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Abstract: α-Glucan affects fungal cell–cell interactions and is important for the virulence of
pathogenic fungi. Interfering with production of α-glucan could help to prevent fungal infection.
In our previous study, we reported that an amylase-like protein, AmyD, could repress α-glucan
accumulation in Aspergillus nidulans. However, the underlying molecular mechanism was not clear.
Here, we examined the localization of AmyD and found it was a membrane-associated protein.
We studied AmyD function in α-glucan degradation, as well as with other predicted amylase-like
proteins and three annotated α-glucanases. AmyC and AmyE share a substantial sequence
identity with AmyD, however, neither affects α-glucan synthesis. In contrast, AgnB and MutA
(but not AgnE) are functional α-glucanases that also repress α-glucan accumulation. Nevertheless,
the functions of AmyD and these glucanases were independent from each other. The dynamics of
α-glucan accumulation showed different patterns between the AmyD overexpression strain and
the α-glucanase overexpression strains, suggesting AmyD may not be involved in the α-glucan
degradation process. These results suggest the function of AmyD is to directly suppress α-glucan
synthesis, but not to facilitate its degradation.
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1. Introduction

α-1,3-Glucan (hereafter, α-glucan) and β-1,3/1,6-glucan (hereafter, β-glucan) are major cell
wall components for many filamentous fungi, as well as for many yeasts [1]. However, they have
very different impacts on fungal cells. β-glucan is essential for fungal cell survival, at least for
species of Aspergillus and Candida [2,3], hence, β-glucan synthase inhibitors (echinocandins) are used
clinically to treat systemic aspergillosis and candidiasis [4]. In contrast, α-glucan has been found
to be important for the morphology of Schizosaccharomyces pombe [5], particularly for cell integrity
at cytokinesis [6]. For other fungal species, α-glucan synthase deleted strains cause minor or no
phenotypic change [7–10]. Nevertheless, accumulated evidence has suggested α-glucan has a role in
host-pathogen interaction [11–13], which is important for successful pathogenesis. Thus, treatments
that could eliminate fungal α-glucan might be able to prevent fungal infection. Unfortunately, to our
knowledge, no drug has yet been developed that targets α-glucan synthase. As an alternative strategy
to blocking the synthesis of α-glucan, we could potentially degrade α-glucan from fungal cell walls to
achieve the same purpose.
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α-1,3-Glucanase (hereafter, α-glucanase) expressed by fungal cells can recycle α-glucan from their
cell walls. In S. pombe, α-glucanase (SpAgn1p) was shown to have an endo-catalytic hydrolysis ability
on α-glucan (hydrolyzing α-glucan into pentasaccharides), and was thereby important for successful
cell division [14]. Paracoccidioides brasiliensis α-glucanase (PbAgn1p) had comparable activity [15].
In Trichoderma species, two α-glucanases have been characterized, and these were suggested to have
antifungal effects because their expression was highly induced under antagonistic conditions [16,17].
Together this is strong evidence that α-glucanase has the potential to eliminate α-glucan from fungal
cell walls. Consistent with this, a strain of transgenic rice plants that expressed a bacterial α-glucanase
was more resistant to Magnaporthe oryzae [12]. Therefore, degrading α-glucan from fungal cell walls is
a possible way to prevent fungal infection, and characterization of glucanase-like proteins will provide
additional useful information about this major but enigmatic wall carbohydrate.

In our previous study, we reported that an amylase-like protein (AmyD) repressed α-glucan
synthesis in A. nidulans [10]. Amylase-like proteins with similar effects were also seen in S. pombe [18]
and A. niger [19]. These data suggest some amylase-like proteins may have the same potential as
α-glucanase to eliminate α-glucan from fungal cell walls. To explore this, we studied the function of
AmyD along with two other amylase-like proteins and three α-glucanases in the α-glucan degradation
process. We found that AmyD localized at the cell membrane and was the only amylase-like protein in
A. nidulans that could repress α-glucan accumulation. In addition, AmyD function was independent
from that of α-glucanase. All functional α-glucanases maintained low expression levels in the
A. nidulans asexual life cycle. Thus, AmyD is the major negative regulator for α-glucan accumulation
in A. nidulans during the asexual life cycle, and may have a potential to prevent fungal infection.

