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ABSTRACT In a broiler carcass production conveyor
system, inspection, monitoring, and grading carcass and
cuts based on computer vision techniques are challeng-
ing due to cuts segmentation and ambient light condi-
tions issues. This study presents a depth image-based
broiler carcass weight prediction system. An Active
Shape Model was developed to segment the carcass into
4 cuts (drumsticks, breasts, wings, and head and neck).
Five regression models were developed based on the
image features for each weight estimation (carcass and
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its cuts). The Bayesian-ANN model outperformed all
other regression models at 0.9981 R2 and 0.9847 R2 in
the whole carcass and head and neck weight estimation.
The RBF-SVR model surpassed all the other drumstick,
breast, and wings weight prediction models at 0.9129
R2, 0.9352 R2, and 0.9896 R2, respectively. This pro-
posed technique can be applied as a nondestructive, non-
intrusive, and accurate on-line broiler carcass
production system in the automation of chicken carcass
and cuts weight estimation.
Key words: broiler carcasses, carcass weight, compute
r vision system, regression modeling, statistical modeling
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INTRODUCTION

Over the years, the rising preference for white meat
has resulted in increased consumption of poultry meat
and meat products, broiler meat being the favorite
(Okinda et al., 2019; Okinda et al., 2020a; Okinda et al.,
2020b; Nyalala et al., 2021b). Pork and poultry are the
most globally consumed meat at 120.71 and 123.21 mil-
lion metric tons, respectively (Statista, 2019). However,
poultry consumption will overtake pork consumption by
a large margin by 2021 (Statista, 2019). Additionally, in
2017, there were 22.85 billion broilers internationally,
up from 14.38 billion in 2000 (Statista, 2019). Apart
from food safety and quality, unstandardized cuts in size
and weight of chicken carcasses have become challenging
factors in large-scale production line systems
(Adamczak et al., 2018; Teimouri et al., 2018).

Carcass weight is essential in any slaughtering plant
regarding production economics and cutting equipment
adjustment (Jørgensen et al., 2019). The carcass weight
and size determine the appropriate cut-up station's
cutting specifications for a specific broiler carcass. If a
carcass is larger than the cutting line settings, meat
parts will either be left at the body or overlap into other
cuts. Additionally, if a carcass is smaller than the cut-
ting line settings, bones and ribs might be cut together
with the fillet (Adamczak et al., 2018). Therefore, cor-
rect carcass weight and size measurements minimize
waste, improve cut quality, and optimize profits
(Adamczak et al., 2018; Jørgensen et al., 2019). Further-
more, it is unfeasible to manually adjust the cutting line
settings for each carcass (Adamczak et al., 2018). There-
fore, the automation of these cutting lines is a funda-
mental factor in chicken carcass processing.
Even though the current broiler processing systems are

automated, broiler carcass weighing is still challenging in
an on-line production setting (Jørgensen et al., 2019).
The conventional broiler carcass weighing technique is a
conveyor weighing scale mounted on the processing line
(Jørgensen et al., 2019). However, this technique suffers
from several shortcomings, for instance, it requires the
transfer of carcass off and back between the processing
line and the conveyor weighing scale (Jørgensen et al.,
2019). Additionally, the conveyor weighing scales are
often quite large. The entire production line must be
halted during maintenance, or the weighing scale is
bypassed entirely (Jørgensen et al., 2019).
Studies have reported several solutions to estimate

broiler carcass weight based on several techniques.
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Oviedo-Rondon et al. (2007) and Silva et al. (2006) pre-
sented a nondestructive real-time ultrasonic device to
measure the weight of broiler breast muscle.
D. Scollan et al. (1998) introduced nuclear magnetic reso-
nance imaging (MRI) technique for determining the
mass of broilers Pectoralis muscle. Tyasi et al. (2018),
Yakubu and Idahor (2009), Hidayat and Iskandar (2018),
and Raji et al. (2010) correlated body measurement traits
and age to broiler carcass weight. Despite the mentioned
methods being nondestructive, they were invasive. They
required contact with a live chicken before slaughter, and
they were time-consuming. Nonintrusive and noninvasive
techniques have also been introduced based on computer
vision systems. Teimouri et al. (2018) developed an on-
line sorting system of the chicken carcass as breast, leg,
fillet, wing, and drumstick based on 2D image analysis
and machine learning techniques. Adamczak et al. (2018)
capitalized on the ability of 3D scanning to estimate
objects’ volume by introducing a 3D chicken breast
weight estimation system. Most recently,
Jørgensen et al. (2019) presented a broiler carcass weight
estimation system based on 3D prior knowledge.

Most of these mentioned studies are applied in off-line
grading systems. They may not be appropriate in real-
time applications (Teimouri et al., 2018). Furthermore,
3D scanning requires a high computing resource and
multiangle images before a photometric approach
(Okinda et al., 2020b); hence, challenging to be applied
in on-line production systems. This study presents a
novel method for in-line broiler carcass and carcass parts
weight estimation techniques that can be deployed non-
Figure 1. Chicken carcass samples ha
intrusively on the processing line based on 2D machine
vision systems.
This study’s primary objective was to develop a machine

vision system for estimating the weight of a whole broiler
carcass (r1) and carcass parts (drumsticks (r2), breasts
(r3), wings (r4), and head and neck (r5)). The specific
objectives were 1) to develop an accurate and fast depth
image preprocessing algorithm, 2) to develop an efficient
and robust active shape model (ASM) to detect the cut-
ting points for segmentation of the broiler parts, 3) to
develop an efficient 2D image features extraction algo-
rithm, and 4) to develop weight prediction regression mod-
els based on the features extracted for each carcass part.

