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A variety of different applications render terpenes and terpenoids attractive research targets. A promising but so far
insufficiently explored family of terpenoids are the fusicoccanes that comprise a characteristic 5-8-5 fused tricyclic ring
system. Besides herbicidal effects, these compounds also show apoptotic and anti-tumour effects on mammalian cells. The
access to fusicoccanes from natural sources is scarce. Recently, we introduced a metabolically engineered Saccharomyces
cerevisiae strain to enable the heterologous fermentation of the shared fusicoccane—diterpenoid precursor, fusicocca-
2,10(14)-diene. Here, we show experiments towards the identification of bottlenecks in this process. The suppression of
biosynthetic by-products via medium optimisation was found to be an important aspect. In addition, the fermentation
process seems to be improved under oxygen limitation conditions. Under fed-batch conditions, the fermentation yield was
reproducibly increased to approximately 20 mg/L. Furthermore, the impact of the properties of the terpene synthase on the
fermentation yield is discussed, and the preliminary studies on the engineering of this key enzyme are presented.
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Introduction

Fungi comprise a rich source of various natural products
of pharmaceutical and other use. The first known antibio-
tic penicillin (Fleming 1929), the immunosuppressant
cyclosporin (Dreyfuss et al. 1976) or the first isolated
cholesterol-lowering  3-hydroxy-3-methylglutaryl-coen-
zyme A (HMG-CoA) reductase inhibitor mevastatin
(Endo et al. 1976) were primarily found to be produced
in fungi. Besides non-ribosomal peptides and polyketides,
fungi also produce several members of the largest class of
natural products, the terpenes and typically oxyfunctiona-
lised terpenoids. To date, over 50,000 structurally different
terpenes and terpenoids are known (Conolly and Hill
1991). They play important roles as primary metabolites
in several central anabolic and catabolic processes and are
produced as secondary metabolites in all branches of life.
Prominent pharmaceuticals like taxol®™ as anti-cancer drug
or artemisinin as an anti-malaria agent highlight the
importance of terpenoids as research targets. All terpe-
noids are derived from the two universal isomeric Cs
units — isopentenyl pyrophosphate (IPP) and dimethylallyl
pyrophosphate (DMAPP) (Figure 1). Nature has evolved
two distinctive pathways to synthesise these ubiquitous
terpene building blocks. Eukaryotes and archaea typically
use the mevalonate pathway (Bloch 1965), whereas the 2-

C-methyl-D-erythritol 4-phosphate (MEP) pathway is
found in most prokaryotes (Rohmer et al. 1993; Rohdich
et al. 2002) and in the plastids of plants (Schwender et al.
1996). While prenyl transferases catalyse sequential chain
elongations to linear prenyl pyrophosphates, terpene
synthases catalyse further rearrangements or cyclisations
to monoterpenes (C10), sesquiterpenes (C15), diterpenes
(C20), sesterterpenes (C25) or bigger terpenes (Figure 1).
While only a handful of the linear prenyl pyrophosphates
are produced during biosynthesis, a number of different
terpenes are formed through different cyclisation mechan-
isms, triggered by differently shaped active sites of the
native terpene synthases (Christianson 2006). Often, ter-
penes are furnished with diverse functionalisations, most
prominently hydroxylations, to enable specific interactions
with their biological targets.

A ubiquitous and yet underexplored family of terpenes
are the fusicoccanes. These compounds are found as diter-
penoids and sesterterpenoids in fungi, algae, higher plants
and insects and are characterised by their 5-8-5 tricyclic
structural motif (Muromtsev et al. 1994).

A fusicoccane subfamily comprising diterpenoids like
fusicoccins (Ballio et al. 1964), cotylenins (Sassa et al.
1970) and brassicicenes (MacKinnon et al. 1999) is pre-
ferentially produced by various phytopathogenic fungi.
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Schematic representation of terpene biosynthesis and structures of industrially relevant terpenoids like the flavour menthol,

the anti-malaria compound artemisinin and the anti-cancer drug taxol. Dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyropho-
sphate (IPP) are biosynthetically produced via the mevalonate and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways. These
terpene precursors are then converted by prenyl transferases to geranyl pyrophosphate (GPP), farnesyl pyrophosphate (FPP), geranylger-
anyl pyrophosphate (GGPP), farnesylgeranyl pyrophosphate (FGPP) and bigger linear isoprenoids such as squalen. Terpene synthases are
responsible for the conversion to terpene scaffolds. The insertion of functional groups is catalysed by a multitude of different enzymes to

form bioactive terpenoids.

