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Intimal accumulation of smooth muscle cells contributes to the development and progression of atherosclerotic lesions 
and restenosis following endovascular procedures. Arterial smooth muscle cells display heterogeneous phenotypes in 
both physiological and pathological conditions. In response to injury, dedifferentiated or synthetic smooth muscle cells 
proliferate and migrate from the tunica media into the intima. As a consequence, smooth muscle cells in vascular 
lesions show a prevalent dedifferentiated phenotype compared to the contractile appearance of normal media smooth 
muscle cells. The discovery of abundant stem antigen-expressing cells in vascular lesions also rarely detected in the 
tunica media of normal adult vessels stimulated a great scientific debate concerning the possibility that proliferating 
vascular wall-resident stem cells accumulate into the neointima and contribute to the progression of lesions. Although 
several experimental studies support this hypothesis, others researchers suggest a positive effect of stem cells on plaque 
stabilization. So, the real contribute of vascular wall-resident stem cells to pathological vascular remodelling needs 
further investigation. This review will examine the evidence and the contribution of vascular wall-resident stem cells 
to arterial pathobiology, in order to address future investigations as potential therapeutic target to prevent the pro-
gression of vascular diseases.
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Introduction 

  Accumulation of smooth muscle cells (SMCs) in the 
tunica intima plays a crucial role in the pathogenesis of 
vascular lesions, including atherosclerosis and restenosis 
following angioplasty or stenting procedures (1, 2). In the 
classical pathogenetic hypothesis of atherosclerosis, follow-

ing injury growth factors and proteolytic agents induce 
SMC proliferation and migration from the tunica media 
into the intima (3). During this process, SMCs switch 
from a “contractile” to a “synthetic” phenotype, charac-
terized from reduced expression of contractile proteins 
and enhanced response to growth and chemotactic factors 
(4). In atherosclerosis, SMC accumulation in the fibrous 
cap is monoclonal or oligoclonal (5, 6), implying that only 
a small number of medial SMCs proliferate in response 
to injury. This finding suggests the existence of a resident 
arterial stem cell subpopulation contributing to arterial 
healing in response to injury. Studies in human trans-
plantation arteriopathy and primary atherosclerotic le-
sions showed that recruited bone marrow or host-derived 
circulating precursors are present in the lesions (6-8). 
Successively, other studies refused this hypothesis (9, 10), 
suggesting that SMCs in vascular lesions are mainly de-
rived from the host parietal response. In parallel, the pres-



10  International Journal of Stem Cells 2015;8:9-17

Fig. 1. phenotypic heterogeneity of adult vascular smooth muscle cells. Rat aortic normal media SMCs (left column) display with the classical
“hill-and-valley” confluent grow pattern when cultured in plastic dishes, a more dendritic shape with a marked extracellular matrix remodelling
when cultured in collagen gel and display abundant -smooth muscle actin (-sm actin)-positive stress fibers in immunofluorescence (rhodamine,
bottom). In contrast, neointimal VSMCs obtained fifteen days after ballooning (right column) display a monolayered and epithelioid appearance
(top), grow in Indian files with bipolar conjunctions in collagen gel and contain very low amount of -smooth muscle actin (bottom).

ence of cells expressing stem cell antigens have been iden-
tified in the normal arterial wall (11, 12), supporting a po-
tential role of adult vascular wall-resident stem cells 
(VRSCs) in vascular pathobiology. In this review, the 
characteristics and the potential contribution of VRSCs to 
the development of great vessel lesions are discussed.

Adult arterial vascular smooth muscle cells are 
phenotypically heterogeneous

  Classically, SMCs within the normal tunica media of the 
adult vascular wall are heterogeneous, and a “contractile” 
and “synthetic” phenotype identified (13, 14). SMCs dis-
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Fig. 2. Stem cell expression in rat aorta after injury and with aging. Serial immunostainings reveal (A) very rare cell are c-kit+ positive
in normal 2 month-old rat aorta. (B) fifteen days after ballon injury, the majority of intimal and some of medial SMCs are c-kit+ positive. 
(C) Very rare SMCs are flt-1+ in normal 2 month-old rat aorta, but (D) the number of flt-1+ cells increases in 24-month old rat aorta.