MATERIALS AND METHODS

Samples and Image Acquisition System

Chicken carcasses (n = 155) of different weights
(ranging between 853.9 g and 1,750 g) purchased from a
local chicken processing plant (Nanjing Sushi Meat
Products [NSMP], Nanjing, Jiangsu, China) between
January and November 2019 were used in this study.
The carcasses were manually examined to be fresh and
clear from visible injuries, defects, and frost. Each car-
cass was weighed by a calibrated electronic scale
(YP10001 model, Shanghai 00000271 Instruments Com-
pany, Shanghai, China), with a §0.1 g precision, then
labeled. The whole chicken carcasses were manually
hanged for image acquisition on an experimental on-line
chicken carcass production line (processing speed of
5,000 pcs/h), as shown in Figure 1. Afterward, the
nging on the overhead processing line.



Figure 2. Experimental setup and image acquisition system.

Table 1. Kinect v2 parameters (Okinda et al., 2020).

Kinect v2 camera

Features
Depth/Infrared (I.

R.) channel RGB channel

Camera resolution 512 £ 424 £ 16 bit
per pixel

1920 £ 1080 £ 16 bit
per pixel

Field of view (h £ v) 70.5 £ 60.0 degrees 84.1 £ 53.8 degrees
Frame rate 30 frames per second
Operative measuring
range

0.5 m range

Object pixel size
(GSD)

4.5 m range

Angular resolution 0.14 degrees per
pixel

-

Latency »tb:entity>/tb:
entity>50 ms

Dimensions
(l £ w £ h)

249 £ 66 £ 67 mm

Shutter type Global shutter

Where h is horizontal, v is vertical, l is length, w is width, and h is
height.
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carcasses were cut up into portions (drumsticks, arms,
head and neck, hands, and breast). For each sample, the
weight of each part of the carcass was registered.

The Kinect V2 sensor (Microsoft Inc, Seattle, WA)
was used for image acquisition of individual carcass
hanging on the on-line machine, as indicated in Figure 2.
The Kinect sensor comprises the depth/infrared (IR)
channel and the RGB channel. The RGB channel (for
visualization, data inspection, and authentication) has a
1,080 £ 1,920 pixels resolution. The IR channel (for pro-
posed system development and implementation) uses
the time-of-flight technique (ToF) to generate depth
images at a 512 £ 424 pixels resolution. Depth images
were used for this study since they provide faster high-
quality image segmentation and are invariant to ambi-
ent lighting conditions, requiring no additional lighting
during image acquisition (Okinda et al., 2018b;
Nyalala et al., 2019; Okinda et al., 2020b). Table 1
presents the parameters for the Kinect V2 depth sensor.

The Kinect camera was positioned perpendicularly to
the ground facing the on-line broiler carcass processing
system at a horizontal distance of 0.6 m (within the field
of view) from the carcass hangers on top of a metal tri-
pod stand 1.17 m tall. An Intel i7-4700HQ Processor,
2.4GHz, 16 GB internal memory (Intel, Santa Clara,
CA), Microsoft Windows 10 PC preinstalled with the
Windows Software Development Kit (SDK) for Kinect
was connected to the Kinect V2 sensor via a USB 3.0
port. Images were acquired from the Kinect camera
using MATLAB R2019b (The MathWorks Inc., Natick,
MA) software with the image acquisition toolkit (IAT).
Ten depth images were acquired per carcass at 2 frames
per second (fps). The data (n = 1500) was transferred
and stored for subsequent analysis onto a 1 TB solid-
state drive (SSD).
All experiments were conducted in Nanjing Agricul-

tural University, Pukou Engineering College, in confor-
mity and using protocols authorized by the Nanjing
Agricultural University Biosafety Committee for the
handling of livestock, agricultural foods, and products.
Image Processing and Carcass Parts
Segmentation

This study efficiently and accurately predicts the
broiler carcass's weight and cuts based on image process-
ing and machine learning techniques. Weight prediction