2. Results

2.1. AmyD Mainly Localizes at the Cell Membrane

In our previous work, we reported that AmyD repressed α-glucan synthesis, and so we
hypothesized that AmyD might work together with one or more α-1,3-glucanases to degrade
α-glucan [10]. In order to understand the mechanism of AmyD as an α glucanase, it is important to
determine its localization. However, due to hindrance from the AmyD protein and the GPI-anchor
site, we did not get a visible signal when the green fluorescent protein (GFP) was tagged after the
signal peptide (between the 26th and 27th amino acids) or after the GPI-anchor site. To solve these
problems, we replaced the amylase domain of AmyD (from the 63rd to the 507th amino acid) by
a GFP (for details of the strain construction and verification, see Figure 1A,B). The N-terminal signal
peptide and C-terminal GPI-anchor site of AmyD were maintained, which were the elements that
determined AmyD localization. The same strategy has been reported to solve the localization issue
of other GPI-anchored proteins [20,21]. The GFP signal for this strain (chimera-AmyD-GFP) showed
strong association with septa (Figure 1C) and patchy localization with the cell membrane (Figure 1D),
which was consistent with the localization of a GPI-anchor protein. Therefore, AmyD may be involved
in α-glucan degradation based on its plasma-membrane localization.
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Figure 1. Localization of AmyD associates with cell membrane; (A) Strategy of chimera-AmyD-GFP 
strain construction. The amylase-like domain of AmyD was replaced by a GFP, whereas the 
localization determining elements of AmyD were maintained. The localization of AmyD 
corresponded to a chimera-GFP signal; (B) PCR verification of AmyD-GFP strain. Primers targeting 
sites were labeled in (A). PCR using SE101 + SE102 primers confirmed the replacement of amyD by 
gfp. PCR using SE103 + AME16 and SE103 + SE106 primers confirmed the integration of the 
construct at the designed place. No ectopic insertion was found in the AmyD-GFP genome; (C) the 
GFP signal was examined using a Zeiss META501 confocal epifluorescence microscope at 63 × NA 
1.2 or 25 × N.A. 1.0 objective lens. Confocal imaging used 488 nm excitation with emission controlled 
by a BP 505–530 nm filter; and (D) a magnified hypha image showed the GFP signal strongly 
associated with septa and the cell membrane. 

2.2. AmyC and AmyE Do Not Affect α-Glucan Accumulation 

In the A. nidulans genome, there are two putative/annotated amylase-like proteins, AmyC 
(encoded by ANID4507) and AmyE (encoded by ANID6324) that share high sequence similarity 
with AmyD. Like AmyD, both are predicted to have an N-terminal signal peptide and C-terminal 
GPI-anchor site [22]. Their overall amino acid sequence identities to AmyD are 59% (AmyC) and 
45% (AmyE), respectively (Figure S1), suggesting they could have conserved functions with AmyD. 

To study their functions, we first examined their expression levels to see when we could expect 
to detect their activities. Samples were grown in shaken liquid medium and in static liquid medium 
for 14 h and 24 h respectively. In shaken liquid medium, A. nidulans grows vegetatively (hyphal 
elongation only) but does not undergo colony development. In static liquid medium, A. nidulans 
undergoes its complete asexual life cycle. Conidiophores with conidia were seen when we collected 
the static samples at 24 h. Unlike amyD that had a general high basal expression [10], we found amyC 
and amyE maintained low expression levels throughout the A. nidulans asexual life cycle (Table 1). 
This conclusion was based on high Ct values of amyC and amyE in qPCR (data not shown). 
Therefore, their activities are not expected in asexual life stages. 

A large number of conidia (2 × 107) were inoculated in liquid CM and incubated at 30 °C under 
indicated conditions. The overexpression strains were grown in shaken condition for 14 h. 
Expression of each gene in 14 h shaken growth group were defined as 1. Results present the mean of 
three independent qPCR tests with triplicates each time ± standard deviation. 
  

Figure 1. Localization of AmyD associates with cell membrane; (A) Strategy of chimera-AmyD-GFP
strain construction. The amylase-like domain of AmyD was replaced by a GFP, whereas the localization
determining elements of AmyD were maintained. The localization of AmyD corresponded to
a chimera-GFP signal; (B) PCR verification of AmyD-GFP strain. Primers targeting sites were labeled
in (A). PCR using SE101 + SE102 primers confirmed the replacement of amyD by gfp. PCR using
SE103 + AME16 and SE103 + SE106 primers confirmed the integration of the construct at the designed
place. No ectopic insertion was found in the AmyD-GFP genome; (C) the GFP signal was examined
using a Zeiss META501 confocal epifluorescence microscope at 63 × NA 1.2 or 25 × N.A. 1.0 objective
lens. Confocal imaging used 488 nm excitation with emission controlled by a BP 505–530 nm filter;
and (D) a magnified hypha image showed the GFP signal strongly associated with septa and the
cell membrane.

2.2. AmyC and AmyE Do Not Affect α-Glucan Accumulation

In the A. nidulans genome, there are two putative/annotated amylase-like proteins, AmyC
(encoded by ANID4507) and AmyE (encoded by ANID6324) that share high sequence similarity
with AmyD. Like AmyD, both are predicted to have an N-terminal signal peptide and C-terminal
GPI-anchor site [22]. Their overall amino acid sequence identities to AmyD are 59% (AmyC) and
45% (AmyE), respectively (Figure S1), suggesting they could have conserved functions with AmyD.