Such diterpenoids are identical in their carbon skeleton
and stereochemical configuration but vary in their substi-
tution and degree of functionalisation. Until now, two
enzyme isoforms from distinct fusicoccane-producing
fungi were isolated and shown to catalyse identical reac-
tions (Toyomasu et al. 2007; Minami et al. 2009) towards
the shared precursor (+)-fusicocca-2,10(14)-diene
(FCdiene) (Figure 2). Both FCdiene synthase (FS) iso-
forms are bimodular and consist of a prenyl transferase
domain and a terpene cyclase domain. These enable the
synthesis of the diterpene FCdiene (C,) directly from the
two universal isoprenoid Cs building blocks IPP and

DMAPP (Toyomasu et al. 2007). The bioactivity of this
subfamily of fusicoccanes results from the stabilisation of
protein—protein interactions between eukaryotic 14-3-3
proteins and their partner proteins (Wiirtele et al. 2003;
Yang et al. 2006). Fusicoccin A, for example, permanently
stabilises the 14-3-3/plant H'—ATPase interaction (Wiirtele
et al. 2003), thereby causing wilting of the treated plant
(Ballio et al. 1964). The crystal structure of a ternary
complex between cotylenin A, a plant 14-3-3 isoform
and an H'—ATPase phosphopeptide was determined
(Ottmann et al. 2009), showing an apparently similar
activity of cotylenin A. Besides herbicidal activities, the
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Figure 2. Biosynthesis of fusicocca-2,10(14)-diene (FCdiene). The bimodular FCdiene synthase (FS) catalyses both the reactions for
the formation of GGPP and the cyclisation to FCdiene (Toyomasu et al. 2007). During a number of successive enzymatic steps,
fusicoccanes like cotylenin A, fusiccocin A or brassicicene C are thought to be produced from this central precursor.

fusicoccanes also have effects on amphibian embryogen-
esis (Bunney et al. 2003) and on human cancer cells.
Fusicoccin A and cotylenin A were found to induce apop-
tosis in tumour cells in combination with the immunosup-
pressant Interferon-a (Honma et al. 2003a, 2003b, 2005;
de Vries-van Leeuwen et al. 2010). But in contrast to
fusicoccin A, cotylenin A was also found to induce differ-
entiation of myeloid leukaemia cells (Asahi et al. 1997;
Matsunawa et al. 2006). Because of a different oxidation
pattern, cotylenin A can bind to binary complexes
between 14-3-3 proteins and so-called mode I or mode 11
phosphorylated binding motif peptides (Ottmann et al.
2009), which can be found in mammalian proteins like
Raf kinases, Cdc25 phosphatases or the transcription fac-
tor Mizl (Muslin et al. 1996; Yaffe et al. 1997). The
potential of cotylenin A as anti-cancer compound was
further verified by its activity in xenograft mouse models
(Honma et al. 2003a, 2003b; Kasukabe et al. 2005).
However, access to cotylenin A has dwindled because of
the inability to re-cultivate the producing fungus
Cladosporium sp. 507-1W under laboratory conditions
due to loss of proliferation (Minami et al. 2009; Ono
et al. 2011). Chemical routes to complex diterpenoids
and terpenes like (—)-cotylenol (Kato et al. 1996), (+)-tax-
adiene (Mendoza et al. 2011) and FCdiene (Kato et al.
1998) are reported but are rare and not yet generalised or
only manageable on an analytical scale. Only recently, it
became possible to biosynthesise preparative amounts of
important terpenoids by means of heterologous fermenta-
tion in model organisms. Key to this endeavour is

extensive metabolic engineering of the host strain. A
famous, but also unique, example is the biosynthetic
access of artemisinic acid and subsequent synthetic trans-
formation to artemisinin (Paddon et al. 2013). The field,
however, is characterised by a lack of generalisable stra-
tegies to access complex terpenes and terpenoids in pre-
parative amounts.

Natural products are often considered to show higher
structural complexity than required for human application
(Wach and Gademann 2012). Often, reduction of high-
molecular-weight natural products to simplified molecules
targeting the same effector proteins increases their bioa-
vailability. This strategy may also work for fusicoccanes.
Previous studies suggest that parts of fusicoccin A are not
required for target binding, in particular the complex car-
bohydrate decoration (Ballio et al. 1981; Wiirtele et al.
2003).

