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Abstract
This investigation tested the hypothesis that the native cyanobacteria can acclimatize and grow under the combination of 
environmental factors and/or how does their process change with the age of culture? Here, we tried to combine multiple fac-
tors to simulated what happens in natural ecosystems. We analyzed the physiological response of terrestrial cyanobacterium, 
Cylindrospermum sp. FS 64 under combination effect of different salinity (17, 80, and 160 mM) and alkaline pHs (9 and 11) 
at extremely limited carbon dioxide concentration (no aeration) up to 96 h. Our evidence showed that growth, biomass, pho-
tosystem II, and phycobilisome activity significantly increased under 80 mM salinity and pH 11. In addition, this combined 
condition led to a significant increase in maximum light-saturated photosynthesis activity and photosynthetic efficiency. 
While phycobilisomes and photosystem activity decreased by increasing salinity (160 mM) which caused decreased growth 
rates after 96 h. The single-cell study (CLMS microscopy) which illustrated the physiological state of the individual and 
active-cell confirmed the efficiency and effectiveness of both photosystems and phycobilisome under the combined effect 
of 80 mM salinity and pH 11.
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Abbreviations
APC	� Allophycocyanin
Chl a	� Chlorophyll a
CCM	� Carbon dioxide concentrating mechanism
DIC	� Dissolved inorganic carbon
PBS	� Phycobilisome
PSI, PSII	� Photosystems I and II
CLSM	� Confocal laser scanning microscopy

Introduction

Cyanobacteria are a self-sufficient system that is widely 
distributed across terrestrial and aquatic environments; and 
terrestrial cyanobacteria plays a fundamental role in the 
biological cycle of agriculture (Mareš et al. 2014; Shokravi 
and Bahavar 2021a). They produce various bio-available 
elements such as Nitrogen and phosphorus, which are the 
essential nutrients for plant cultivation (Chittora et al. 2020). 
Moreover, they generally exhibit a high level of adaptive 
abilities and tolerance to a large number of environmental 
factor (Singh 2018). In nature, cyanobacteria are exposed 
to a constantly changing environment including irradiance, 
temperature, pH, nutrient availability, salinity, dissolved 
inorganic carbon fluctuations (Chris et al. 2006; Bouazzara 
et al. 2020). These changes continuously expose the cyano-
bacteria cells to multiple stressors of varying magnitude and 
duration (Borowitzka 2018). In practice, the survival and 
growth of cyanobacteria depend on their ability to acclimate 
varying environmental conditions.

Among all cultural parameters, pH is one of the most 
important factors determining cyanobacteria growth and 
physiology (Pawlik-Skowrońska et al. 1997; Hinners et al. 
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2015). Most cyanobacteria have the ability to grow over a 
wide range of alkaline pH in laboratory (Kaushik 1994). 
Nearly nothing is known about the mechanisms of cellu-
lar survival, cell stability, or growth of cyanobacteria under 
extreme alkaline conditions (Jangir et al. 2021). Elevated pH 
(alkalinity) directly influences growth rate and cell yield (de 
Souza Santos et al. 2011; Shokravi and Bahavar 2021a, b), 
enzyme activity (Li et al. 2013), biosorption (El-Din 2017), 
resistance to oxidative stress (Summerfield et al. 2013), and 
protection (Pathak et al. 2018). It also strongly affects the 
cyanobacterial abundance (Krausfeldt et al. 2019; Nguyen 
and Rittmann 2015). While in some cyanobacteria, the 
growth decreased with the increasing alkalinity (Shokravi 
and Bahavar 2021a). Therefore, evaluation the effects of dif-
ferent pHs on cyanobacteria is important. In paddy fields, 
the pH of floodwater varies during the day. Likewise, DIC 
concentration in the floodwater varies daily and seasonally 
depending on photosynthetic and respiratory rate (Pedersen 
et al. 2013). The chemical equilibrium between photosyn-
thesis and respiration implies a balance between inorganic 
carbon and net ecosystem production (Khan et al. 2020).

