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abstract

PURPOSE Deep learning (DL) models have rapidly become a popular and cost-effective tool for image classi-
fication within oncology. A major limitation of DL models is their vulnerability to adversarial images, manipulated
input images designed to cause misclassifications by DL models. The purpose of the study is to investigate the
robustness of DL models trained on diagnostic images using adversarial images and explore the utility of an
iterative adversarial training approach to improve the robustness of DL models against adversarial images.

METHODSWe examined the impact of adversarial images on the classification accuracies of DLmodels trained to
classify cancerous lesions across three common oncologic imaging modalities. The computed tomography (CT)
model was trained to classify malignant lung nodules. The mammogrammodel was trained to classify malignant
breast lesions. The magnetic resonance imaging (MRI) model was trained to classify brain metastases.

RESULTS Oncologic images showed instability to small pixel-level changes. A pixel-level perturbation of 0.004
(for pixels normalized to the range between 0 and 1) resulted in most oncologic images to be misclassified (CT
25.6%, mammogram 23.9%, and MRI 6.4% accuracy). Adversarial training improved the stability and ro-
bustness of DL models trained on oncologic images compared with naive models ([CT 67.7% v 26.9%],
mammogram [63.4% vs 27.7%], and MRI [87.2% vs 24.3%]).

CONCLUSION DL models naively trained on oncologic images exhibited dramatic instability to small pixel-level
changes resulting in substantial decreases in accuracy. Adversarial training techniques improved the stability
and robustness of DL models to such pixel-level changes. Before clinical implementation, adversarial training
should be considered to proposed DL models to improve overall performance and safety.
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INTRODUCTION

Deep learning (DL) algorithms have the promise to
improve the quality of diagnostic image interpretation
within oncology.1,2 Models generated from DL algo-
rithms have been validated across a variety of diagnostic
imaging modalities including magnetic resonance im-
aging (MRI), computed tomography (CT), and x-ray
images with classification accuracy often rivaling
trained clinicians.3-9 However, the success of DL
models depends, in part, on their generalizability and
stability. DL algorithms have been shown to vary output
on the basis of small changes in the input data.10,11

Such variability in response tominor changes can signal
an instability in the algorithm that could lead to mis-
classification and problems with generalizability.

One concerning limitation of DL models is their sus-
ceptibility to adversarial attacks. Adversarial images are
manipulated images that undergo small pixel-level
perturbations specifically designed to deceive DL
models.12-15 Pixel-level changes of adversarial images

are often imperceptible to humans but can cause im-
portant differences in the model output.16-18 The
weakness of DL models against adversarial images
raises concerns about the generalizability of DL models
and the safety of their practical applications in medi-
cine. Adversarial images represent potential security
threats in the future, as DL algorithms for diagnostic
image analysis become increasingly implemented into
clinical environments.19 Additionally, the susceptibility
to adversarial attacks provides increasing evidence to
the instability of DL models that aim to mimic the
classification accuracy of radiologists.

Previous work concerning adversarial images on DL
models has largely focused on nonmedical images, and
the vulnerability of medical DL models is relatively
unknown.18,20 Although techniques to defend against
adversarial images have been proposed, the effective-
ness of thesemethods onmedical DLmodels is unclear.
Accordingly, we sought to test the effect of adversarial
images on DL algorithms trained on three common
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oncologic imaging modalities. We established the perfor-
mance of the DL models and then tested model output
stability in response to adversarial images with different de-
grees of pixel-level manipulation. We then tested the utility of
techniques to defend the DL models against adversarial im-
ages. This research has direct application to the use of DL
image interpretation algorithms, as it provides quantitative
testing of their vulnerability to small input variations and de-
termineswhether there are strategies to reduce this weakness.

METHODS

Ethics Declaration

The research was conducted in accordance with the
Declaration of Helsinki guidelines and approved by the Yale
University Institutional Review Board (Protocol ID:
HIC#2000027592). Informed consent was obtained from
all participants in this study.

Data Sets

We examined the behavior of DL algorithm outputs in re-
sponse to adversarial images across three medical imaging
modalities commonly used in oncology—CT,mammography,
and MRI. For each imaging modality, a separate DL classi-
ficationmodel was trained to identify the presence or absence
of malignancy when given a diagnostic image. Each data set
was split into a training set and a testing set in a 2:1 ratio.