To enable access to fusicoccane-type molecules, we
aimed for a strategy that was based on the heterologous
production and a subsequent enzymatic or synthetic ela-
boration of the 5-8-5 tricyclic fusicoccane precursor
FCdiene. Therefore, in initial studies, we investigated
three potential fermentation strains for the microbial pro-
duction of FCdiene (Arens et al. 2013). To find a strain
that is capable to produce preparative amounts of FCdiene,
the expression of the bimodular FS from the filamentous
fungus Alternaria brassicicola (AbFS) (Minami et al.
2009), was successfully achieved in the bacterium
Escherichia coli, the filamentous fungus Aspergillus nidu-
lans and the yeast Saccharomyces cerevisiae. S. cerevisiae
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was able to produce the highest amounts of the desired
diterpene. Subsequently, a method was developed to iso-
late FCdiene in high purity and multi-milligram scale,
which paves the way both for further optimising the sys-
tem and accomplishing high production levels of fusicoc-
cane derivatives.

We here describe a characterisation of the heterolo-
gous fermentation of FCdiene in depth with regard to
biological and biosynthetic aspects. In particular, we dis-
cuss potential bottlenecks in the fermentation and give
first hints towards its improvement.

Materials and methods
Fermentation of FCdiene by S. cerevisiae

For fermentation of FCdiene, S. cerevisiae CEN.PK2-1c¢
[pPRS313-upc2.1, pRS315-thmgr, pVV214-abfs] was
applied (Arens et al. 2013). Pre-cultures were grown in
synthetic dropout (SD) medium under selection for auxo-
trophic markers (SD-His-Leu-Ura: 0.67% w/v yeast nitro-
gen base without amino acids, 0.001% w/v adenine,
0.005% w/v Arg HCI, 0.008% w/v Asp, 0.005% w/v Ile,
0.005% w/v Lys, 0.002% w/v Met, 0.005% w/v Phe,
0.01% w/v Thr, 0.002% w/v Trp, 0.005% w/v Tyr,
0.014% w/v Val, 2% w/v glucose) at 30°C to an ODgqq
of 1. After centrifugation, cells were diluted into 10
volumes of either YPD (1% w/v yeast extract, 2% w/v
peptone, 2% w/v glucose) (Engels et al. 2008; Arens et al.
2013) or SD-His-Leu-Ura. All fermentation media were
supplemented with 1 mM MgCl, (Carl Roth). Shaking
flask cultures were grown in a medium- to-flask volume
ratio of 1:5 in an orbital shaker (Multitron Standard, Infors
HAT with 5-cm displacement) for 48 h at 30°C and
110 rpm or at 180 rpm for increased aeration.

Fed-batch cultivations were run in 500 mL SD-His-
Leu-Ura supplemented with 1 mM MgCl, and 20 mM
succinate (Carl Roth) in a 2-L glass stirring tank incubator
without pH control at 30°C for 5 days. Stirring frequency
was held constant at 600 rpm (IKA RCT classic stirrer)
and up to 9.2 L/min air were supplied (Sera® precision air
550r plus). The batch culture with 2% (w/v) glucose as
initial sugar concentration was fed once with 1.5% (w/v)
glucose after 21-22 h in the exponential growth phase.

Quantification of FCdiene

After extraction of 2 mL of culture with n-pentane
(HPLC-grade, Sigma-Aldrich), the extract was analysed
by gas chromatograph with flame ionization detector using
cycloundecane (Sigma-Aldrich) as internal standard.
Importantly, in these experiments, the hydrophobic
adsorption resin reported to enhance the FCdiene yield
(Arens et al. 2013) was omitted as it would have blurred
the quantification results. Quantifications were performed
in triplicate.

GC measurements

gas chromatograph-mass spectrometer coupling (GC/MS)
measurements were performed on an  Agilent
Technologies 7890A GC System with a flame ionisation
detector, a 5975C inert XL MSD Triple-Axis Mass
Detector and Agilent 19,0915-433 Trace Analysis column.
GC-conditions: 1 pL of sample was injected with an
evaporation temperature of 250°C, 1.8 bar, 2.5 mL/min,
split 20:1. He carrier gas, temperature gradient 50°C/
1 min, 40°C/min gradient 300°C, 300°C/5 min.