Salinity is another environmental factor that could poten-
tially determine the cyanobacteria community in natural 
ecosystems. Salinity as an essential factor induces diverse 
alterations in the growth and photosynthesis (Bemal and 
Anil 2018), biochemical like carbohydrate content (Singh 
et al. 2015), and physiological characteristics of cyanobac-
teria (Miriam et al. 2017; Lee et al. 2021). Time (age of 
the culture) is another essential factor in the resistance and 
growth in different conditions (Alcorta et al. 2019) which 
less has been considered (Bouazzara et al. 2020; Jangir et al. 
2021). Exposure to initial hours of new condition may create 
a significant effect on physiological activities during the next 
hours (Abbasi et al. 2019; Shokravi and Bahavar 2021a). 
However, there is increasing evidence that the combined 
environmental factors can be modulated by other factors 
and led to regulation, acclimation, and adaptation (Müller 
et al. 1993; Shokravi and Bahavar 2021a). Therefore, study-
ing environmental fluctuations in the short-time regime on 
cyanobacteria is essential to serve the sustainable develop-
ment economy in the future.

In the present study, we have selected the filamentous 
cyanobacterium Cylindrospermum sp. for the abundance, 
fixed Nitrogen, and environmental stability. Cylindros-
permum sp. FS 64 was isolated from paddy fields of the 
North of Iran which description is following: aggregations 
bright blue-green, green–brown, sticky colonies, not regu-
lar, expanded; mucilaginous, attached to margin; filaments 
straight, curved entangled; trichrome 9µ broad, constricted 
at cross wall; cells variable in size, cylindrical or nearly 
quadrate; heterocyst ovate or ellipsoid, terminal at one side; 
spore oval, ellipsoidal, adjoining the heterocyst, granular, 
10.4µ long.

So far, most studies on this genus have been focused on 
molecular biology (Srivastava et al. 2009; Katoch et al. 
2016), physiological characteristics (Briand et al. 2004), 
proline accumulation (Chris et al. 2006), heavy metal stress 
(Singh et al. 1989; Chris 2012), Nitrogen forms effect (Ken-
esi et al. 2009) and chemical analysis (Mareš et al. 2014). 
The aim of this research is to characterize the acclimation 
behaviors of Cylindrospermum sp. FS 64 under different pH, 
salinity conditions under extremely limited carbon dioxide 
concentration for 96 h.

Materials and methods

Culture maintenance and growth conditions

Cylindrospermum sp. FS 64 was isolated from paddy fields 
of the North of Iran (Siahbalaei et al. 2011) and collected 
again by the authors in 2018. The soil samples was serially 
diluted in sterilized liquid Nitrogen-free medium (BG-110) 
(Stanier et al. 1971). Isolation was done by streaking and 
spreading technique on solid BG-110 medium. Purification 
was done by alternative sub-culturing between liquid and 
solid BG-110 medium (Shokravi and Bahavar 2021b). The 
sample was identified and described using multidisciplinary 
approaches (Molecular 16S rRNA, and morphology using 
light, fluorescence, and phase-contrast microscopy). Strain 
after identification as Cylindrospermum sp. FS 64 was coded 
and preserved in the algae museum of the institute of applied 
sciences of Shahid Beheshti University, Tehran-Iran. The 
axenic culture were maintained in a liquid BG-110 at tem-
perature 30 ± 2 °C under a constant irradiance of 60 μmol 
quanta m−2  s−1 (Poza-Carrión et al. 2001). The pH was 
adjusted in 7.8 by NaOH.