CT imaging data consisted of 2,600 lung nodules from the
Lung Image Database Consortium and Image Database Re-
source Initiative (LIDC-IDRI) collection.21 The data set contains
1,018 thoracic CT scans collected from 15 clinical sites across
the United States. Lung nodules used for DL model training
were identified by experienced thoracic radiologists. The
presence of malignancy was based on associated pathologic
reports. For patients without pathologic confirmation, malig-
nancy was based on radiologist consensus.

Mammography imaging data consisted of 1,696 lesions
from the Curated Breast Imaging Subset of Digital Database
for Screening Mammography (CBIS-DDSM).22 The CBIS-
DDSM contains mammograms from 1,566 patients at four
sites across the United States. Mammographic lesions used

for DL model training were obtained on the basis of algo-
rithmically derived regions of interest based on clinical
metadata. The presence of malignancy was based on
verified pathologic reports.

MRI data consisted of brain MRIs from 831 patients from a
single-institution brain metastases registry.23 The presence
or absence of a malignancy was identified on 4,000 brain
lesions seen on MRI. Regions of interest were identified by a
multidisciplinary team of radiation oncologists, neurosur-
geons, and radiologists. Presence of cancer was identified on
the basis of pathologic confirmation or clinical consensus.

To compare the relative vulnerability of DL models trained on
oncologic images compared with nonmedical images, two
additional DL classification models were trained on estab-
lished nonmedical data sets. The MNIST data set consists of
70,000 handwritten numerical digits.24 The CIFAR-10 data
set includes 60,000 color images of 10 nonmedical objects.25

All images were center-cropped and resized, and pixel
values were normalized to the range [0, 1]. For eachmedical
data set, the classes (cancer and noncancer) were bal-
anced, and data were augmented using simple data aug-
mentations: horizontal and vertical flips as well as random
rotations with angles ranging between –20° and 20°.

We followed the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) reporting guideline, and a TRIPOD checklist was
included (Data Supplement).26

Models

For all DL classification models, we used a pretrained
convolutional neural network with the VGG16 architecture.27

Models were fine-tuned in Keras using Stochastic Gradient
Descent. Details regarding model architecture and hyper-
parameter selection for DLmodel training are provided in the
Data Supplement.

Adversarial Image Generation

Three commonly used first-order adversarial image gen-
eration methods—Fast Gradient Sign Method (FGSM),
Basic Iterative Method (BIM), and Projected Gradient
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Descent (PGD)—were used to create adversarial images on
the medical and nonmedical image data sets (Fig 1). Each
method aims to maximize the DL model’s classification
error while minimizing the difference between the adver-
sarial image and original image. All the adversarial image
generation methods are bounded under a predefined
perturbation size ε, which represents the maximum change
to pixel values of an image. Vulnerability to adversarial
images was assessed by comparing changes in model
performance compared with baseline (without any adver-
sarial images) under various perturbation sizes.

The single-step FGSM attack perturbs the original example
by a fixed amount along the direction (sign) of the gradient
of adversarial loss.15 Given input image x, perturbation size,
loss function J, and target label y, the adversarial image xadv
can be computed as

xadv � x + ε sign
�
∇xJ

�
x, y

��
. (1)

BIM iteratively perturbs the normal example with smaller
step size and clips the pixel values of the updated adver-
sarial example after each step into a permitted range.12

xt � Clipx,ε

�
xt−1 + α sign

�
∇xJ

�
xt, y

��
. (2)

Known as the strongest first-order attack, PGD iteratively
perturbs the input with smaller step size and after each
iteration, the updated adversarial example is projected onto
the ε-ball of x and clipped onto a permitted range.18

xt �
Y

ε

�
xt−1 + α sign

�
∇xJ

�
xt, y

���
. (3)

Additional information regarding adversarial image gener-
ation methods and equation parameters is provided in the
Data Supplement.