Construction of a S. cerevisiae fermentation strain
harbouring a codon optimised version of abfs

The codon optimised version of abfs for S. cerevisiae
(abfsSC) was ordered from Eurofins MWG. The optimised
gene was inserted into the yeast expression vector pvVV214
by the Gateway® cloning technology using the pDONR221
vector for the construction of pEntry clones. Therefore, the
gene-specific forward 5°-GGG GAC AAG TTT GTA CAA
AAA AGC AGG CTT CAA AAA TGA AGT ACC AGT
TCT CCA TCA TTG-3’ and reversed 5’-GGG GAC CAC
TTT GTA CAA GAA AGC TGG GTT TAC AAT TTC
AAC ATC ATC AAC ATT AAT TC-3’ primers were
applied. Correct constructs were isolated by alkaline lysis
and ethanol precipitation (Birnbiom and Doly 1979) from
chemically competent E. coli OmniMAX™ 2 TI® cells
(Invitrogen) for verification by sequencing (StarSEQ
GmbH). The yeast mutant harbouring pRS313-upc2.1 and
pRS315-thmgr was co-transformed with pVV214-abfs by
the lithium acetate method (Amberg et al. 2005).

Directed evolution of abfs
Design of a screening construct

To screen for soluble AbFS variants via blue-white screen-
ing on X-gal-containing agar plates (Wigley et al. 2001), a
construct encoding for AbFS in C-terminal fusion to lacZa
over a flexible linker was designed. The construct was
based on the pPBADM backbone series to enable an adjus-
table expression dependent on the arabinose concentra-
tion. This screening construct was prepared by the
assemblage of three PCR amplicons by SLIC-MIX
(Kushnir et al. 2012; Sundermann et al. 2013). Amplicon
1 was amplified from pBADM-11 (EMBL Heidelberg)
with the forward 5-TGA TAA GGC GCC AGC TTG
GCT GTT TTG GCG GAT G-3’ and reversed 5’-GGT
ATT TCA TAG CCA TGG TTA ATT CCT CCT GTT
AGC CCA AAA AAC G-3’ oligonucleotides. This way
the Hisg-tag and the multiple cloning site of the vector
were removed and two unique Kasl and Ncol sites (under-
lined sequences) were introduced into the screening con-
struct backbone. Amplicon 2 consists of abfs without its
stop codon but with restriction sites for Ncol upstream of
abfs and Nofl fused to a coding sequence for a linker



fragment (same amino acid sequence as used by Reetz and
Zheng 2011) downstream of abfs. These sites were intro-
duced using the oligonucleotides 5’-AGG AGG AAT TAA
CCATGG CTATGA AAT ACC AAT TTT CCATCATGG
TGG-3’ and 5’-CAG CAG ATC CAG CAG ATC CTG
CGG CCG CAA GCT TGA GCA TCA TTA GCA TCA
G-3’. The generated restriction sites served for an easy
insertion of abfs mutants by restriction and ligation after
epPCR. Amplicon 3 was amplified from pUC18 with the
oligonucleotides 5’-GGA TCT GCT GGA TCT GCT GCT
GGT TCT GGC GCATCT ATG ACC ATG ATT ACG AAT
TCG AGC-3’ and 5’-TCC GCC AAA ACA GCC AAG
CTG GCG CCT TAT CAG CGC CAT TCG CCATTC AG-
3’ to yield /lacZa. This enabled the introduction of a coding
sequence for a linker region upstream of /acZa and a restric-
tion site for Kasl downstream of the amplified gene. Wild-
type abfs encoding construct was used as negative control,
and pPBADM-11-lacZo served as positive control.

epPCR experiments and screening of soluble enzyme
variants

For random mutagenesis by error-prone PCR, Tag poly-
merase (NEB) in standard Taq buffer (NEB) was used.
Final concentrations of 7 mM MgCl,, 0.2 mM each of
deoxyguanosine triphosphate and deoxyadenosine tripho-
sphate, 1 mM each of deoxycytidine triphosphate and
deoxythymidine triphosphate and varied concentration of
MnCl, (0-0.05 mM) were applied to reveal different muta-
tion rates (Cirino et al. 2004). Primers previously used for
amplicon 2 during design of the screening construct were
used. PCR profile: 35 cycles, 1. 95°C/30 s 2. 50°C/30 s
(initial 5 cycles)/62°C/30 s (final 30 cycles) 3. 68°C/2 min
4. 68°C/5 min final extension. Digested PCR products
(Dpnl, Ncol and Notfl from NEB) were extracted with
Roti®-Phenol/Chloroform/Isoamyl alcohol (Carl Roth),
precipitated with ethanol and ligated into the Ncol and
Notl (NEB) digested screening vector backbone.
Chemically competent E. coli OmniMAX™ 2 TI®
(Invitrogen) were transformed with the ligation product
and plated on LB agar plates (1% w/v tryptone, 0.5% w/v
yeast extract, 1% w/v NaCl, 1.5% agar pH 7.4) containing
100 pg/mL carbenicillin, 40 pg/mL X-gal and 10 mM
arabinose. After incubation at room temperature for 2.5
days, blue colonies were verified by restriction analysis
and sequencing (StarSEQ GmbH). After expression in
liquid medium, solubility and functional activity of
obtained mutants were determined by sodium dodecyl sul-
fate polyacrylamide gel -electrophoresis (SDS-PAGE)
(Laemmli 1970) analysis and GC/MS measurements.