Growth conditions and analysis

Growth of Cylindrospermum sp. FS 64—in an exponential 
growth phase—was carried out at various salinity concentra-
tions 17 (culture media without NaCl), 80 and 160 mM at 
alkaline pHs (9 and 11). Culture media were buffered with 
10 mM BTP (Bis–Tris Propane) for pH 9 and 11 adjusted 
to the desired pH with KOH (Shokravi and Soltani 2011). 
We studied cultures without CO2 or O2 bubbling and stir-
ring (standing condition, extremely DIC limitation) (Poza-
Carrión et al. 2001; Shokravi and Bahavar 2021a). The 
determination of the growth was performed using time-
course measurements by the correlation between optical 
density (OD 750 nm), in vivo fluorescence, and counting 
cells according to Briand et al. (2004) using the CLMS at 
different salinity and alkaline pHs up to 96 h. The OD was 
measured using Synergy HTX (Multi-Mode Microplate 
Reader, USA). Growth rates (µ) were calculated according 



Archives of Microbiology (2022) 204:165	

1 3

Page 3 of 10  165

to Li et al. (2014) and Khazi et al. (2018). The absorbance of 
Chlorophyll content was determined spectrophotometrically 
at 665 nm according to Marker (1972).

Physiological characterization

To survey the photosynthetic activity and respiratory elec-
tron transport chains under different salinity and alkaline 
conditions, oxygen exchange was studied. Steady-state oxy-
gen evolution was measured with a Clark-type electrode 
PSII activity in whole cells. Cells cultured at temperature 
30 ± 2 °C and constant illumination 60 μmol quanta m−2 s−1 
(Inoue-Kashino et al. 2005). The amount of liberated oxygen 
was normalized by the amount of chlorophyll according to 
Poza-Carrion (Poza-Carrión et al. 2001). The initial physio-
logical status of Cylindrospermum sp. FS 64 was performed 
by measuring the maximum photosynthetic rate (Pmax) and 
photosynthetic efficiency (α) and light saturation (Ik) val-
ues after growth analysis. Photosynthesis–irradiance (P–I) 
curves were calculated by measuring oxygen evaluation rates 
during successive 1-min illumination periods with a step-
wise increase from 0 to 2500 μmol quanta m−2 s−1. The pho-
tosynthetic pigments were estimated in terms of chlorophyll 
a, phycocyanin, from 380 to 760 nm using Synergy HTX 
(Multi-Mode Microplate Reader, USA) and they normalized 
to optical density according to Tang and Vincent (1999). 
The operation of photosystems and phycobilisomes charac-
teristics were analyzed spectrofluorimetrically according to 
Inou-Kashino et al. (2005), Vermaas et al. (2008) and Zorz 
et al. (2015). Room temperature fluorescence emission spec-
tra of the cells were recorded following Tiwari and Mohanty 
(1996) and Fraser et al. (2013). The excitation spectra were 
recorded at λex: 440 to excite chlorophyll a and 550 nm for 
phycocyanin. The single-cell study (the fluorescence inten-
sity of single cell) which illustrated the physiological state of 
the individual, live-cell and spectral unmixing (Grigoryeva 
and Chistyakova  2019) was measured using λ scan of confo-
cal laser microscope system (Leica TCS-SP5 CLSM—Leica 
Microsystems Heidelberg GmbH, Mannheim, Germany). 
Photosynthetic pigment excitation was carried out with an 
argon laser at 405 nm. The fluorescence emission spectrum 
was collected by detecting wavelengths between 415 and 760 
(Ramírez et al. 2011; Sugiura and Itoh 2012; Shokravi and 
Bahavar 2021a, b). Analysis of the lambda scan data was 
carried out using the Leica Confocal Software.

Statistical analysis

Analysis of variance (ANOVA) with the SPSS-24 software 
was used to evaluate the results. The ANOVA showed a sig-
nificant difference between treatments with p < 0.05. All the 
experiments were carried out in six independent biologi-
cal replicates. For relationships of photosynthesis activity, 

growth and age of cultures, we fitted a model to the data 
using interpolation in MATLAB software.