Figure 3. Proposed system algorithm flow.
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models were developed to correlate image features to
carcass weight in the weight estimation of r1 (mod1), r2
(mod2), r3 (mod3), r4 (mod4), and r5 (mod5). First, mo
d1 was developed to predict the weight of r1 based on
extracted image features on preprocessed depth images
(whole chicken image). Second, the ASM-based tech-
nique (Cootes et al., 1995) was developed to segment the
r1 into r2, r3, r4, and r5. Third, mod2, mod3, mod4, and
mod5 were developed based on the specific correspond-
ing cut’s image features. Different regression models
were developed for comparative analysis to determine
the best performing regression model in each weight pre-
diction model (best model for each carcass cut and the
whole chicken carcass). The performance of the weight
estimation models was evaluated based on a comparison
of the measured weight (Mw) with the estimated weight
(Ew). The carcass parts segmentation algorithm was
evaluated based on the number of objects after segmen-
tation (count) against the number of cuts (6 cuts, i.e., 2
r2, 1 r3, 2 r4 and 1 r5), processing speed, and the carcass
cuts weight estimation accuracy. Figure 3 shows the pro-
posed system’s algorithmic process diagram.
Image Preprocessing Algorithm One of the essential
preprocessing operations implemented in any effective
image processing algorithm is image segmentation or back-
ground elimination. In this study, all raw depth images
were processed using the following procedure. First, image
background removal was applied to the raw depth image
data obtained using the image subtraction technique to
remove the carcass background during image acquisition,
as presented in Equation 1 (Li et al., 2002).
a x; yð Þ

¼ 0; if
����d x; yð Þ � b x� yð Þ

�����T

d x; yð Þ otherwise

8><
>:

ð1Þ

Where aðx; yÞ is the resultant image after it has been
separated from its background, the original image is
dðx; yÞ, the background image is bðx� yÞ: The threshold
is T. Second, after establishing minimum and maximum
thresholds, distance thresholding was performed based
on depth image distance intensities to obtain the region
of interest (ROI) according to Equation 2 (Jana, 2012;
Okinda et al., 2018b).

b x; yð Þ ¼ f a x; yð Þ
0

;
if Dmn� a x; yð Þ �Dmx

otherwise
ð2Þ

Where bðx; yÞ is the resulting image following the
removal of its background, Dmn is the minimum depth
distance threshold, and Dmx is the maximum depth dis-
tance threshold. Third, Smoothening was performed on
the bðx; yÞ using the Gaussian kernel filter (15 £ 15 pix-
els zero mean) (Equation 3), then morphological opening
by a disk structural element of size 9 pixels to remove
small holes and obtain a clear depth image (Equation 4).

f x; yð Þ ¼ a x; yð Þ½ � � hs;t ð3Þ
Where f ðx; yÞ ¼ f is the resultant filtered image, and hs;t

¼ 1
2ps2 e

�1
2

s2þt2

s2

� �� �
is the Gaussian filter kernel.
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I x; yð Þ ¼ f :Mt ¼ f �Mtð Þ �Mt

¼ [ Mtð Þpj Mtð Þp
� �n o

ð4Þ

Where Iðx; yÞ is the resultant image after morphological
opening,Mt is the structural element, ðMtÞp is the trans-
lation ofMt by a point p.
Carcass Parts Segmentation The ASM was applied
as a chicken body part segmentation technique. A car-
cass shape was fitted to an already developed ASM
model with already labeled cutting positions. An ASM is
a nonrigid/ nontemplate shape matching problem that
utilizes a point distribution model (PDM) to describe
the shape variation of the modeled structure and an
intensity model that models the specific intensities PDM
points in a neighborhood. It is thus designed to represent
the object’s complicated deformation shape patterns and
locate the object in new images (Wang, 2012; Morel-
Forster et al., 2018). The cutting locations (10 location
points) were marked for each image. As already men-
tioned, the core principle was to fit the broiler shape into
the developed ASM to determine the cutting locations'
positions to segment the carcass into carcass parts. The
procedure applied in this study to establish the ASM is
explained below:

Step 1: Five hundred preprocessed broiler carcass images
(different weights) were selected for ASM model
development. For each image, 300 landmark points
(along the image boundary) were extracted.

Step 2: Consider that each image has n landmark points
(on the image boundary as depicted in Figure 4A), the
coordinate of the jth point is denoted by ðxij; yijÞ, hence,
Figure 4. (A) Landmarks points on the carcass image bound
the landmark points can be presented by a shape vec-
tor zi which is a 2n by 1 vector in Equation 5.

zi ¼ ðxi0; yi0; xi1; yi1; . . . ; xin�1; y
i
n�1ÞT ð5Þ
Where i ¼ 1; 2; . . . ;N, and N is the total number of images.

Step 3: Translated all the shapes to be centered at the
origin point (0; 0).

Step 4: one shape (z1) was manually selected as the
golden standard, z1 was scaled so that k z1 k ¼ 1. All
the other shapes were aligned to z1 in terms of scale
(si) (Equation 6) and rotation (ui) (Equation 7) for
each image.

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aið Þ2 þ bið Þ2

q
ð6Þ
ui ¼ tan�1 bi

ai

� �
ð7Þ

i zi ¢ z1 i
Pn

k
ðXi

kY
1
k�X1

kY
i
kÞ
Where a ¼ k zi k 2, and b ¼ k zi k 2 . Hence, the aligned image land-

mark points for the ith image is given by Equation 8 (Procrustes analysis)
to provide S sets of aligned training shapes, each described by a 2n vector
of feature points.