Susceptibility of DL Models to Adversarial Images

We investigated the DL model performance using FGSM,
PGD, and BIM adversarial image generation methods
across different levels of pixel perturbation. To evaluate the
performance of the DL models on adversarial images, we
generated adversarial test sets by applying adversarial at-
tacks on the original clean test sets. We measured relative
susceptivity to adversarial images by determining the
smallest perturbation ε required for adversarial images to
generate a different output. DL models that required larger
pixel-level perturbations are likely to be more robust and
have higher levels of stability suitable for clinical imple-
mentation. Conversely, models that change outputs in
response to small pixel-level perturbations are inherently
unstable and potentially less generalizable across different
clinical settings and patient populations.

Adversarial Training to Improve Model Robustness

One proposed defense mechanism to prevent negative
effects of adversarial images is adversarial training, which
aims to improve model robustness by integrating

adversarial samples into DL model training.18,20 By
training on both adversarial and normal images, the DL
model learns to classify adversarial samples with higher
accuracy compared with models trained on only normal
samples. We used a multistep PGD adversarial training to
increase the robustness of our DL models against
adversarial attacks. In each batch, 50% of training
samples were normal images, and the other 50% were
adversarial images generated by PGD attack. We used
the PGD attack for adversarial training because it is
considered the strongest first-order attack, and past
research has demonstrated that models adversarially
trained with PGD were robust against other first-order
attacks.18 The hyperparameters for adversarial training
are detailed in the Data Supplement. We investigated the
effectiveness of our iterative adversarial training ap-
proach on the DL models trained on medical images. We
measured the effectiveness of adversarial training by
comparing model accuracy on adversarial samples of
varying perturbation sizes before and after adversarial
training.

Image-Level Adversarial Image Sensitivity and

Model Performance

We examined each individual image’s adversarial sensi-
tivity, as measured by the level of pixel-level perturbation
necessary for DL model prediction to change compared
with an unperturbed image. We hypothesized that images
requiring smaller pixel-level adversarial perturbations to
change DL model predictions were also the images most
likely to be misclassified by the model under normal
conditions absent of adversarial attack (compared with
other clean images). We identified the 20% of images most
vulnerable to adversarial perturbation and excluded them
from the test set. We then tested the performance of the DL
model on the clean version of the reduced test set. If the
images most sensitive to adversarial perturbation are also
more likely to be misclassified as clean images by the DL
model under normal conditions, the model performance on
the clean version of the reduced test set would be expected
to improve from the model performance on the clean
version of the original test.

The proposed networks were implemented in Python 2.7
using TensorFlow v1.15.3 framework.28 Adversarial images
were created using the Adversarial Robustness Toolbox
v1.4.1.29 The code to reproduce the analyses and results is
available online at GitHub.30

RESULTS

Susceptibility of DL Models to Adversarial Images

Both medical and nonmedical DL models were highly
susceptible to misclassification of adversarial images,
resulting in decreases in model accuracy (Fig 2). Medical
DL models appeared substantially more vulnerable to
adversarial images compared with nonmedical DL algo-
rithms. All three medical DL models required smaller
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pixel-level perturbations to decrease model accuracy
compared with nonmedical DL models (Fig 2). For ex-
ample, adversarial images generated using the PGD
method (perturbation = 0.002) resulted in a DL model
accuracy of 26.9% for CT (–48.5% from baseline), 27.7%
for mammogram (–48.8% from baseline), and 24.3% for
MRI (–61.8% from baseline). By contrast, adversarial
images generated using the same methods/parameters
did not cause substantial changes in performance for the
MNIST (–0.05% from baseline) or CIFAR-10 (–4.2% from
baseline) trained models (Table 1). For the medical DL
models, adversarial images generated using smaller pixel-
level perturbations (ε , 0.004) resulted in misclassifi-
cation of a majority of images, whereas nonmedical DL
models required much larger pixel perturbations (ε. 0.07

for MNIST and ε. 0.01 for CIFAR-10) for similar levels of
misclassification (Table 1).