Table 1. Stem antigens of adult vascular wall-resident stem cells

Stem antigen/synonim Localization/type

CD133 Transmembrane glycoprotein
CD34 Transmembrane sialomucin protein
Flt-1 (VEGFR-1) Transmembrane kinase receptor
KDR (VEGFR-2) Transmembrane kinase receptor
c-kit (CD117) Transmembrane tyrosine-protein kinase 

receptor
CD45 Protein tyrosine phosphatase
CD14 Cytoplasmic endotoxin receptor 
sca-1 Transmembrane class III tyrosine kinase 

receptor
Notch-1 Transmembrane regulatory receptor

playing a synthetic phenotype can be identified more fre-
quently in pathologic arteries and have been characterized 
in vitro (Fig. 1). Synthetic SMCs obtained from intimal 

aortic tissue fifteen days after balloon injury displayed a 
monolayered epithelioid phenotype, with a cobblestone 
morphology, markedly different from the “hill-and-valley” 
growth pattern typical of normal medial VSMCs (14, 15). 
Moreover, neointimal cells express low amount of myocitic 
markers and differences are maintained in clonal ex-
pansion (14-16). It is worth of noting contractile and syn-
thetic phenotypes are not permanent and can partially re-
vert after stimulation with growth factors and extracellular 
matrix molecules (17-19). Phenotypically-regulated activa-
tion of proteins and receptors regulates differences in 
terms of proliferation and survival, being proliferating 
aortic neointimal VSMCs more sensitive to apoptosis (20). 
likely linked to a phenotype-regulated different NF-B ac-
tivity (21, 22). Phenotype-dependent expression of in-
tegrins in vascular SMC regulates morphology, motility 
and gene expression in collagen matrix (Fig. 1; 18). A hy-
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Fig. 3. flt-1 expression and smooth muscle cell proliferation. Double
immunostaining reveals that flt-1 expression (red) characterizes rat
aortic bromodeoxyurinine+ proliferating SMC (arrow, black) in the
tunica media three days after ballooning.

pothesis to explain SMC heterogeneity in adult vessels is 
a different embryologic origin during vasculogenesis (23). 
In the chick embryo aorta, spindle-shaped and epithelioid 
phenotypes responding differently to TGF- were isolated 
from distinct mesoderm and neural crest-derived regions 
(24). It is likely that the capacity of a different response 
to damage can be retained from SMCs during the adult life.

The existence of adult vascular wall-resident 
stem cells 

  Mesenchymal smooth muscle progenitors have been 
identified in the bone marrow, in the blood as circulating 
progenitors and in extravascular sites (25-27). Identification 
of these progenitor cells was mainly based on the finding 
of stem antigens shared from a SMC subpopulation in the 
normal arterial wall and/or in vascular lesions. Recent 
studies identified and characterised a small population of 
resident SMCs in the wall of great vessels of healthy adult 
mice expressing sca1 and low amounts of c-kit and CD34, 
absent in the adventitia (28). These putative VRSCs differ 
from bone marrow-derived smooth muscle progenitors or 
form those isolated from skeletal muscle, since they lack 
the ability to differentiate into lymphoid or myeloid line-
ages (29). A clonal subpopulation of vascular cells from 
the bovine aortic tunica media was phenotypically similar 
(CD29+, CD44+, CD14−, CD45−) to bone marrow-derived 
mesenchymal stem cells (30). Progenitor cells named 
“mesoangioblasts” isolated from explants of murine dorsal 
aorta display differentiative potential into various mesen-
chymal cell types other than myocitic cells in vitro and ex-
press both myogenic and endothelial markers (31, 32). The 
expression of main stem markers of adult VRSCs are list-
ed in Table 1. Immunohistochemical investigation re-
vealed c-kit+ and CD133+ cells in human atherosclerotic 
plaques and restenosis lesions and in rat aortic post-injury 
neointima, whereas SMCs in the tunica media of primary 
atherosclerotic plaques and normal arteries were c-kit- (11, 
33). Progenitor cells expressing sca-1, CD34, KDR and 
c-kit were detected within human plaques and the adven-
titia (11). Most of the knowledge concerning stem pheno-
type derives from studies of animal models of vascular 
injury. VEGFR-1 or flt-1+ and c-kit+ SMCs are extremely 
rare in normal rat aorta, whereas their number dramati-
cally increases fifteen days after injury (Fig. 2), with many 
of intimal cells co-expressing both -smooth actin and 
flt-1 or c-kit (12). After sixty days, after complete re-endo-
thelialization stem marker-expressing intimal cells almost 
disappeared and -smooth actin expression restored (12). 
Double immunostaining experiments revealed that flt-1+ 