To study their functions, we first examined their expression levels to see when we could expect to
detect their activities. Samples were grown in shaken liquid medium and in static liquid medium for
14 h and 24 h respectively. In shaken liquid medium, A. nidulans grows vegetatively (hyphal elongation
only) but does not undergo colony development. In static liquid medium, A. nidulans undergoes
its complete asexual life cycle. Conidiophores with conidia were seen when we collected the static
samples at 24 h. Unlike amyD that had a general high basal expression [10], we found amyC and amyE
maintained low expression levels throughout the A. nidulans asexual life cycle (Table 1). This conclusion
was based on high Ct values of amyC and amyE in qPCR (data not shown). Therefore, their activities
are not expected in asexual life stages.
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Table 1. Time-course expression study.

Shaken Growth Static Growth Overexpression by actA(p)

genes 14 h 24 h 14 h 24 h 14 h
amyC 1 1.44 ± 0.44 1.28 ± 0.28 18.84 ± 6.36 794.13 ± 190.28
amyE 1 1.72 ± 0.71 1.93 ± 0.49 27.82 ± 9.79 484.82 ± 140.61
agnB 1 2.16 ± 0.63 2.39 ± 0.83 11.71 ± 3.93 871.00 ± 191.59
agnE 1 1.92 ± 0.57 1.59 ± 0.53 274.90 ± 85.55 1268.84 ± 292.38
mutA 1 2.97 ± 0.89 2.31 ± 0.96 6.96 ± 1.99 1753.59 ± 654.97

We overexpressed amyC and amyE to examine their effects on α-glucan. An actin promoter
(actA(p)) from A. nidulans was used to overexpress these genes as we previously used for amyD [10].
The actA(p)-amyC and actA(p)-amyE strains had no obvious phenotypic change compared to the
wild-type reference strain A1149, when tested on solid medium, or when grown in shaken liquid
medium with respect to the colony size (Figure 2A,B). In contrast, the actA(p)-amyD strain formed
many tiny colonies in shaken liquid culture (Figure 2B). This suggests that AmyC and AmyE may not
have the same function as AmyD. Our qPCR results showed amyC and amyE were each overexpressed
by several hundred-fold when regulated by actA(p), confirming their low expression under native
promoters (Table 1). However, the α-glucan content in actA(p)-amyC and actA(p)-amyE was comparable
to the wild-type cells (Figure 2C), unlike actA(p)-amyD (Figure 2C). So far, AmyD is the only reported
amylase-like protein that has a repressive effect on α-glucan accumulation in A. nidulans.

Int. J. Mol. Sci. 2017, 18, 695 4 of 13 

 

Table 1. Time-course expression study. 

 Shaken Growth Static Growth Overexpression by actA(p) 
genes 14 h 24 h 14 h 24 h 14 h 
amyC 1 1.44 ± 0.44 1.28 ± 0.28 18.84 ± 6.36 794.13 ± 190.28 
amyE 1 1.72 ± 0.71 1.93 ± 0.49 27.82 ± 9.79 484.82 ± 140.61 
agnB 1 2.16 ± 0.63 2.39 ± 0.83 11.71 ± 3.93 871.00 ± 191.59 
agnE 1 1.92 ± 0.57 1.59 ± 0.53 274.90 ± 85.55 1268.84 ± 292.38 
mutA 1 2.97 ± 0.89 2.31 ± 0.96 6.96 ± 1.99 1753.59 ± 654.97 

We overexpressed amyC and amyE to examine their effects on α-glucan. An actin promoter 
(actA(p)) from A. nidulans was used to overexpress these genes as we previously used for amyD [10]. 
The actA(p)-amyC and actA(p)-amyE strains had no obvious phenotypic change compared to the 
wild-type reference strain A1149, when tested on solid medium, or when grown in shaken liquid 
medium with respect to the colony size (Figure 2A,B). In contrast, the actA(p)-amyD strain formed 
many tiny colonies in shaken liquid culture (Figure 2B). This suggests that AmyC and AmyE may 
not have the same function as AmyD. Our qPCR results showed amyC and amyE were each 
overexpressed by several hundred-fold when regulated by actA(p), confirming their low expression 
under native promoters (Table 1). However, the α-glucan content in actA(p)-amyC and actA(p)-amyE 
was comparable to the wild-type cells (Figure 2C), unlike actA(p)-amyD (Figure 2C). So far, AmyD is 
the only reported amylase-like protein that has a repressive effect on α-glucan accumulation in A. 
nidulans. 