X̂
i
kŶ

i

k


 �
¼ si

cosuisinui

�sinuicosui


 �
Xi
k

Yi
k

" #
ð8Þ

Step 5: Reduced the dimensionality of S to K "2n by
principal component analysis (PCA) technique
(Ringn�er, 2008). Such that any shape z can be
approximated by z ¼ mþ Pb. Where both z and m
(mean of the shapes) are 2n � 1 vectors, P is a 2n �
K and b is a K � 1 vector.
ary, (B) ASM model with the chicken parts cutting positions.
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Step 5: Fitted the ASM model to new data by determin-
ing the best translation, rotation, scale (t; s; u), and
the model parameter b according to Equation 9,
which is a minimization problem.

argmin kY �M mþ Pbð Þ k 2 ð9Þ
Where Y is the new data set of 2n vectors, and M describes the t; s; u as
given in Equation 10.

M Xð Þ ¼ s
cosusinu
�sinucosu


 �
� t ð10Þ

The summary of matching the ASM model to a tar-
geted image is given in Algorithm 1 below:
Algorithm 1. The active shape model fitting

1 initialize b ¼ 0
2 initialize shape mode X ¼ 0
3 search around each Xi for the best nearby image point Yi
4 fit new parameters ðs; u; t; bÞ to Yi
5 Set a constraint jbj< 3λi
6 iterate to maximum iteration or convergence
The cutting location labeling on the developed ASM
was performed by a professional butcher (PB) from
NSMP. When a new image was matched to the ASM,
the locations A;B, C;D,E; F,G;H, I; and J were extracted.
Figure 4B shows the ASM model with the chicken parts
cutting positions such that the segmentation lines were
AB, CD,EF,GH, and IJ. The primary segmentation princi-
ple is that an ASM model is developed, then a PB labels
the segmentation points on the shape model, as shown
in Figure 4B. When fitting a new shape into the model,
the cutting points are located on the new image (transfer
of points from the model to a new image), as shown in
Figure 4B.
Table 3. The extracted feature variables.

Extracted features Defining equations

Area

f1 ¼ 1
2

XN�1

n�1

ynþ1xn � xnþ1ynð Þ ð11Þ

Perimeter

f2 ¼
XN�1

n�1

k xnþ1; ynþ1

� �� xn; ynð Þ k ð12Þ

Major-Axis length
f3 ¼ λ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 �X1ð Þ2 þ Y2 � Y1ð Þ2

q
ð13Þ

Minor-Axis length
f4 ¼ λ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �M1ð Þ2 þ N2 � N1ð Þ2

q
ð14Þ
Weight Estimation Algorithm

To estimate the weight of chicken carcass and carcass
parts, 5 regression models were developed: Support Vec-
tor Regression (SVR) (Linear, Quadratic, Cubic, and
radial basis function [RBF]) and Bayesian Artificial
Neural Network (Bayesian-ANN). For each weight esti-
mation model, data were randomly divided into training
(70%) and testing (30%) datasets, as presented inTable 2
(each model was trained independently; therefore, 5 sep-
arate modelsmod1,mod2,mod3,mod4, andmod5 were
developed for r1, r2, r3, r4, and r5 respectively). The
images for feature extraction were selected under the cri-
teria that the chicken carcass does not touch the image
Table 2. Details of the datasets used in regression models
development.

Models Training Test Total

mod1 1,050 450 1,500
mod2 2,100 900 3,000
mod3 1,050 450 1,500
mod4 2,100 900 3,000
mod5 1,050 450 1,500
Total dataset 7,350 3,150 10,500
edge due to the carcasses' movement along the produc-
tion line. Based on the extracted features, the models
were developed by performing a 10-fold cross-validation-
based parameter search on the training dataset, that is,
a validation sample (15% of the training set) was used
to quantify the network generalization and stop training
once generalization stops improving.
Feature Extraction The performance of any machine
learning model is highly dependent on the underlying
feature variables implemented in the model training. No
feature selection technique was applied in this study; the
model’s training and validation process included all the
features extracted. Additionally, only 2D image geomet-
ric features were used in this study; a full 3D broiler car-
cass model was not feasible due to the camera’s static
position. From each image, 6 features were extracted:
Projected area ð f1Þ, perimeter ð f2Þ, major-axis length ð
f3Þ, minor-axis length ð f4Þ, eccentricity ð f5Þ, and Equi-
vDiameter ð f6Þ. The summary of the extracted features
is given in Table 3.

f 1 (Equation 11) is the exact number of pixels within
an object, region, or area the broiler carcass takes up
when projected onto an image plane. It has extensively
been used as a weight estimation feature for livestock
and agricultural products (Okinda et al., 2018a;
Nyalala et al., 2019; Okinda et al., 2020b). f 2 (Equa-
tion 12) is the distance around the object’s boundary. It
is calculated by counting the number of pixels in a closed
contour (De Wet et al., 2003; Nyalala et al., 2019;
Okinda et al., 2020b). f 3 (Equation 13) and f 4 (Equa-
tion 14) are the pixel distance between an ellipse’s (fitted
ellipse over a 2D shape) major-axis and minor-axis end-
points, which have the same normalized second central
moments as the region, respectively. f 5 (Equation 15) s
the ratio of the Eigenvalues la and lb corresponding to
the ellipse's major and the minor axis, respectively. f 6
Eccentricity
f5 ¼ λ1