Adversarial Training to Improve Model Robustness

Adversarial training led to increased robustness of DL
models when classifying adversarial images for both
medical and nonmedical images (Fig 3). Compared with
baseline trained models, adversarial trained DL models
caused absolute accuracy of the model on adversarial
images to increase by 42.9% for CT (67.7% v 26.9%),
35.7% for mammogram (63.4% v 27.7%), and 73.2% for
MRI (87.2% v 24.3%; Data Supplement). Despite adver-
sarial training, DL models did not reach baseline accuracy,
suggesting adversarial training as only a partial solution to
improve model robustness. Adversarial training became

Lung CT

Mammogram

Brain MRI

MNIST

CIFAR-10

Clean BIMPGDFGSM

True class: Noncancer
Predicted: Noncancer (99.9%) Predicted: Cancer (97.6%) Predicted: Cancer (100%) Predicted: Cancer (100%)

True class: 4
Predicted: 4 (100%)

True class: Car
Predicted: Car (100%) Predicted: Horse (99.7%) Predicted: Horse (100%) Predicted: Horse (100%)

True class: Cancer
Predicted: Cancer (100%) Predicted: Noncancer (73.6%) Predicted: Noncancer (99.9%) Predicted: Noncancer (96.4%)

True class: Cancer
Predicted: Cancer (98.7%) Predicted: Noncancer (83.8%) Predicted: Noncancer (99.9%) Predicted: Noncancer (99.9%)

Predicted: 7 (100%)Predicted: 7 (100%)Predicted: 7 (98.7%)

FIG 1. Examples of clean images and
their adversarial counterparts generated
using FGSM, PGD, and BIM attack
methods. The percentage displayed
represents the probability predicted by
the model that the image is of a certain
class. BIM, Basic Iterative Method; CT,
computed tomography; FGSM, Fast
Gradient Sign Method; MRI, magnetic
resonance imaging; PGD, Projected
Gradient Descent.
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less effective when attempting to defend against adversarial
images that possessed greater pixel perturbations.

Image-Level Adversarial Image Sensitivity and

Model Performance

Using image-level adversarial sensitivity, we were able to
identify images most at risk for misclassification by the DL
models and improve overall model performance across all
diagnostic imaging modalities. Excluding the images in
which the smallest pixel perturbations changed DL model
outputs increased the absolute accuracy of DL models by
5.9% for CT, 3.7% for mammogram, and 5.2% for MRI
(Table 2).

DISCUSSION

As the role of diagnostic imaging increases throughout
clinical oncology, DL represents a cost-effective tool to
supplement human decision making and aid in image
analysis tasks.31-33 However, instability of DL model outputs
can limit the performance and generalizability on large-
scale medical data sets and hinder clinical utility. Evalu-
ating a proposed DL model’s susceptibility to adversarial
images represents a way to identify the most robust DL
models versus those at risk for erratic performance. In this
study, we found that DL models trained on medical images
were particularly unstable to perturbation from adversarial
images resulting in significant decreases in expected
performance. Moreover, we found diagnostic images within
oncology to be more vulnerable to such misclassification
compared with DL models trained on nonmedical images.
Specifically, compared with nonmedical images, all
three diagnostic imaging modalities required substantially

smaller perturbation to reduce model performance. Fur-
thermore, we found that adversarial training methods
commonly used on nonmedical imaging data sets are ef-
fective at improving DL model stability to such pixel-level
changes. Finally, we showed that identifying images most
susceptible to adversarial image attacks maybe helpful in
improving overall robustness of DL models on medical
images.

Several recent works have found that state-of-the-art DL
architectures perform poorly on medical imaging analysis
tasks when classifying adversarial images.14,34-38 Our work
extends the findings of previous studies by evaluating
performance across three common oncologic imaging
modalities used for cancer detection. Additionally, we
found that CT, mammography, and MRI images exhibit
substantial vulnerability to adversarial images even with
small pixel-level perturbations (,0.004). We also show that
DL models exhibited different levels of sensitivity to
adversarial images across different imaging modalities.
Furthermore, althoughmost previous studies used only one
fixed perturbation size for adversarial image attack, we
varied perturbation size along a broad range to examine the
relationship between model performance and attack
strength.