Splitting and expression of the two domains of AbFS in
E. coli

The two catalytic domains FCdiene cyclase (FCyc) and
geranylgeranyl pyrophosphate synthase (GGPPS) of the
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bimodular fusicoccadiene synthase (Toyomasu et al. 2007)
were amplified from abfs using the following oligonucleo-
tides: feye-ftw 5°-TTA TTT TCA GGG CGC CAT GGC
AAA ATA CCA ATT TTC CAT CAT TGT GG-3’, fcyc-re
5’-AAG CTC TCG AGT GCG GCC GCT TAT CAC
TGG TTG AAA CGC TTC TCA G-3’, ggpps-fw 5°-
TTA TTT TCA GGG CGC CAT GGC AAC TCA ACT
AGA TTG GAT GCA AAA TG-3’ and ggpps-re 5’-AAG
CTC TCG AGT GCG GCC GCT TAT CAA AGC TTG
AGC ATC-3’. Cloning of each segment into the backbone
of pPETM-11 (EMBL Heidelberg) was achieved via restric-
tion and ligation cloning using Ncol and Not (italicized).
After verification of both constructs by sequencing
(StarSEQ GmbH), fcyc and ggpps were expressed sepa-
rately in E. coli BL21-Gold(DE3) (Agilent Technologies).
After induction of expression at ODgog 1-1.3 with 1 mM
Isopropyl f-D-1-thiogalactopyranoside (AppliChem), cells
were cultivated at 19°C for 2 days in terrific broth med-
ium (1.2% w/v tryptone, 2.4% w/v yeast extract, 0.4% v/v
glycerine, 17 mM KH,PO, and 72 mM K,HPO,) supple-
mented with 1 mM MgCl,.

Results and discussion
Heterologous fermentation in S. cerevisiae

In recent years, S. cerevisiae has been introduced for the
heterologous production of various terpenes and terpe-
noids. Intensive optimisation studies enabled, in several
cases, its preparative use (reviewed by Misawa 2011).
Often, however, the yield of the targeted terpenoids is
unsatisfying. Recently, we constructed a mutant of S.
cerevisiae CEN.PK2-1c (van Dijken et al. 2000; Engels
et al. 2008) for the preparative fermentation of the diter-
pene FCdiene (Figure 3) (Arens et al. 2013). This strain
was transformed with pVV214-abfs, which enabled the
expression of the fungal FS isolated from cabbage —
pathogen Alternaria brassicicola UAMH 7474 (ADFS)
in S. cerevisiae under the control of the strong and con-
stitutive phosphoglycerate kinase 1 promoter (Van Mullem
et al. 2003). To increase the terpene levels, this strain was
furthermore modified with a plasmid-born truncated ver-
sion of hydroxy-methyl-glutraryl coenzyme A reductase
isoenzyme 1 (tHMGR1) (Donald et al. 1997). In its wild-
type form, this enzyme is strongly regulated to control
terpene levels and catalyses the main rate-limiting step in
the mevalonic acid pathway. Removal of its N-terminal
regulatory domain delivers a regulation-insensitive var-
iant. This leads to the accumulation of pathway intermedi-
ates under aerobic and semi-anaerobic conditions and can
thereby lead to increased levels of heterologously pro-
duced terpenes in E. coli (Martin et al. 2003) as well as
in S. cerevisiae (Jackson et al. 2003; Ro et al. 2006).
Furthermore, the heterologous fermentation strain carried
a plasmid that encoded for a mutated version of the
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Figure 3. Schematic representation of the S. cerevisiae-mutant engineered for the production of FCdiene. Expression of thmgrl (gene
encoding for a truncated version of the HMG-CoA (hydroxy-methyl-glutraryl coenzyme A) reductase isoenzyme 1) enabled an increased
supply of isoprenoid precursor molecules due to deletion of its N-terminal regulatory domain. Mutation of the gene encoding for the
transcription factor UPC2 influences the steroid metabolism and was used to further increase the flux towards heterologous produced
terpenes. The expression of the recombinant FCdiene synthase was ensured by the co-transformation of the engineered yeast with the

vector pVV214-abfs.