Results

Growth

This study evaluated—in vivo experiments—the ability 
of acclimation and growth of Cylindrospermum sp. FS 64 
under multiple environmental factors at a short period of 
time under extreme DIC limitation. In general, the results 
supported the hypothesis that the combined environmental 
factors can be led to growth and acclimation in different 
environmental conditions at short time. Comparison of the 
growth curve of Cylindrospermum sp. FS 64 showed that 
extreme alkaline condition (pH 11) was more favorable to 
growth and had a significant effect (p < 0.05) on biomass 
production compared to pH 9 under extreme DIC limita-
tion (Fig. 1). A study of the length of the incubation period 
revealed that 80 mM salinity caused significantly growth 
increased at pH 11 after 48 h and, likewise no significant 
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Fig. 1   Variation of optical density (OD 750  nm) of Cylindrosper-
mum sp. FS 64 under different salinity (17, 80 and 160  mM NaCl) 
and alkaline pHs (9, 11) from 24 to 96 h. Line with error bars shows 
significant difference at P < 0.05
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effect was observed between 17 and 80 mM salinity at pH 
11 after 96 h. Regardless of salinity, pH 11 was the opti-
mum pH in this strain up to 168 h (Result not shown). The 
presence of 160 mM salinity at both alkaline pHs caused 
significant inhibition of growth and biomass production until 
96 h. The metabolic activities and synthesizing enzymes in 
the growth stage led to the shorter lag phase under alkaline 
pHs. Therefore, cells acclimatized in both combined condi-
tions 17 mM—pH 9, and 80 mM—pH 11 after 24 h.

Photosynthesis (photosynthetic oxygen evolution 
and P–I curve)

Regardless of salinity and age of the cultures, the maxi-
mum rates of oxygen evolution of Cylindrospermum sp. FS 
64 gradually increased at pH 11 (~ 100–250 µmol O2 mg 
Chl a−1 × h−1) against pH 9 (~ 120–160 µmol O2 mg Chl 
a−1 × h−1) (Fig. 2). The combined effect of salinity, alka-
linity and age of culture revealed that the maximum rates 
of oxygen evolution significantly increased at pH 11 and 
80 mM salinity after 48 h (Fig. 2b). In contrast, the signifi-
cant decrease was observed under high salinity (160 mM) 
after 72 h at pH 9. Our purpose of the fitting model was 

to examine the relationships and quantitative description 
between photosynthesis, growth, and age of culture (Fig. 3). 
We observed a significant increase in growth and biomass 
production and photosynthesis activity under the combined 
environmental factors. A positive and significant correlation 
was found under the combined 80 mM salinity and pH 11 
after 96 h.

The combined effects of environmental factors on photo-
synthetic parameters (P–I) are summarized in Table 1. The 
maximum value of the photosynthesis activity (Pmax)—
indicating carboxylation or a step closely associated with 
carboxylation—was approximately 90% higher at combined 
80 mM salinity and pH 11 compared to pH 9. Ik indicat-
ing the irradiance at which control of photosynthesis passes 
from light absorption and photochemical energy conversion 
to reductant utilization (Sakshaug et al. 1997). Ik was lower 
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Fig. 2   Comparison of photosynthetic oxygen evolution of Cylindros-
permum sp. FS 64 at different salinity, pHs and time. Bars with error 
bars show significant difference at P < 0.05

Fig. 3   The fitting model of Cylindrospermum sp. FS 64 presented the 
relation between the growth, photosynthesis and time under different 
levels of salinity and alkalinity treatment. Each data-point represents 
different salinity and pH

Table 1   Comparison of parameters of photosynthesis–irradi-
ance curves (Pmax, the maximum photosynthetic rate (μmol O2 mg 
chl−1  h−1); α, photosynthetic efficiency (μmol O2 mg chl−1  h−1)/
(μmol photon m−2 s−1); Ik, light saturation point (µmquanta m−2 s−1) 
of Cylindrospermum sp. FS 64 at different salinity and alkaline pHs 
after 72 h of inoculation

Values are means of three independent biological replicates ± stand-
ard deviation

