Ag2L2](SbF6)2

After dissolving the residue from the initial reaction mixture in acetonitrile and
fractional crystallization, first by the diffusion of diethyl ether into acetonitrile (giving
microcrystals collected by filtration as described above) and then by the slow evaporation
of the filtrate, light yellow crystals of the [Ag2L2](SbF6)2 complex were obtained with a 5%
yield of the reaction. Elem. Anal. calculated for C28H22F12N10Ag2Sb2·7H2O: C, 25.64; H,
2.77; N, 10.68. Found: C, 25.67; H, 1.65; N, 10.60 (%). No satisfactory elemental analysis
was obtained due to its hygroscopic property.

4. Conclusions

In this report, we have described the synthesis and structural analysis of a new
binuclear macrocycle in which labile Ag(I) ions are coordinated using a very unique
chelating system based on functionalized pyrimidine, bipyridine, and fluorine atoms
derived from SbF6

− counter ions. Moreover, the generated macrocyclic systems undergo
further interaction in the solid state, creating a one-dimensional supramolecular polymer
in which individual units are connected with each other by hydrogen bonding interactions.
Comparison of the now known structures of the Fe(II) and Ag(I) complexes of 5-([2,2′-
bipyridin]-5-yl)pyrimidin-2-amine showed that the coordination mode of this ligand is
not predictable and clearly can vary considerably with the metal ion chosen. Nonetheless,
in both of these known cases the bound ligand retained the capacity to act as an H-bond
donor-acceptor, indicating that the solid state supramolecular chemistry has significant
prospects for further development, especially with regard to catalytic applications such as
those envisaged for the Pd(II) complexes initially targeted in the present work [52,53].

Supplementary Materials: The following are available online, Figure S1: 1H NMR spectrum
(600 MHz) of the reaction mixture [PdIIL2](SbF6)2. Figure S2: 1H NMR spectrum (600 MHz) of
comparisons free ligand and isolated material (see Figure S1) in deuterated MeCN and DMSO.
Figure S3: HR-TOF-ESI-MS analysis of the reaction mixture [PdIIL2](SbF6)2. Figure S4: HR-TOF-ESI-
MS analysis of the reaction mixture [PdIIL2](SbF6)2. Figure S5: Kinetic 1H NMR spectrum (600 MHz,
CD3CN) of the reaction mixture [PdIIL2](SbF6)2. Figure S6: Void analysis of complex [Ag2L2](SbF6)2,
and complex [FeIIL3](BF4)2·9H2O performed with mercury.
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