λ2
ð15Þ

EquivDiameter

f6 ¼
ffiffiffiffiffiffiffiffiffiffiffi
4 � f1
p

r
ð16Þ

Consider that the contour of a 2D image Iðx; yÞ is defined by
S ¼ fðxn; ynÞg, where n ¼ 1; 2; 2; . . . ;N and ðx1; y1Þ ¼ ðxN ; yNÞ, when the
2D image is fitted with an ellipse {ðX1; Y1Þ and ðX2; Y2Þg and fðM2;N2Þ
and ðM1;N1Þg are the endpoint coordinates of the major-axis and minor-
axis, respectively.
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(Equation 16) is the Euclidian distance on the boundary
or diameter of a circle having the same area as the region
between the two farthest points.
Table 4. The descriptive statistics of the measured weight of
broiler carcass and carcass parts (n = 150).

Descriptive
statistics r1(g) r2(g) r3(g) r4(g) r5(g)

Mean 1,289.648 80.556 879.285 35.726 111.918
Standard error 15.148 0.940 10.982 0.476 1.266
Median 1,283.700 79.950 885.000 34.800 111.100
Standard
deviation

185.524 11.510 134.505 5.836 15.504
Regression Models

ANN Model Development Given its ability to simplify
and respond to unpredicted inputs, ANN is universally
used for classification, pattern recognition, and cluster-
ing. Neural networks have many advantages; they
require less statistical training; all possible interactions
between predictor variables can be detected. The ability
to detect implicitly complex nonlinear relationships
among dependent and independent variables and multi-
ple training algorithms is accessible (Tu, 1996). ANN
essentially classifies inputs into a set of target categories.
ANN receives information from input vectors in the
input layer, transmits this information via the neurons,
and eventually gives the output layer a specific output
value (Nyalala et al., 2021a). For this research, 3-layer
feed-forward networks consisting of 6 input neurons cor-
responding to the extracted feature variables, 12 hidden
neurons, and 1 hidden neuron were implemented using
the Neural Network Toolbox 11.1 in MATLAB R2019b
software (The MathWorks Inc.). The Bayesian regulari-
zation training algorithm was applied in this study. The
Bayesian ANN is a probabilistic method that returns
the posterior probability of the weight, given the fea-
tures but using a regression function of a similar form as
the traditional ANN (Mortensen et al., 2016).
SVR Model Development The SVR, an extension of
Support Vector Machines (SVMs), is employed in high-
dimensional spaces to solve regression problems. SVR is con-
sidered a nonparametric statistical learning algorithm based
on kernel functions (Vapnik et al., 1997). SVR has the
advantages that the training is relatively easy, and they
offer better performance (accuracy), they can be controlled
explicitly, lacking an optimal local solution, elegant mathe-
matical tractability, they prevent overfitting as they do not
need a broad set of training samples, and provide direct geo-
metrical interpretation (Burges, 1998; Sch€olkopf et al.,
1999; Nyalala et al., 2019) In an SVR model, it is the kernel
function that maps input data into the required form. The
applied kernel function greatly affects the performance of
SVR models (Nyalala et al., 2021a). This study applied the
Linear (Equation 17), Polynomial (Equation 18), and RBF
(Equation 19) kernel functions.

K xm; knð Þ ¼ e�y k xm�xn k 2
; y> 0 ð17Þ

K xm; knð Þ ¼ yxTm xn þ 1
� �d

; y> 0 ð18Þ

K xm; knð Þ ¼ xTmxn ð19Þ

Variance 34,418.970 132.475 18,091.552 34.055 240.380
kurtosis 0.750 �0.111 1.032 2.219 �0.631
Skewness 0.217 �0.317 0.317 0.860 0.251
Range 896.100 48.200 653.100 30.550 57.000
Minimum 853.900 53.300 566.400 23.900 86.500
Maximum 1,750.000 101.500 1,219.500 54.450 143.500
Evaluation Metric

The accuracy of Ew for each model category (i.e., mod1,
mod2, mod3, mod4, and mod5) was compared to Mw in
terms of RMSE, R-Squared (R2) and relative error.
Besides, an independent t test was conducted to analyze
the statistical differences between Mw and Ew for each
model category. The independent t test or the student's t
test is an inferential statistical test that determines
whether there is a statistically significant difference
between the means in 2 unrelated groups on the same con-
tinuous dependent variable (Rochon et al., 2012). No data
transformation was performed in this study after evaluat-
ing the skewness value and skewness standard error values.
All statistical analyses were conducted using version 25.0
of the SPSS software package (SPSS Inc., Chicago, IL).
RESULTS