NaCl (mM) 17 80 160

Pmax—pH 9 67.41 ± 5.55 59.34 ± 4.22 52.45 ± 6.08
Pmax—pH 11 54.41 ± 3.05 74.34 ± 6.66 34.45 ± 3.18
α—pH 9 0.84 ± 0.04 0.85 ± 0.06 0.61 ± 0.16
α—pH 11 0.74 ± 0.02 0.87 ± 0.04 0.65 ± 0.1
Ik—pH 9 390 280 520
Ik—pH 11 260 120 440
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at the combination of low salinity (17 and 80 mM) and pH 
11 compared to pH 9, indicating that the rate of water oxi-
dation in PSII was reduced. α is often used for comparing 
the cyanobacteria shade endurance (shade tendency) under 
shading conditions. Noticeably, in the presence of 80 mM 
salinity, the shade-adapted capacity of cyanobacterium sig-
nificantly increased at both alkaline pHs.

Absorption spectra

In vivo absorbance spectroscopy as a common method to 
obtain an overview of the content and distribution of the pig-
ments of cells (Fig. 4) showed that chlorophyll Soret bands 
(~ 445 nm), chlorophyll a of PSII (~ 680 nm), and phycocya-
nin (~ 620–630 nm) was the principal active compound in all 
treatments. A shoulder at ~ 495 nm related to carotenoids has 
appeared. In addition, we observed an increase in absorption 
of ~ 250–300 nm which is most probably related to one of 
the carotenoids bands (generally, organic molecules) under 
the combination of pH 11 and 80 mM salinity. Our results 
revealed that the dynamism and stability of PSII and phy-
cobilisomes significantly increase in the combined effect of 
80 mM salinity and pH 11 compared to pH 9 after 72 h. 

While no significant differences were observed between 17 
and 80 mM salinity at pH 9. In presence of 160 mM salin-
ity, the structure and stability of phycocyanin and PSII were 
demolished at pH 11 after 72 h, although they are main-
tained their structure up under pH 9. In addition, the absence 
of the shift and stability of the Chl a of PSII was noticeable 
in all treatments.

PBS and PSII stability under different salinity 
and alkaline pHs

We investigated the distribution of energy between phyco-
biliproteins and PSII spectrofluorimetrically at excitation 
440 nm (chlorophyll- associated with PSII), and 550 (phy-
cocyanin). We observed addition of 80 mM salinity was 
accompanied by increasing PSII (Fig. 5) and phycocyanin 
activity (Fig. 6) at pH 11 compared to pH 9. Although, 
increasing salinity (160 mM) drastically decreased the effi-
ciency and effectiveness of PSII and PC activity at both alka-
line pHs after 24 h (Figs. 5, 6). This study confirmed the 
high growth, biomass production, and content of the PSII 
and PBS (absorption spectra) under the combined effect of 
80 mM salinity at pH 11.
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mum sp. FS 64 cells adapted to different salinity and pHs for 72 h. 
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Spectroscopic study of a single cell by CLSM

Investigation of single cell illustrated the physiological state 
of the individual, live-cell and maximum fluorescent of pig-
ment protein which enabled us to monitor the dynamic pro-
cesses of the chosen cells as spectral unmixing and all steps 
of the energy transfer chain (Grigoryeva and Chistyakova  
2019; Shokravi and Bahavar 2021b) (Fig. 7). We observed 
the high fluorescence of Chl a (PSII) at ~ 680 nm and PSI 
at ~ 715 nm at vegetative cells compared to heterocyst—
because of low amounts of PSII and PBS at heterocyst 
(heterocyte result not shown). In addition, a clear shoulder 
was observed around 663 nm related to the APC (Allophy-
cocyanin) of phycobilin production, which was highest at 
80 mM salinity at pH 11. Increasing salinity (160 mM) led 
to declined APC content at both alkaline pHs. This reduc-
tion which was saline dependent caused the demolished 
structure of PBS at pH 9 compared to pH 11. Chl a (PSII-
680 nm) was the most stable pigment under all conditions, 
and it was higher under the combined 80 mM salinity and 
pH 11. No significant difference of PSII and also PSI activity 
was observed between 17 and 80 mM salinity after 72 h at 
pH 9 against pH 11. While the highest PSI activity belongs 
to 80 mM salinity at pH 11. Overall, our results of the 

single-cell study confirmed the highest growth and stability 
of PS and PBS depends on combined 80 mM salinity and 
pH 11 (Figs. 1, 5, 6).