transcription factor UPC2 (UPC2-1) (Lewis et al. 1988;
Crowley et al. 1998). UPC2 is important for the regulation
of the ergosterol content in yeast (Crowley et al. 1998; Vik
and Rine 2001). Whereas import of sterols occurs in wild-
type S. cerevisiae under anaerobic conditions (Trocha and
Sprinson 1976), when the oxygen-dependent biosynthesis
of sterols is suppressed, a single point mutation in the C-
terminal region of the UPC2 transcription factor enables
the uptake of sterols from the nutrient medium under
aerobic fermentation conditions (Lewis et al. 1988;
Crowley et al. 1998). This mutation was introduced into
the FCdiene-producing strain to also yield improved
FCdiene titres. In shaking flask fermentations, the use of
this strain yielded 6 mg/L FCdiene in an isolated form
(Arens et al. 2013).

Upon a more detailed analysis of the fermentation by
mass spectrometry, we now found a substantial accumula-
tion of the shared steroid precursor squalene in this yeast
culture. This indicates that the metabolic flux towards

triterpenes exceeds the demand, presumably by a reduced
need for steroids and a concomitantly increased Cs-precur-
sor level (induced both by the tHMGR1 and the UPC2-1
mutations). It was previously shown that a downregulation
of squalene synthase activity could further increase product
titres for amorphadiene production (Ro et al. 2006).

Now, experiments revealed that the fermentation of the
previously reported yeast strain in YPD medium yields not
only FCdiene but also two specific by-products (Figure 4
(A), compounds 1 and 2). Gas chromatography-electron
ionization mass spectrometry analysis revealed these as
intermediates or shunt products of FCdiene biosynthesis
(Figure 4). Compound 1 has a similar fragmentation pat-
tern to d-araneosene (Jenny and Borschberg 1995), which
was shown to be produced in vivo by the fusicoccin-
producing fungus Phomopsis amygdali (Sassa et al.
2004) as well as in vitro by the purified FS from
P amygdali (PaFYS) itself (Toyomasu et al. 2007). It is a
neutral intermediate of the GGPP cyclisation towards
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FCdiene (Sassa et al. 2004; Tantillo 2011). To our knowl-
edge, compound 2 has not been isolated before; its frag-
mentation pattern and absolute mass, however, strongly
suggest it to be a double-bond isomer of compound 1 and
as such rather a shunt product than an intermediate. These
findings indicate that the activity of AbFS was too low to
ensure rapid turnover of potentially accumulating
intermediates.

These new findings on the fermentation of FCdiene by
the recombinant yeast strain motivated us to examine the
FCdiene fermentation in more detail.

Optimisation of fermentation conditions

To begin, different fermentation parameters were varied
systematically in shaking flasks.

pH effects on FCdiene batch fermentations. The effect of
the external pH during fermentation was studied. To
prevent isomerisation of the acid-sensitive FCdiene, we
buffered the fermentation medium initially with
100 mM Tris-HCI to pH 8 (Engels et al. 2008; Arens
et al. 2013). During fermentation, pH dropped to 6.5
during the first 14 h, later on it reached pH 8 again.
These pH shifts can be explained by the metabolic
conversion of glucose to short organic acids in the
beginning of the fermentation, whereas in the end of
the fermentation, presumably amino acids are degraded
to alkaline ammonium ions. The Tris buffer was appar-
ently too weak to override this effect. We examined
crude extracts after fermentation in Tris-buffered YPD
(with initial pH 8) and in unbuffered YPD medium
(with initial pH 6.5). The fermentation was found to
be not affected by the pH of the medium under the
tested conditions (Figure 5).

levels and FCdiene
assumed that biomass

Correlation
fermentation. We

between oxygen
initially

25
20 I

15

m l
SRR

YPD pH 8

FCdiene [mg/L]

YPD pH 6.5 higher SD fed-batch

aeration

Figure 5. Comparison of FCdiene yields achieved under differ-
ent fermentation conditions.

production correlates with FCdiene yields. To study this
hypothesis, we increased the oxygen transfer rate into the
fermentation cultures by raising the shaking frequency.
Indeed, increased biomass was observed in these cultures
(ODggp ~ 30) compared to cultures grown with lower
oxygen (ODgoo ~ 20), but production of FCdiene was
found to be unreliable in those fermentations. On the
average, a lowered productivity of the fermentation was
observed (see Figure 5). Although this effect was found to
be statistically insignificant on laboratory scale, it was
reproduced on a preparative scale with hydrophobic adsor-
bant added for in situ product removal. High levels of
oxygen hence seem to have a negative effect on the
fermentation of FCdiene.