In addition, our results corroborate previous work, which
showed that DL models trained on medical images are
more vulnerable to misclassifying adversarial images
compared with similar DL models trained on nonmedical
images.14,39 By using MNIST and CIFAR-10 as a control
and applying the same attack settings to DL models for all
data sets, we determined that DL models for medical

TABLE 1. Effects of Adversarial Attacks of Varying Perturbation Sizes on Model Classification Accuracy
Attack Perturbation Size « CT Accuracy (%) Mammogram Accuracy (%) MRI Accuracy (%) MNIST Accuracy (%) CIFAR-10 Accuracy (%)

Baseline 75.41 76.43 93.64 99.13 86.13

FGSM 0.001 51.98 46.96 77.27 99.05 85.32

0.002 34.62 30.00 56.36 99.05 82.39

0.004 31.12 24.46 43.03 99.04 74.29

0.006 31.59 23.93 40.38 98.96 65.27

PGD 0.001 41.84 45.36 61.36 99.06 85.29

0.002 26.92 27.68 24.32 99.05 81.93

0.004 25.64 23.93 6.36 99.01 71.90

0.006 25.64 23.57 6.36 98.92 59.98

BIM 0.001 44.99 46.07 64.24 99.06 85.32

0.002 27.74 28.57 29.02 99.05 82.06

0.004 25.87 23.93 6.44 99.01 72.84

0.006 25.76 23.57 6.36 98.93 62.28

NOTE. Adversarial samples were created by FGSM, BIM, and PGD with increasing L∞ maximum perturbation size ε. Models for medical data sets (CT,
mammogram, and MRI) required smaller attack perturbation sizes than models for nonmedical data sets (MNIST and CIFAR-10) for attacks to be generally
effective.
Abbreviations: BIM, Basic Iterative Method; CT, computed tomography; FGSM, Fast Gradient Sign Method; MRI, magnetic resonance imaging; PGD,

Projected Gradient Descent.
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images were much more susceptible to misclassifying
adversarial images than DL models for nonmedical images.
One reason for this behavior could be that medical images
are highly standardized, and small adversarial perturba-
tions dramatically distort their distribution in the latent
feature space.40,41 Another factor could be the over-
parameterization of DL models for medical image analysis,
as sharp loss landscapes around medical images lead to
higher adversarial vulnerability.14

In the past, adversarial training on medical DL models has
shown mixed results. In some studies, adversarial training
improved DL model robustness for multiple medical im-
aging modalities such as lung CT and retinal optical co-
herence tomography.40,42-44 By contrast, Hirano et al45

found that adversarial training generally did not increase
model robustness for classifying dermatoscopic images,
optical coherence tomography images, and chest x-ray
images. The difference in effectiveness of adversarial
training can be attributed to differences in adversarial
training protocols (eg, single-step v iterative approaches). It
is important to note that even in studies where adversarial
training showed success in improving model robustness,
the results were still suboptimal, as the risk of misclassi-
fication increases with perturbation strength even after
adversarial training. This is expected as adversarial training,
although capable of improving model accuracy on

adversarial examples, has limits in effectiveness against
strong attacks even on nonmedical image data sets.18

Our work applied an iterative adversarial training approach
to DL models for lung CTs, mammograms, and brain MRIs,
demonstrating substantial improvement in model robust-
ness for all imaging modalities. The effectiveness of
adversarial training was highly dependent on the hyper-
parameters of adversarial training, especially the pertur-
bation size for attack. Although too-small perturbation sizes
limit the increase in model robustness postadversarial
training, increasing the perturbation size beyond a certain
threshold prevents the model from learning during training,
causing poor model performance on both clean and
adversarial samples. Our work demonstrated how the per-
formance of the DL model postadversarial training is in-
versely proportional to the perturbation size of the adversarial
samples on which the model is evaluated. Although
adversarial training is effective in defending against weaker
attacks with smaller perturbation magnitudes, it showed less
success with attacks that altered pixels more substantially.
Although adversarial training proved successful at improving
model performance on adversarial examples, our results
were still far from satisfactory. One contributing factor is that
medical images have fundamentally differently properties
than nonmedical images.14,40 Thus, adversarial defenses
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FIG 2. Classification accuracy of VGG16 model on adversarial examples generated by FGSM, BIM, and PGD attacks with increasing L∞ maximum
perturbation size ε. Model performance decreased as ε increased for all data sets: (A) lung CT; (B) mammography; (C) brain MRI; (D) MNIST; and (E)
CIFAR-10. *Note that the horizontal axis (ε) was scaled to 10–3 for graphs (A) to (C), to 10–1 for (D), and to 10–2 for (E). BIM, Basic Iterative Method; CT,
computed tomography; FGSM, Fast Gradient Sign Method; MRI, magnetic resonance imaging; PGD, Projected Gradient Descent.
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well suited for nonmedical images may not be generalizable
to medical images.