Discussion

Overall, our results provide important insight that combined 
multiple factors such as salinity, alkalinity, and the age of the 
cultures in laboratory conditions plays a key role in accli-
matizing the growth, and photosynthesis of Cylindrosper-
mum sp. FS 64. Absorption spectra and chlorophyll con-
centration (OD 750) methods as an overview of growth and 
cells activity on the culture (Schulze et al. 2011) indicated 
that salinity and alkalinity (combine together—pH 11 and 
80 mM salinity) cannot be considered as stress to limit the 
growth (Borowitzka 2018) of Cylindrospermum sp. FS 64. 
Low salinity (17 and 80 mM) in heterocystous cyanobacte-
ria (Srivastava et al. 2009) can be desired as nutrition and 
stimulant leads to a significant increase in growth, biomass 
production (Miriam et al. 2017), and photosynthesis opera-
tion (Singh et al. 2015). The elevated salinity (160 mM) at 
both alkaline pHs 9 and 11 led to inhibition of Chl biosyn-
thesis (Chris et al. 2006) which resulted in a decrease in 
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chlorophyll pigment. Besides, these findings are in line with 
our other study on Nostoc sp. UAB 206 that isolated from 
the Spanish paddy field (not published data). Valiente and 
Leganes (1990), Poza-Carrión et al. (2001), Soltani et al. 
(2006), Amirlatifi et al. (2018), Abbasi et al. (2019) and 
Shokravi and Bahavar (2021a) have indicated that the opti-
mum pH for growth, photosynthesis and nitrogen fixation 
of terrestrial cyanobacteria under combined environmental 
factors is about 8 or 9. The response of strain to pH 11 and 
80 mM salinity may depend on the high genetic plasticity 
(Boussiba et al. 2000) or and is an inherent characteristic 
(Tang and Vincent 1999) which resulted in without any 
requirement for an acclimation process (Vonshak and Tor-
zillo 2007). Furthermore, we observed a strong correlation-
fitting model—under the combined 80 mM salinity and 
pH 11 up to 96 h which confirmed the highest activity of 
cells under this condition. Pigment analysis of cell cultures 
(absorption spectra) also confirmed the results of the activity 
of the cells under this condition.

No accurate understanding of the mechanisms involved 
in pH homeostasis in cyanobacteria. Giraldez-Ruiz et al. 
(1997) proposed that Na, K, and Ca could be considered as 
part of the pH homeostatic system. Touloupakis et al. (2016) 
reported that many mechanisms have been suggested for pH 
homeostasis and the regulation of CO2/HCO3 concentration. 
Most carbon sources are in bicarbonate ions under severe 
carbon dioxide deficiency in alkaliphilic cyanobacteria 
(Boyd 2015). The carbon dioxide concentration mechanism 
(CCM) is the key process that enables them to acclimate to 
alkaline conditions (Klanchui et al. 2017). The operation 
of CCM involves a high amount of energy and naturally 
requires a high operation of photosynthesis—along with 
other needs—and high efficiency of PSI, PSII, and PBS 
(Mangan and Brenner 2014). Regarding the highest growth 
and photosynthesis at pH 11, Cylindrospermum sp. FS 64 
have a powerful carbon dioxide concentration mechanism 
and flexibility to induce.