Variation of fermentation media and fermentation
processing. A common issue in heterologous fermentation,
and in fact many heterologous protein expression experi-
ments, is the genetic instability of the genetically modified
organisms (Studier 2005). As described -earlier, the
FCdiene-producing yeast strain carries three different
recombinant plasmids. Fermentation in the complex med-
ium YPD did not apply selection pressure on the mainte-
nance of these constructs. Now, control experiments
showed that under those fermentation conditions, the strain
loses all three plasmids within 20 h of cultivation. Based on
these results, we tested the production of FCdiene in the
selective medium SD without histidine, leucine and uracil
(SD-His-Leu-Ura), thereby selecting for the maintenance of
the three auxotrophic markers. Although biomass levels
were lower compared to fermentations in YPD
(ODggp ~ 13), the switch to the selective medium increased
FCdiene levels twofold (Figure 5), presumably as a result of
higher genetic stability of the fermentation strain. To further
increase the FCdiene yield, the batch culture was fed once
with 1.5% glucose during exponential growth in a 2-L
stirring tank without pH control. To prevent the strong
acidification to pH 2.5 of the SD-His-Leu-Ura medium
during fermentation, starting from pH 5, succinate was
added as metabolic buffer (Cha et al. 1998; Studier 2005).
As an intermediate in the TCA cycle, besides its effect as
buffer, succinate can be metabolised as an additional
carbon source in yeast. When added from the beginning,
succinate could stabilise the pH to 4.5 to 5 during long
periods of fermentation, and the buffering effect was thus
much stronger than in case of Tris-HCl. Through these
improvements, the yield of FCdiene could be increased
to approximately 20 mg/L (Figure 5). Importantly, fer-
mentation in SD medium diminished the production of
the FCdiene isomers 1 and 2 and thus rendered the
fermentation not only more productive but also more
specific. This suggests an increased activity of AbFS
under the altered conditions, indicating that the enzyme
itself might be the limiting factor.



A Dbasic aspect in the preparative fermentation of
hydrophobic terpenes is the prevention of product inhibi-
tion due to toxic effects on the host (Brennan et al. 2012)
and the reduction of evaporation of volatile terpenes
(Newman et al. 2006). This is typically achieved by the
addition of a second hydrophobic phase to the fermenta-
tion medium to trap the desired metabolite quantitatively.
The frequently used additive dodecane (Newman et al.
2006) was found to have a similar boiling point to
FCdiene and was therefore difficult to separate. Since
shorter alkanes with a lower boiling point had toxic effects
on the fermentation host, we used in our initial studies the
expensive solid C18 silica gel (Engels et al. 2008) for in
situ product adsorption. As a cheaper alternative, we
found that the polystyrene Lewatit® VP OC 1064 MD
PH with similar adsorption properties towards FCdiene
enabled a simpler workup to isolate the desired fermenta-
tion product in preparative amounts. By supplying the
polymeric adsorber resin at 6 g/L to the fermentation
broth, the FCdiene yield was improved in the same man-
ner as the previous used C18 silica gel (Arens et al. 2013)
compared to fermentations without such an additive.

Exploration of further potential bottlenecks in the
fermentation

Small but significant improvements of the FCdiene titres
can be induced by systematic variation of fermentation
parameters. Achieving an enhancement by several orders
of magnitude, however, would be extremely time-consum-
ing by these means as seen in the hallmark example
artemisinin and its biosynthetic intermediates (Ro et al.
2006, 2008; Shiba et al. 2007; Dietrich et al. 2009;
Westfall et al. 2012; Paddon et al. 2013).

While the directed metabolic engineering of heterolo-
gous hosts for the production of isoprenoids often has a
significant impact on the yield, the product titre of indivi-
dual metabolites observed varied strongly (Table 1). These
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findings suggest that besides the improvement of the Cs
precursor supply, other inherent limitations might have to
be addressed.

Attempts to overcome potential limitations due to rare
tRNAs in yeast by introduction of a codon optimised
version of abfs for S. cerevisiae revealed no further
improvement of FCdiene production. Hence, we concluded
that the expression rate of abfs in yeast is not limiting.