Dataset Statistical Description

In this study, 5 datasets (model categories) were applied,
as presented in Table 2. A descriptive statistic of all the
datasets is given in Table 4 in terms of measures of variabil-
ity and central tendency in Mw. For the 150 broiler car-
casses, the results established that the mean r1 was
1,289.648 g, with a median of 1283.700 g ranging from
853.900 g (minimum) to 1,750.000 g (maximum). The data
had a skewness of 0.217 g at a standard error of 15.148 g.
For the carcass cuts, the mean weight of r2 was 80.556 g,
with a median of 79.950 g ranging from 53.300 g (mini-
mum) to 101.500 g (maximum). The data had a skewness
of �0.317 g at a standard error of 0.940 g. In r3 , the mean
weight was 879.285 g, with a median of 885.000 g ranging
from 566.400 g (minimum) to 1219.500 g (maximum) and
skewness of 0.317 g at a standard error of 10.982 g. From
the r4 dataset, the mean weight was 35.726 g, with a
median of 34.800 g ranging from 23.900 g (minimum) to
54.450 g (maximum) and skewness of 0.860 g at a standard
error of 0.476 g. Lastly, for r5 dataset, the mean weight was
111.918 g, with a median of 111.100 g ranging from
86.500 g (minimum) to 143.500 g (maximum) and skewness
of 0.251 g at a standard error of 1.266 g.
Carcass Parts Segmentation Algorithm
Evaluation

The performance of the carcass parts segmentation
algorithm was assessed in terms of segmentation



Figure 5. ASM based segmentation after fitting the cutting points on a carcass shape. (A) left-wing, (B) left thigh, (C) right thigh, (D) right-
wing, (E) head and neck and (F, G, h, i) shows the carcass parts segmentation of different carcasses.
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accuracy (image object count) and the comparison
between Mw and Ew of the carcass parts. Note that a
professional butcher performed the carcass cutting.
Hence, this study compares the weight of manually cut
carcass parts and the auto-carcass part segmentation
machine vision-based weight estimation. It was observed
that the proposed carcass segmentation technique suc-
cessfully segmented all the carcass cuts in the explored
images, that is, the number of image objects (after parts
segmentation was equal to 6), as shown in Figure 5.

Additionally, to determine the effect of carcass size on
the introduced technique, the average relative error (in
mod2, mod3, mod4, and mod5) for each carcass weight
was evaluated as presented in Figure 6. It was observed
that the proposed technique was invariant to the carcass
weight. In mod2 the highest and the least average rela-
tive errors were 3.112 and 2.104% for 1,174.600 g and
1,712.200 g, respectively. In mod3 the highest and the
least average relative errors were 3.170% and 2.312% for
1,750.000 g and 1,094.800 g, respectively. In mod4 the
highest and the least average relative errors were 3.601
and 2.158% for 963.400 g and 1,529.100 g, respectively.
Lastly, in mod5 the highest and the least average rela-
tive errors were 3.177 and 2.172% for 1,750.000 g and
1094.800 g, respectively.

Furthermore, the proposed technique was evaluated
based on the processing speed, as presented in
Figure 7. It was established that the computational
speed was also invariant to the carcass weight. The
lowest processing time of 0.924 s was observed in the
1,750.000 g carcass, while the highest processing time
of 1.656 s was observed in the 1,320.000 g carcass.
Thus, the segmentation speed is not affected by the
carcass size.
Weight Estimation Model Evaluation

Table 5 presents the model parameters of all the
modeling techniques applied in this study. Generally,
model parameters are critical factors that affect any
model’s performance. During the 10-fold cross-valida-
tion, the SVR kernel function parameters were com-
puted iteratively. These kernel parameters resulted in
the highest validation accuracy while avoiding model
underfitting and overfitting to provide a good generali-
zation ability. Similarly, after assessing the percent error
during the model validation phase and computation
time for the Bayesian-ANN, the number of the hidden
neurons was set to 12. As the number of neurons
increases, the error percentage declines as computational
time increases (Nyalala et al., 2019). The developed
models were applied to testing datasets, as presented in
Table 6 in R2 and RMSE.



Figure 7. Evaluation of the processing speed in weight estimation based on the carcass weight.

Figure 6. Average relative error evaluation formod2 −mod5 per carcass weight.
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From the results in Table 6, it can be observed that
there is an alternating maximum accuracy between the
Bayesian-ANN and RBF-SVR. It can be observed that
the Bayesian-ANN gave the best results in mod1 of
0.9981 R2 at an RMSE of 2.76 g.

Furthermore, mod1 had the best regression results
compared to other carcass cuts weight prediction mod-
els. In mod5, the Bayesian-ANN model had the best
regression results of 0.9847 R2 at an RMSE of 2.47 g.
For models mod4, Mod3, and Mod2, the RBF-SVR
performed better than all other models with 0.9896 R2
Table 5. Parameters of the developed regression models.

Regression parameters mod1 mod2

SVR kernel parameters Scale Degree Scale Degree

Linear 0.440 — 0.678 —
Quadratic 0.441 2 0.688 2
Cubic 0.503 3 0.669 3
RBF 0.510 — 0.619 —
Bayesian-ANN topology 6-12-1 6-12-1
at an RMSE of 2.58 g, 0.9352 R2 at an RMSE of 3.84 g,
and 0.9129 R2 at an RMSE of 4.38 g, respectively. A lin-
ear regression plot for the comparison between Mw and
Ew for each weight prediction model (best performing
models) is presented in Figure 8. It was established
that the average relative error for Ew in mod1 was
2.198% with a maximum and minimum of 3.796 and
0.097%, respectively, as shown in Table 7. In addition,
a statistical analysis was performed to identify the dif-
ferences between Ew and Mw in mod1. By an indepen-
dent t test, there was no statistically significant difference
mod3 mod4 mod5

Scale Degree Scale Degree Scale Degree

0.667 — 0.484 — 0.122 —
0.580 2 0.508 2 0.123 2
0.632 3 0.695 3 0.112 3
0.647 — 0.791 — 0.610 —
6-12-1 6-12-1 6-12-1



Table 6. Regression models performance evaluation based on the testing dataset ðR2 and RMSEÞ.