 
Figure 2. Overexpression of amyC and amyE does not affect significantly α-glucan accumulation. (A) 
105 freshly harvested conidia of each strain were inoculated on complete medium and the plates were 
incubated at 30 °C for 48 h. All constructed strains showed the wild type colony phenotype on solid 
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formed tiny colonies; (C) A large number (2 × 107) of spores of each strain were inoculated in 100 mL 
complete medium. Samples were grown in flasks at 30 °C with 150 rpm for 24 h. α-glucan was 
extracted from 1 mg dry cell wall, and then digested to glucose and quantified by an anthrone assay. 
Results represent the mean of three independent quantification tests with duplicates each time ± 
standard deviation. The data for each strain were compared with wild type (column 1) individually 
by Mann Whitney U test. Significant difference (p < 0.05) is indicated by asterisks. 

2.3. MutA, as Well as AgnB, but Not AgnE, Can Repress α-Glucan Accumulation 

In order to verify whether AmyD could facilitate α-glucan degradation, we needed to find a 
functional α-glucanase. MutA (encoded by ANID7349) is the only characterized α-glucanase in A. 
nidulans. However, its expression has only been studied for the sexual life cycle [23]. Two more 
α-glucanase encoding genes, agnB (ANID3790) and agnE (ANID1604), have also been annotated in 

Figure 2. Overexpression of amyC and amyE does not affect significantly α-glucan accumulation.
(A) 105 freshly harvested conidia of each strain were inoculated on complete medium and the plates
were incubated at 30 ◦C for 48 h. All constructed strains showed the wild type colony phenotype on
solid medium; (B) a large number (5 × 107) of freshly harvested conidia were inoculated in flask with
20 mL complete medium, then the flask was incubated at 30 ◦C, 150 rpm overnight. Only actA(p)-amyD
formed tiny colonies; (C) A large number (2 × 107) of spores of each strain were inoculated in 100 mL
complete medium. Samples were grown in flasks at 30 ◦C with 150 rpm for 24 h. α-glucan was
extracted from 1 mg dry cell wall, and then digested to glucose and quantified by an anthrone assay.
Results represent the mean of three independent quantification tests with duplicates each time ±
standard deviation. The data for each strain were compared with wild type (column 1) individually by
Mann Whitney U test. Significant difference (p < 0.05) is indicated by asterisks.

2.3. MutA, as Well as AgnB, but Not AgnE, Can Repress α-Glucan Accumulation

In order to verify whether AmyD could facilitate α-glucan degradation, we needed to find
a functional α-glucanase. MutA (encoded by ANID7349) is the only characterized α-glucanase in
A. nidulans. However, its expression has only been studied for the sexual life cycle [23]. Two more
α-glucanase encoding genes, agnB (ANID3790) and agnE (ANID1604), have also been annotated in the
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A. nidulans genome [22]. Therefore, AgnB and AgnE were chosen as our study candidates and MutA
was included as a positive control.

A time-course expression study showed that both agnB and mutA had very low expression
throughout A. nidulans asexual life cycle (Table 1), whereas expression of agnE was highly induced
during conidiation (Table 1). When the α-glucanases were individually deleted, this change had
no impact on colony phenotypes or α-glucan content (Figure 3A–C), as expected due to their low
expression levels in vegetative growth. When the α-glucanases were individually overexpressed
by actA(p), each had a many hundred-fold increase in expression level (Table 1), but only the
overexpression of AgnB and MutA led to a lower α-glucan content (Figure 3D). Therefore, AgnB
and MutA are the functional α-glucanases in our test. For colonies grown on solid medium, the
actA(p)-agnB strain had a pale colony color (Figure 3E), even though quantification of conidiation
was unchanged (Table S1), showing that the color change was not due to the conidia number. We
expect that the color difference could be due to a defect in conidia pigment formation somehow related
to the overexpression of agnB. Intriguingly, both actA(p)-agnB and actA(p)-mutA behaved the same
as wild-type in shaken liquid medium (Figure 3F), unlike actA(p)-amyD that formed tiny colonies
(Figure 2B). We also deleted AgnB and MutA together, just in case they might compensate for each
other when individually deleted. However, the double deletion strain still had no impact on α-glucan
content (Figure 3C).
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Figure 3. AgnB and MutA are functional α-glucanases. (A) Freshly harvested conidia (105) of
each strain were inoculated on complete medium and the plates were incubated at 30 ◦C for 48 h.
All constructed strains showed the wild-type colony phenotype on solid medium; (B) freshly harvested
conidia (5 × 107) were inoculated in a flask with 20 mL complete medium, then the flask was incubated
at 30 ◦C, 150 rpm overnight. All strains behaved the same as the wild-type; (C,D) spores of the
indicated strain (2 × 107) were inoculated in 100 mL complete medium. Samples were grown in flasks
at 30 ◦C with 150 rpm for 24 h. α-glucan was extracted from 1 mg of dry cell wall, and then digested to
glucose and quantified using an anthrone assay [24]. Results represent the mean of three independent
quantification tests with duplicates each time ± standard deviation. The data for each strain were
compared with the wild-type (column 1) individually by a Mann Whitney U test. Significant difference
(p < 0.05) was indicated by asterisks; (E) conidia of each strain were prepared and inoculated as in (A).
Only actA(p)-agnB showed pigment deficiency; and (F) all strains behaved the same as the wild-type in
shaken liquid medium. Growth condition was the same as described in (B).
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2.4. Functions of AgnB and MutA Are Independent from AmyD