medial are also positive for anti-bromodeoxyuridine (Fig. 
3) or apoptotic TUNEL staining, confirming the prefer-
ential involvement of flt-1+ cells in proliferative and apop-
totic behaviour (22, 34, 35). Similarly, many intimal cells 
of mice carotid arteries express Hedgehog-induced Notch 
1 early after injury (36).

The adventitial origin of vascular-wall resident 
stem cells

  Although recent studies supported the hypothesis that 
the majority of SMCs in vascular lesions originates from 
the vessel wall, an open question remains the layer of ori-
gin of VRSCs. After early reports documenting that activa-
tion of adventitial fibroblasts precedes post-damage ex-
perimental neointimal proliferation (37), increasing evi-
dence accumulated supporting the involvement of adven-
titial vascular progenitor cells in the development of arte-
riosclerosis, including transplant arteriosclerosis, angio-
plasty-induced restenosis, vein graft atherosclerosis, and 
spontaneous atherosclerosis. The adventitia of the arterial 
wall contains progenitor cells, which can differentiate into 
vascular SMCs. In apoE-deficient mice These progenitor 
cells were able to migrate from the adventitia into the in-
tima, where they accumulate to contribute to athero-
sclerotic lesions of vein grafts (38). Hu et al. (2004) showed 
documented aortic adventitial cells in apoE-deficient mice 
expressing sca-1 and c-kit stem cell markers; moreover, ex 
vivo PDGFB-stimulated adventitial stem cell-expressing 
cells displayed a myocytic phenotype with the expression 
multiple smooth muscle markers (39). Lineage tracking 
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with bone marrow transplantation from ROSA 26 LacZ 
gene-expressing transgenic mice documented that adven-
titia-derived smooth muscle precursors migrate to the neo-
intima in a vein graft atherosclerosis model, with no evi-
dence of a bone marrow origin (39). The same Authors 
suggested that the extent of injury is crucial to regulate 
mobilization of adventitial progenitor cell and their con-
tribution to vascular lesions. Several issues remain un-
resolved as to the physiologic relevance of adventitial pro-
genitor cells, and if these cells are also documented in hu-
man lesions. Adult vascular adventitial tissue contains ma-
ture adipose tissue. Recently, an adipose-derived stem 
population has been well characterized (40-45). Adipose 
derived stem cells are capable to regenerate de novo mesen-
chymal tissue and are widely used foR their pluripotential 
regenerative potential (46-52). In most of these studies, 
vascular transdifferentiation is reported as a crucial event 
to explain clinical efficacy of adipose-derived stem cells 
to ameliorate grafting and tissue regeneration. It is inter-
esting to note that, differently from adipose-derived stem 
cells, bone marrow-derived circulating progenitor cells do 
not transdifferentiate into adipocytes in vivo and play lit-
tle, if any, role in expanding the number of resident adi-
pocytes during tissue growth (53). These findings strongly 
support that de novo vessel formation and/or vascular re-
modelling involve transdifferentiation of adventitial adi-
pose-derived stem cells. Conversely, in long-term cultures 
adipose tissue-derived perivascular cells retained my-
ogenicity and mesenchymal stem cell markers expression, 
similar to native, non-cultured perivascular cells (53). The 
vasculogenesis-promoting potential of adventitial adi-
pose-derived stem cells depends on interaction with resi-
dent endothelial cells and involving contact and bi-direc-
tional interaction, resulting in modulated secretion of cy-
tokines and extracellular matrix molecules, so leading to 
vascular remodeling (54). Cellular communication occur-
ring between adventitial adipose-derived stem cells and 
endothelial precursor cells and triggered by cell-cell con-
tact is partially mediated by secreted VEGF, but this effect 
is not observed by using HUVECs, suggesting that adi-
pose-derived stem cells are unique in this sense (55). Being 
adventitial precursors a potential source of SMCs, the mod-
ulation of the contribution of these progenitor cells is a po-
tential tool to counteract pathological vascular remodeling 
by cellular, genetic, and tissue engineering approaches.