We also showed that image-level adversarial sensitivity,
defined by the level of adversarial perturbation necessary to
change image class predicted by model, is a useful metric
for identifying normal images most at risk for misclassifi-
cation. This has potentially useful clinical implications as
we can improve the robustness of DL models by excluding
such ‘high-risk’ images from DL model classification and
instead providing them to a trained radiologist for
examination.

There are several limitations to our study. First, we only
used two-class medical imaging classification tasks. Thus,

our findings might not generalize to multiclass or regression
problems using medical images. Given that many medical
diagnostic problems involve a small number of classes, our
findings are likely still widely applicable to a large portion of
medical imaging classification tasks. Our study used only
first-order adversarial image generation methods rather
than higher-order methods, which have been shown to be
more resistant against adversarial training.46 Although most
commonly used adversarial image generation methods are
first-order, there is still need for additional research on how
to defend DL models for medical images against higher-
order methods. A final limitation is that we used traditional
supervised adversarial training to improve model robust-
ness, whereas other nuanced methods such as
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FIG 3. Comparison of model classification accuracy before and after adversarial training on adversarial samples crafted by FGSM, BIM, and PGD with
increasing L∞ maximum perturbation size ε. Adversarial training significantly increased model accuracy for data sets: (A) lung CT; (B) mammography; (C)
brain MRI; (D) MNIST; and (E) CIFAR-10. *Note that the horizontal axis (ε) was scaled to 10–3 for graphs (A) to (C), to 10–1 for (D), and to 10–2 for (E). BIM,
Basic Iterative Method; CT, computed tomography; FGSM, Fast Gradient Sign Method; MRI, magnetic resonance imaging; PGD, Projected Gradient Descent.

TABLE 2. Classification Accuracy (%) of VGG16 Model on the Original Test Set and the Test Set Excluding the 20% of Test Images Most Susceptible to
Adversarial Attack

Diagnostic Image Modality
Model Accuracy (%)
Original Test Set

Model Accuracy (%) Adversarially
Aware Test Set

Change in Model
Accuracy (%)

CT 75.41 81.31 5.90

Mammogram 76.43 80.13 3.70

MRI 93.64 98.82 5.18

NOTE. Images were excluded if PGD attack with perturbation size less than a certain threshold was sufficient to change the model prediction on the image.
That threshold perturbation size was 0.0003 for CT, 0.00025 for mammogram, and 0.0006 for MRI.
Abbreviations: CT, computed tomography; MRI, magnetic resonance imaging; PGD, Projected Gradient Descent.
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semisupervised adversarial training and unsupervised
adversarial training exist.40,47,48 Although we demonstrated
that supervised adversarial training is an effective method
to improve model performance on adversarial examples, an
interesting direction for future work would be to compare
the utility of supervised adversarial training with that of
semisupervised or unsupervised adversarial training on DL
models for medical images.

In conclusion, in this work, we used adversarial images to
explore the stability of DL models trained on three common
diagnostic imagingmodalities used in oncology. Our findings
suggest that DL models trained on diagnostic images are
vulnerable to pixel-level changes, which can substantially

change expected performance. Specifically, we found that
vulnerability to adversarial images can be a useful method to
identify DL models that are particularly unstable in their
classifications. Additionally, we found that adversarial image
training may improve the stability of DL models trained on
diagnostic images. Finally, we found that image-level
adversarial sensitivity is a potential way to identify image
samples that may benefit from human classification rather
than DL model classification. By shedding light on the
stability of DL models to small pixel changes, the findings
from this paper can help facilitate the development of more
robust and secure medical imaging DL models that can be
more safely implemented into clinical practice.
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