Our results showed that overexpressed AgnB, MutA, and AmyD all had similar repressive effects
on α-glucan content (Figures 2C and 3D). Considering they each have a signal peptide and a GPI-anchor
site [20], we hypothesized that AmyD may work together with either or both α-glucanases to degrade
α-glucan [10]. If our hypothesis was correct, the repressive effects on α-glucan content from AgnB
and MutA should be abolished or reduced when AmyD was deleted. To verify this, we generated
(actA(p)-agnB, amyD∆) and (actA(p)-mutA, amyD∆) strains. We found these two strains had wild-type
phenotypes on solid medium and in shaken liquid medium (Figure 4A,B). The pigment defect in
actA(p)-agnB was recovered with the deletion of amyD (Figures 3E and 4A). However, both strains
still showed low α-glucan content similar to actA(p)-agnB and actA(p)-mutA (Figures 3D and 4C),
indicating the effects of AgnB and MutA were still present. Therefore, the functions of AgnB and MutA
appear to be independent from AmyD.
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2.5. Dynamics of α-Glucan Accumulation Affects Colony Formation in Liquid Medium and Drug Sensitivity

It was interesting to see that actA(p)-agnB, actA(p)-mutA, and actA(p)-amyD strains had similar
α-glucan content (Figures 2C and 3D), but behaved differently in shaken liquid medium (compare
Figure 2B with Figure 3F). We thought this might be because of how α-glucan accumulated in these
strains. In all of our previous quantification experiments, we collected the fungal cell samples at 24 h
post-inoculation. In contrast, visualization of colonies in shaken liquid had typically been done earlier,
usually around 16 h post-inoculation. Thus, we also collected additional samples at 16 h and 20 h
post-inoculation to examine the dynamics of α-glucan accumulation in cell walls. Results showed
very different patterns of α-glucan accumulation in these strains (Figure 5A). In wild-type, α-glucan
content increased from 16 h to 24 h. In actA(p)-amyD, the trend to increasing α-glucan was maintained,
but at each time point the concentration of α-glucan was only about 50% of the wild-type. However,
in actA(p)-agnB and actA(p)-mutA, α-glucan content showed a decreasing trend from 16 h to 24 h.
We also noticed that at 16 h the α-glucan content in wild-type, actA(p)-agnB, and actA(p)-mutA was
very similar, whereas the α-glucan content in actA(p)-amyD was much lower.

In our previous work, we found that α-glucan content was correlated with sensitivity to Calcofluor
White (CFW) [10]. We wondered if this change was also correlated with α-glucan accumulation
dynamics. We tested all strains on 50 µg/mL CFW. Only actA(p)-amyD showed delayed germination
and/or slower growth, whereas all other strains maintained the same growth ability (Figure 5B).
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Figure 5. Dynamics of α-glucan accumulation and its impact on CFW sensitivity. (A) Dynamics of
α-glucan accumulation in each strain with time. 2 × 107 spores of each strain were inoculated in
100 mL complete medium. Samples were grown in flasks at 30 ◦C with 150 rpm for 16 h, 20 h, and 24 h,
respectively. α-glucan was extracted from 1 mg of dry cell wall, and then digested to glucose and
quantified by an anthrone assay. Wild-type and actA(p)-amyD showed the same increasing trend
from 16 h to 24 h, except the glucose concentration in actA(p)-amyD was much lower than that of the
wild-type at each time point. The actA(p)-agnB and actA(p)-mutA had the same decreasing trend from
16 h to 24 h; (B) freshly harvested conidia (105) of each strain were inoculated on 50 µg/mL CFW plates
and the plates were incubated at 30 ◦C for 48 h. Only actA(p)-amyD showed delayed germination
and growth.

3. Discussion

In our previous study, we found AmyD repressed α-glucan accumulation in A. nidulans [10].
To investigate the underlying mechanism, we extended our work to other α-glucan metabolism-related
genes to further understand the function of AmyD.