Rather, the inherent catalytic ability or stability of
the enzyme could be crucial to improve heterologous
production of the desired compound (Leonard et al.
2010; Lauchli et al. 2013). Since there is no structural
information for AbFS or closely related enzymes avail-
able that would allow for any rational mutagenesis
approach to this challenge, we opted for directed evolu-
tion to improve its soluble expression. Random muta-
genesis of the full-length terpene synthase gene via
error-prone PCR was performed at different mutation
rates (1-5 mutations/kb). The libraries of mutated genes
were expressed in E. coli. This implies that folding
stability and solubility are intrinsic and related proper-
ties of the enzyme and independent from the host,
provided that the enzyme is correctly folded after trans-
lation. The lack of structural information and the size of
ADbFS (84 kDa) required an agar-plate-based screening
for soluble expression. Therefore, abfs was C terminally
fused to the lacZo-fragment of B-galactosidase. Soluble
expression of the fusion protein should enable X-gal
staining of an expression host carrying the lacZAMIS5
mutation (Wigley et al. 2001; Reetz and Zheng 2011).
More than 30,000 clones were screened by this B-galac-
tosidase complementation assay. However, no ADbFS
variants with a reproducibly higher soluble expression
than the wild-type enzyme were obtained.

In further experiments, we strived to identify the solu-
bility-limiting segments of AbFS. To this end, the two
catalytic domains of the enzyme (Toyomasu et al. 2007)
were individually expressed in E. coli (Figure 6).

Table 1. Comparison of FCdiene yield in yeast with the heterologous production of other important terpenes and terpenoids.

Terpene Used cell type Improvement Yield Reference
FCdiene S. cerevisiae Metabolic engineered 20 mg/L in 120 h This study
Taxadiene S. cerevisiae Metabolic engineered 8.7 mg/L in 48 h Engels et al. (2008)
Taxol® Taxus baccata cell Immobilised cells 43 mg/L in 16 days Bentebibel et al. (2005)
cultures
Amorphadiene S. cerevisiae Metabolic engineered 41 g/L'in 116 h Westfall et al. (2012)
Artemisinic acid* S. cerevisiae Metabolic engineered 25 g/L'in 160 h Paddon et al. (2013)
Other S. cerevisae Metabolic engineered 0.37-40 mg/L Jackson et al. (2003), Asadollahi
sesquiterpenes et al. (2008), Asadollahi et al.
(2009), Albertsen et al. (2011),
Nguyen et al. (2012)
Limonene E. coli Metabolic engineered, 430 mg/L in 72 h Alonso-Gutierrez et al. (2013)
artificial mevalonate
pathway

Note: *: with subsequent conversion to artemisinin by semi-synthesis.
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Figure 6. Separated expression of the two domains of the bimod-
ular AbFS. (A) Scheme for the splitting of the AbFS. The GGPPS
domain catalyses reaction from IPP and DMAPP to GGPP and the
FCyc domain catalyses the cyclisation from GGPP to FCdiene. (B)
SDS-PAGE showing high soluble expression of the GGPPS
domain and low soluble expression of the FCyc domain.

SDS-PAGE analysis (Laemmli 1970) revealed high
soluble expression levels of the GGPPS domain. In con-
trast, soluble expression of the FCyc domain was low.
Detection of FCdiene by GC/MS analysis in the crude
extract of an expression culture of the terpene cyclase
domain in E. coli BL21-Gold(DE3) confirmed functional
activity of the stand-alone FCyc domain. Since the direc-
ted evolution of smaller enzymes is usually more straight-
forward, we conclude that the FCyc domain alone could
be a better choice as starting point for error-prone PCR in
the future.

Summary

We have discussed different experimental approaches to
improve the heterologous fermentation of terpenes in
S. cerevisiae. Several parameters were investigated using
the biosynthesis of FCdiene, the central precursor of the
fusicoccane family of diterpenoids as produced by differ-
ent phytopathogenic fungi, as a model system. Beginning
with a metabolically engineered yeast strain, different
fermentation parameters were explored. Impact of the pH
during fermentation was negligible in the range of 6.5-8.
Fermentation was improved under oxygen limitation and
strongly limited by genetic instability of the three plasmids
used to direct the fermentation. This instability was over-
come by the use of a selective medium in a fed-batch
mode under metabolic buffering. The formation of specific
by-products was suppressed by the optimised medium. An
in situ product removal system using a polymeric adsor-
bent significantly increased yield in a cost-effective way.
The experiments pointed towards intrinsic limitations of
the fermentation system through the diterpene cyclase—
prenyl transferase fusion enzyme AbFS. Improvement of
this enzyme through directed evolution was unsuccessful,
but separate expression of its two catalytic domains
revealed a new starting point for future enzyme engineer-
ing experiments.
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