The main reasons of growth measuring is understanding 
the balance between photosynthesis and respiration (Nygård 
and Dring 2008). The oxygen liberation (a marker of PSII 
activity) analysis confirmed the growth results. Regardless 
of salinity, the maximum photosynthesis (Pmax) of Cylin-
drospermum sp. FS 64 was higher at pH 9 against pH 11. 
Addition salinity (80 mM) caused an increase in Pmax (Ye 
and Gao 2004; Dhiab et al. 2007) at pH 11 which can be 
attributed to the high efficiency of water oxidation in PSII. 
In contrast, 80 mM salinity led to decreasing in saturating 
irradiance and increased shade-adapted capacity of strain 
at both alkaline pHs, which influenced an increase in the 
relative content of PSII activity and the antenna size of PS 
II (Inoue-Kashino et al. 2005). Briand et al. (2004) reported 
that Ik is the most reliable parameter for assessing and com-
paring the variable-light requirement. The high Ik value of 

Cylindrospermum sp. FS 64 can be ascribed to the different 
media, pH, and salinity used, implying an increase in energy 
for growth.

To better understanding PBS and PS activity and stabil-
ity, we have used the fluorescence assay. The strain showed 
nearly 90% of PBS and PSII stability under the combination 
of 80 mM salinity and pH 11 after 96 h compared to pH 
9. While increasing salinity (160 mM) led to demolished 
of the PBS and PSII structure at both alkaline pHs after 
24 h. Galetović et al. (2020) reported most research focuses 
on PBS behavior and stability in different temperature and 
pH 5–7 (Antelo et al. 2008), pH 2.0, 6.5 and 8.0 (Couteau 
et al. 2004) and pH range of 4–9 (Leu et al. 2013). Chris 
et al. (2006) found a decrease in growth, chlorophyll content, 
carotenoid, phycocyanin, and PS II activity of Cylindros-
permum sp. due to individual salinity as well as in combi-
nation with UV-B treatments. In addition, Srivastava et al. 
(2009) investigated that 150 mM salinity and pH 7.5 caused 
a decline in PSI, PS II, and whole chain activities in Ana-
baena doliolum after 24 h. The difference between these 
findings may be due to the use of various pH ranges which 
influences the growth, metabolism, regulation, and distribu-
tion of cyanobacteria (Jin and Kirk 2018).

During cultivation, chlorophyll content decreases due to 
environmental factors or dying of the part of the population 
(age of culture). (Schulze et al. 2011; Shokravi and Bahavar 
2021a, b). Therefore, single-cell study is a new method that 
provide information on the dynamic behavior of each cell 
(Sugiura and Itoh 2012; Grigoryeva and Chistyakova  2019). 
By confocal laser microscopy, Ying et al. (2002), Wolf and 
Schüßler (2005) and Sugiura and Itoh (2012) demonstrated 
different fluorescence spectra of vegetative and heterocyte 
cells-unmixing spectra. The results of single-cell spectra 
support that combination 80 mM salinity and pH 11 up to 
96 h led to a noticeable increase and stability in all parts of 
the phycobilisome and PSII activity. This stability of PSII 
may depend on the physical change in enzymes and binding 
sites in PSII and potent PSII efficiency. Reduction of PBS 
and PSII content indicating the degradation of their structure 
by increasing salinity at both alkaline pHs. We observed a 
decline and the shifted peak of PSI (719 nm) that is affected 
by the lower PC content at pH 9 compared to pH 11. There-
fore, cells might accept less excitation energy when PC is 
reduced (Schmitt et al. 2020).

Conclusion

In conclusion, the different methods confirmed that combin-
ing environmental factors (different alkaline pH, salinity, 
and time under extreme DIC limitation) can affect cyano-
bacterial behaviors individually or in combination and led 
to regulation and acclimation in short time. We observed 
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Cylinrospermum sp. FS 64 acclimatized through different 
strategies and has developed a mechanism for the highest 
growth, photosystems operation, phycobilisomes activity 
and light-saturated photosynthetic under 80 mM salinity 
and pH 11. Conversely, elevated salinity was time depend-
ent at both alkaline conditions. Several lines of evidence 
supported this issue. From an applied point of view, this 
cyanobacterium can be used in alkaline–saline paddy fields 
and agricultural lands as a biofertilizer, soil conditioners, 
and other biotechnological purposes.
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