3.1. AmyD Is the Major Negative Regulator of α-Glucan Accumulation in the A. nidulans Asexual Life Cycle

Both amyC and amyE share high sequence similarity with amyD, however our results showed they
did not affect α-glucan accumulation. They also had no impact on starch digestion when tested on
starch-only medium (unpublished data), so their functions remain unclear. So far, AmyD is the only
reported amylase-like protein that can repress α-glucan accumulation in A. nidulans. From our results,
the α-glucanases, AgnB and MutA showed similar repressive effects as AmyD when overexpressed
(Figure 3D). However, each maintained a very low expression level in the A. nidulans asexual life
cycle (Table 1), especially when compared to the expression level of amyD at each stage. This also
explained why deletion of AgnB and MutA had no impact on α-glucan accumulation (Figure 3C),
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but deletion of AmyD did [10]. Altogether, we conclude AmyD is the major negative regulator of
α-glucan accumulation during A. nidulans asexual life cycle. However, we could not rule out that AgnB
and MutA may have particular roles in certain types of cells during colony development, which needs
further investigation.

3.2. Functions of α-Glucanases and AmyD Are Independent from Each Other

Our results confirmed MutA as a functional α-glucanase and also revealed that AgnB, but not
AgnE, had the same effect as AmyD to repress α-glucan accumulation. However, the low expression
level of mutA and agnB in the A. nidulans asexual life cycle (Table 1) suggested that α-glucan degradation
is not active during these stages. This is consistent with why even the mutA and agnB double-deletion
strains maintained the same α-glucan content as the wild-type. This could also explain why the most
prominent anti-α-glucan antibody-staining signal was from the older hyphal regions [10], because
α-glucan was not recycled during the asexual life cycle. With this in mind, we think the function of
AmyD is not based on α-glucanase.

On the other hand, amyD had a relatively high expression level during A. nidulans asexual
development [10]. It is still possible the function of α-glucanase depends on AmyD. However, when
amyD was deleted from actA(p)-agnB and actA(p)-mutA, the repressive effects on α-glucan from AgnB
and MutA were maintained (Figure 4C). Therefore, the functions of glucanases are independent
from AmyD. Evidence from other α-glucanase characterization work also showed that α-glucanase
is functional by itself [14–16]. In addition, we noticed that, when AgnB or MutA was overexpressed
in an AmyD∆ background, the effect from AmyD deletion was abolished (compare data in [10] with
Figures 3D and 4C). Thus, we interpret this as α-glucanases being superior in regulating α-glucan
content in the cell wall.

In our study, we did find that the deletion of amyD in an actA(p)-agnB strain reversed the pigment
formation defect (compare Figure 3E with Figure 4A), which was a specific phenotypic change in
actA(p)-agnB. Otherwise, we have never found that low α-glucan content led to a pigment defect.
Therefore, we think this phenotypic change does not relate to α-glucan content.

3.3. α-Glucan Content in Early Life Stage Is Critical for Colony Formation in Shaken Liquid as Well as
Drug Sensitivity

Our dynamics study showed that the α-glucan accumulation processes in actA(p)-agnB and
actA(p)-mutA were unlike actA(p)-amyD (Figure 5A). Although these colonies had similar α-glucan
content after 24 h growth, the α-glucan content at 16 h and 20 h was different. Especially at 16 h,
the α-glucan content in actA(p)-agnB and actA(p)-mutA was almost the same as the wild-type, whereas
in actA(p)-amyD the α-glucan level was only half that of the wild-type. This could explain why
actA(p)-agnB and actA(p)-mutA formed the regular size colonies as wild type (Figure 3F), because
colony formation in shaken liquid was already complete at 16 h. Even though the α-glucan content
decreased in these two strains at later time, the formed colonies were unable to disassemble. The same
principle also explained why actA(p)-agnB and actA(p)-mutA maintained the same drug sensitivity as
the wild-type (Figure 4B). When A. nidulans was stressed by CFW, spore germination was delayed.
However, the higher α-glucan content in the early life stage enabled the actA(p)-agnB and actA(p)-mutA
strains to form colonies on solid medium faster than actA(p)-amyD.

Why the effects of AgnB and MutA started later than AmyD still needs further study, however,
it is clear the mechanism of AmyD is different from α-glucanase. According to the different α-glucan
accumulation patterns (Figure 5A), it is more likely that AmyD directly represses α-glucan synthesis
rather than facilitating α-glucan degradation. One possible reason is that AmyD may affect the major
α-glucan synthase (AgsB) expression. However, the qPCR analysis revealed no significant difference
of agsB expression in amyD∆ and actA(p)-amyD strains compared to A1149 (Table S2).