Regression models

mod1 mod2 mod3 mod4 mod5

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Linear SVR 0.9032 3.84 0.8008 7.83 0.8593 5.84 0.9271 3.22 0.9163 3.46
Quadratic SVR 0.8946 3.96 0.8695 6.96 0.8393 5.99 0.8963 4.76 0.8699 4.09
Cubic SVR 0.8615 4.18 0.8846 6.79 0.8168 6.28 0.8385 4.81 0.8976 3.86
RBF-SVR 0.9890 2.97 0.9129 4.38 0.9352 3.84 0.9896 2.58 0.9485 2.64
Bayesian-ANN 0.9981 2.76 0.9052 5.17 0.8918 4.95 0.9634 2.79 0.9847 2.47

The boldface shows the highest accuracy for each model category.

Figure 8. Linear regression plots for the comparison between measured weight ð MwÞ and the estimated weight ðEwÞ for (A) whole carcass (r1),
(B) drumsticks (r2), (C) breasts (r3), (D) wings (r4), and (E) head and neck (r5).
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ðP< 0:05Þ between Ew and Mw in mod1, as shown in
Table 8.
Carcass Parts Weight Estimation Model
Evaluation

For the entire mod2 dataset, Ew was estimated at R2

of 0.9129 with an RMSE of 4.38 g. The average relative
Table 7. Results of the Carcass and cuts weight estimation of the diff

Model category R2 RMSE (g) M

mod1 0.9981 2.76
mod2 0.9129 4.38
mod3 0.9352 3.84
mod4 0.9896 2.58
mod5 0.9847 2.47
error was 6.871% with a minimum and maximum
0.817% and 7.692%, respectively, as presented in Table 7
and Figure 8. By an independent t test, there was no sta-
tistically significant difference ðP < 0:05Þ between Ew
andMw inmod2; as shown in Table 8.
For the entire mod3 dataset, Ew was estimated at R2

of 0.9352 with an RMSE of 3.84 g. The average relative
error was 5.186% with a minimum and maximum 0.260
and 6.458%, respectively, as presented in Table 7 and
erent model categories.

Relative error (%)

inimum Maximum Average n

0.097 3.796 2.198 450
0.260 6.458 5.186 900
0.817 7.692 6.871 450
0.447 9.270 5.973 900
0.514 7.361 3.537 450



Table 8. The statistical results of the measured weight ð MwÞ
and the estimated ðEwÞ expressed in terms of mean and standard
deviation.

Mw ðgÞ Ew (g)
Model category mean§ std mean§ std

mod1 1312.536 § 152.796a 1319.963 § 161.809a

mod2 80.184 § 10.000a 76.963 § 10.642a

mod3 880.783 § 117.896a 876.274 § 128.365a

mod4 35.536 § 4.984a 29.157 § 5.260b

mod5 111.099 § 14.209a 108.062 § 14.937a

a,bMean § Std within a row, with no superscript in common, differ sig-
nificantly ðP < 0:05Þ.
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Figure 8. By an independent t test, there was no statisti-
cally significant difference ðP < 0:05Þ between Ew and
Mw inmod3; as shown in Table 8.

For the entire mod4 dataset, Ew was estimated at R2

of 0.9896 with an RMSE of 2.58 g. The average relative
error was 5.973% with a minimum and maximum
0.447% and 9.270%, respectively, as presented in Table 7
and Figure 8. By an independent t test, there was a sta-
tistically significant difference ðP < 0:05Þ between Ew
andMw inmod4, as shown in Table 8.

For the entire mod5 dataset, Ew was estimated at R2

of 0.9847 with an RMSE of 2.47 g. The average relative
error was 3.537% with a minimum and maximum
0.514% and 7.361%, respectively, as presented in Table 7
and Figure 8. By an independent t test, there was no sta-
tistically significant difference ðP < 0:05Þ between Ew
andMw inmod5; as shown in Table 8.
DISCUSSION

This study proposes a computer vision-based auto-
matic carcass and carcass cuts weight estimation system
applied in a production line setting. The initial step was
the ROI interest extraction by background removal. A
segmentation algorithm was introduced to separate the
carcass into parts based on the ASM technique. ASM
has been applied in several image processing operations
such as segmentation (Van Ginneken et al., 2002), classi-
fication (Søgaard, 2005), facial recognition (Wan et al.,
2005; Wang, 2012), to name a few. This study applied
ASM to fit a carcass to an already developed shape
model to detect the segmentation points. A similar tech-
nique was applied by Jørgensen et al. (2019), where a
statistical shape model (SSM) to capture underlying
broiler carcass physical characteristics for weight esti-
mation using 3D prior knowledge was applied.