AgtA, the homologue of AmyD in A. niger, has been enzymatically characterized [19]. These
results showed AgtA had very low starch hydrolysis ability but served as a glucanotransferase on
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α-1,4-glucosidic linkages. The amino acid sequence identity between AmyD and AgtA is 70%, so it is
highly likely AmyD will have a similar function as AgtA, but this will need enzymatic study to confirm
and is beyond the scope of our current work. Further study on the mechanism of AmyD will also
require establishing an in vitro α-glucan synthesis system to find out how AmyD prevents α-glucan
accumulation. Nevertheless, considering the repressive effect of AmyD on α-glucan accumulation,
AmyD may potentially prevent fungal infection. For instance, α-glucan was shown to be maintained
at a minimal level in the conidia of M. oryzae, and was required during pathogenesis [12]. Therefore,
effective α-glucan synthesis is important during this process and this newly-synthesized α-glucan
is believed to function as a mask to protect the fungal cells from host immune recognition [11,12].
If the host cell could express AmyD to suppress α-glucan synthesis, the infection may fail due to the
detection of host immune system, as Fujikawa and colleagues showed [12].

In summary, AmyD is the only reported amylase-like protein that can repress α-glucan
accumulation in A. nidulans, and it is also the major negative regulator during the asexual life cycle.
The dynamics study showed the effect of AmyD started earlier than α-glucanase, and the mechanism
of AmyD was different and independent from α-glucanase. These data suggested AmyD may not
serve for α-glucan degradation, but instead may directly repress α-glucan synthesis at the protein level.

4. Materials and Methods

4.1. Strains, Plasmids, and Medium

All strains in this study were constructed in A. nidulans A1149. The A1149 strain was also the
wild-type control for all assays in this paper. Strains used in this study are listed in Table S3. Primers
and plasmids are listed in Table S4. Strategies for gene deletion and confirmation methods were
described by Szewczyk et al. [25] and El-Ganiny et al. [26]. Briefly, a targeted replacement construct
was constructed by fusion PCR including 1 kb upstream, a selectable marker, and 1 kb downstream
(details see Figure S2A). This construct was transformed to A1149 protoplasts. A. fumigatus pyrG and
pyroA were used as selectable markers (details for each strain see Figure S2B). The strategy for promoter
exchange was previously described in [10]. For promoter exchange, the transformation construct was
1 kb upstream of the target, the selectable marker, actA(p) and 1 kb of the target gene from 5′ end
(Figure S2A). The actA promoter was amplified from A1149 genomic DNA and the sequence was
given in Figure S3. Again, details for each construction see Figure S2B. PCR confirmation of each
constructed strain is shown in Figure S4.The sequence of each overexpression strain was confirmed by
DNA sequencing, and only a clone lacking mutations was used for further study.

For generation of a strain expressing an chimera-AmyD-GFP strain, a construct containing
all following elements: 1 kb upstream of amyD, AfpyrG, actA(p), amyD signal peptide sequence, gfp
(no stop codon) and amyD GPI-anchor site sequence, and 1 kb downstream of amyD, was generated and
transformed to A1149 protoplasts. For details of strain construction and verification see Figure 2A,B.

All strains were grown on complete medium (CM: 1% glucose, 0.2% peptone, 0.1% yeast extract,
0.1% casamino acids, 50 mL 20× nitrate salts, 1 mL trace elements, 1 mL vitamin solution, pH 6.5) or
minimal medium (MM: 1% glucose, 50 mL 20× nitrate salts, 1 mL trace elements, 0.001% thiamine,
pH 6.5) supplemented with nutrition solution as required. Trace elements (2.2 g ZnSO4·7H2O,
1.1 g H3BO3, 0.5 g MnCl2·4H2O, 0.5 g FeSO4·7H2O, 0.17 g CoCl2·6H2O, 0.16 g CuSO4·5H2O, 0.15 g
Na2MoO4·2H2O, and 5 g Na4EDTA in 100 mL water, pH adjusted to 6.5 by KOH pellets), vitamin
solution (100 mg each of biotin, pyridoxin, thiamine, riboflavin, PABA (p-aminobenzoic acid), and
nicotinic acid per 100 mL water), nitrate salt, and all nutrition stocks are described in Kaminskyj [27].
For transformation medium, 1 M sucrose was added to MM as osmoticum. All strains were grown at
30 ◦C, unless otherwise mentioned.
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4.2. Quantification of Conidiation

Molten CM agar (1.5 mL) was added to each well in a 24-well plate and seeded with 105 conidia after
solidification. Plates were incubated for 4 d, then 1 mL ultra-pure water from Barnstead™ Nanopure™
system was used to collect conidia from each well. Conidia were quantified by hemocytometer.

4.3. α-Glucan Quantification

The method was adapted from Momany et al. [28] and Marion et al. [29], as described in [10].
Briefly, 2 × 107 conidia were grown at 30 ◦C in 100 mL liquid CM, shaken at 150 rpm for 24 h (or the
indicated time). Colonies were collected by filtration and washed with 0.5 M NaCl. Cells were
frozen at −80 ◦C for 2–4 h, then broken in disruption buffer (DB: 20 mM Tris, 50 mM EDTA, pH 8.0)
using a Virsonic Ultrasonic Cell Disrupter, until hyphal ghosts formed. Cell walls were separated by
centrifugation at 3500× g for 10 min. The pellet containing the cell wall fraction was washed in DB
with stirring for 4 h at 4 ◦C followed by a wash with sterile ultrapure water under the same conditions,
pelleted again, and lyophilized. Dry cell wall samples were weighed, then suspended in 1 M NaOH at
0.5 mg·mL−1. Alkaline extraction was performed overnight at 37 ◦C. Then 2 mL of alkaline-soluble
fraction (containing 1 mg cell wall) was used for the following process. The alkali was neutralized by
acetic acid until pH 5.5. α-Glucan was collected by centrifugation at 12,000× g for 10 min, and then
washed twice in ultrapure water. Finally, α-glucan was hydrolyzed by 2 mL 3 M H2SO4, at 100 ◦C for
1 h. Glucose content (mainly from α-glucan in the alkali-soluble fraction) was quantified using the
anthrone assay [30]. Briefly, 100 µL of α-glucan hydrolysis solution was added to 1 mL of anthrone
solution (2 mg/mL in concentrated H2SO4). Then the mixture was boiled in water for 10 min with
immediate cool on ice. OD630 was measured for each sample. All experiments were repeated three
times with duplicates each time.

4.4. RT-PCR and qPCR

For the time-course expression study, 2× 107 conidia were inoculated in liquid CM and incubated
at 30 ◦C with or without shaking at 150 rpm. Colonies were collected at 14 h and 24 h for each
group. For the static incubation, only the colonies on the liquid surface were collected. Colonies were
immediately frozen in liquid nitrogen, and lyophilized.

For the overexpression study, 2 × 107 conidia were inoculated in liquid CM and incubated at
30 ◦C with shaking at 150 rpm for 14 h. Colonies were collected by filtration, immediately frozen in
liquid nitrogen, then lyophilized.

Total RNA was extracted using an RNeasy plant kit (Qiagen, Hilden, Germany) following the
manufacturer’s instructions. RNA concentration was measured using a Nanodrop® (Wilmington,
DE, USA), then diluted to 500 ng·µL−1. Genomic DNA elimination and reverse transcription used
a QuaniTect reverse transcription kit (Qiagen) following the manufacturer instructions.

Quantitative real time PCR (qPCR) was performed in 96-well optical plates in an iQ5 real-time
PCR detection system (Bio-Rad, Hercules, CA, USA). Gene expression was assayed in total volume of
20 µL per reaction containing cDNA at an appropriate dilution and SYBR green fluorescein (Qiagen).
A no-template control was used for each pair of primers. Histone was used as a reference gene [24].
Primers for qPCR are listed in Table S4.

The qPCR amplification used the following conditions: 95 ◦C/15 min for one cycle, 95 ◦C/15 s,
55 ◦C/40 s and 72 ◦C/30 s for 40 cycles and final extension cycle of 72 ◦C/2 min. Melting curve
analysis was done as follows: 15 s at 65 ◦C with an increase of 0.5 ◦C each cycle to 95 ◦C. The relative
expression was normalized to histone and calculated using the ∆∆Ct method [31]. Three independent
experiments with triplicates were performed for each reaction.
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4.5. Drug Sensitivity Test

Calcofluor White (American Cyanamid Company, West Paterson, NJ, USA) was prepared as
a stock at 10 mg·mL−1 in 25 mM KOH [32]. The stock solution was sterilized by filtration. For testing,
CFW stock solution was added to CM agar cooled to 55–60 ◦C. Then, 105 conidia of each strain were
inoculated on the plate after solidification. Plates were incubated for 48 h at 30 ◦C.

4.6. Confocal Imaging

For GFP signal imaging, conidia were grown on dialysis tubing at 30 ◦C for 16 h. Samples were
examined using a Zeiss META501 confocal epifluorescence microscope at 63 N.A. 1.2 × or 25 × N.A. 1.0
objective lens. Confocal imaging used 488 nm excitation with emission controlled by a BP
505–530 nm filter.

4.7. Statistical Analysis

All α-glucan quantification analyses were performed in three independent tests with duplicates
each time. Histograms were created by Graphpad Prism 6 (GraphPad Software, La Jolla, CA, USA).
Statistical analysis used a Mann Whitney U test.

5. Conclusions

Data from this study showed AmyD is a major repressive effector for α-glucan accumulation.
The working mechanism of AmyD is totally different from α-glucanase. Therefore, AmyD should
directly suppress α-glucan synthesis.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/4/695/s1.
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