In this introduced study, all the carcasses were hanged
with the legs as the breast face the camera. Hence, a
reduced degree of freedom in ASM fitting (reduced proc-
essing time). Figure 4A presents the mean of the ASM
(green), while Figure 4B presents the fitting process. A
new 2D shape (yellow) is iterated to fit into the model
(green) to locate the cuts' segmentation locations.
Figure 5 presents the ASM-based segmentation results
after the cutting points were fitted on different carcass
shapes samples. It can be observed that the carcass parts
were successfully segmented with the developed ASM.
However, the main limitation observed was that the
model failed on some images, mainly due to a broken
wing bone. Thus, these images were not considered in
this study.
Both 2D and 3D image features have been applied in

chicken weight estimation systems, as already men-
tioned. Due to the static position of the Kinect camera,
it was impossible to generate a full 3D image model;
hence the acquired depth data was only used to improve
the segmentation process (Okinda et al., 2020b). There-
fore, carcass image features were described in this study
by 6 simple shape descriptors f1, f2; f3, f4, f5, and f6.
A comparison of the explored regression models in
Table 6 shows that the Bayesian-ANN and RBF-SVR.
The Bayesian-ANN can handle outliers during model
development (Mortensen et al., 2016). The RBF-SVR
has strong generalization capability and robustness in
the testing dataset (Okinda et al., 2019). This study
indicates that broiler carcass and cuts weight can be esti-
mated using 2D image features. The results for the esti-
mation of r1 concurs with those of
Jørgensen et al. (2019), who reported a mean absolute
percentage error of 3.47% using 2D and 3D image fea-
tures. Additionally, the results for the estimation of r3
concurs with those of Adamczak et al. (2018), using 3D
scanning technique to determine the r3 weight at an esti-
mation error of 7.6%. Furthermore,
D. Scollan et al. (1998) applied nuclear magnetic reso-
nance imaging to measure in vivo the mass of chicken's
pectoralis muscles. The authors reported that the rela-
tionship between body weight and the pectoralis muscle
weight using regression analysis had an R2 of 0.92 and
0.99 for the relationship between pectoralis muscle
weight and muscle volume, respectively. Moreover,
Raji et al. (2010) estimated broiler r3, r2, fat weight, and
r1 and established a statistically significant correlation
(P< 0:01) between r3, r2, and fat weight against r1.
In any machine vision-based weight estimation sys-

tem, the performance accuracy determines the underly-
ing technology's effectiveness, efficiency, and robustness.
Figure 6 shows that the performance of the introduced
system is independent of the carcass weight and size.
However, the relative errors in mod4 were the highest;
this can be attributed to the r4 position (closed or open
wings due to storage) during image acquisition. Addi-
tionally, this can be seen in Table 8 such as there was a
statistically significant ðP< 0:05Þ difference between Ew
and Mw in mod4 with an overall mean reduction of
6.379 g in Ew in comparison to Mw in mod4. However,
the proposed system within an average relative error
range of 2.198 to 6.871% can accurately estimate the
weight of chicken carcass and carcass cuts.
The proposed technique's computational time was

observed to be invariant to the carcass size (Figure 7).
This robustness ability can be attributed to the ASM
modeling phase. Carcasses of different weights and sizes
were applied in ASM development. In an industrial pro-
duction line setting, the chicken carcasses move at a
speed of 5,000 birds per hour, that is, 0.72 s of available
processing time per carcass. This study reported an
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average processing time range of 0.924 s to 1.656 s per
image frame for the entire carcass, and carcass cuts
weight estimation at a capture time of 0.2 s per frame.
Therefore, this introduced system can be applied suc-
cessfully in an industrial production system. Addition-
ally, to further improve the computational speed, a
superior computing resource can be installed.
CONCLUSIONS

As outlined in the introduction, this present research's
primary aim was to establish a weight prediction system
based on machine vision and machine learning algo-
rithms for broiler carcass and carcass cuts. We conclude
that the Bayesian-ANN and RBF-SVR can be used to
model and predict carcass and cuts weight. This pro-
posed system can be applied for carcass weight predic-
tion within a poultry production line environment.
There are several limitations to this study that must be
acknowledged. The system was based solely on 2D image
features and applied only to the broiler kind of chicken
carcasses. This approach, therefore, needs to be verified
and evaluated on different types of chicken carcasses.
Besides, there should be more on-line validation data for
the system.

Notwithstanding these shortfalls, the proposed system
accomplished this study's objective in measuring the
weight of broiler carcass and carcass cuts. Developing
accurate, reliable, and efficient sorting and grading sys-
tems incorporated in in-line processing systems to mini-
mize production time, expenses, and labor are of great
importance. This proposed system is applicable at any
location along the production line. Moreover, it can be
integrated with other quality inspections, identification
and classification, contamination, safety, and disease
detection in chicken meat grading and sorting systems.
In addition, this system can be implemented non-intru-
sively on the production line utilizing 2D computer
vision systems. The results presented are significant and
could help researchers apply machine learning techni-
ques for accurate carcass weight estimation in other live-
stock.
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