The pericyte-like phenotype of adult vascular 
wall-resident stem cells 

  Blood vessel walls harbor a reserve of progenitor cells 

that may be integral to the origin of non-vascular tissues 
as other related adult stem cells (56). Recently, resident 
pericyte-like cells from the adventitia have been hypothe-
sized to contribute to restenosis. Rare NG2, PDGFR and 
CD146-expressing cells identified in the adventitia of 
uninjured mouse femoral arteries in response to injury in-
creased in number and expressed a SMC-like phenotype 
(31). Bone marrow transplantation and ex vivo artery cul-
ture strongly supported that pericyte-like progenitor cells 
are not bone marrow-derived, but originated from the ad-
ventitia after proliferation of resident perivascular peri-
cyte-like cells (32). Cells with progenitor pericyte-like 
properties have been also isolated from the tunica media 
of adult rat aortas and are capable to generate spheroidal 
colonies in suspension and, when serum-cultured, retain 
CD34 negativity and express de novo SMC markers (32). 
The relationship between this population of resident ad-
ventitial pericyte-like cells, reparative myofibroblasts, nor-
mal media SMCs and other progenitor populations during 
pathological vascular remodelling is still matter of debate 
and need further investigation.

The contribution of adult vascular wall-resident 
stem cells to vascular lesion progression

  The discovery of the existence of VRSCs has challenged 
the classical pathogenetic model of tunica media as 
unique source of SMCs contributing to vascular lesions (1, 
2). Atherosclerosis is a chronic inflammatory disease, in 
which risk factors result in dysfunction and damage to the 
arterial endothelium and slow progression, characterized 
from intimal accumulation of SMCs in a fibromuscular 
cap covering a cholesterol-rich necrotic core (1). Both 
SMCs and monocyte-macrophages proliferate, accumulate 
and undergo apoptosis into the neointima (1, 2, 34, 35). 
In restenotic lesions, after acute injury, rapid proliferation 
and subsequent accumulation of SMCs from the tunica 
media into the intima results in rapid lumen occlusion. 
In these lesions, SMC progenitors have been identified by 
the expression of bone marrow or progenitor cell markers 
in vivo. Green florescent bone marrow transplantation in 
mice revealed that bone marrow-derived cells contribute 
up to 60% of SMCs in the post-injury neointima (7). 
Other studies report that donor-derived cells represent up 
to 10% of SMCs within atherosclerotic lesions in humans 
receiving sex-mismatched bone marrow transplantation 
(8). The major limit to these investigations was the meth-
od to estimate stem marker expression in lesional SMCs 
and accuracy of co-localisation of two markers, being con-
focal microscopy rarely performed. When accurate techni-
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ques were applied, even in transplant arteriopathy studies, 
neointimal SMCs appeared to originate mainly from the 
recipient aortic wall (6, 9, 10). Moreover, other studies re-
port that expression of stem markers is present only in 
early post-injury lesions, questioning about the transient 
nature of stem phenotype and the survival of these cells 
(22). Moreover, many studies employed -smooth muscle 
actin as myocitic marker, but the latter is generally 
down-regulated in SMCs of vascular lesions (13), but 
strongly expressed in myofibroblast reparative cells (16). 
Consequently, those recent studies strongly support the 
hypothesis that the majority of SMCs in advanced athero-
sclerotic lesions and healing after plaque rupture origi-
nates from the vessel wall. Nevertheless, enhanced adven-
titial-derived progenitor cell recruitment and increased 
neointima formation has been seen after growth factor 
stimulation in animal models of vascular injury (12, 37, 
38), so favoring vascular lesion progression. More recently, 
it has been reported that smooth muscle progenitor cell 
enrichment reduces the progression of early but not ad-
vanced atherosclerotic lesions plaques in mouse aortas, 
suggesting a favourable effect on plaque stabilization (57). 
These findings support a beneficial role of smooth muscle 
progenitor cells in suppressing atherosclerosis and its clin-
ical sequelae, but still their parietal or extraparietal origin 
remain under investigation (58). More accurate studies 
demonstrating whether VRSCs either protect or promote 
vessel from pathological remodelling are needed, in order 
to promote cell-based or pharmacological approaches aimed 
to prevent vascular diseases (59). 

Aging and vascular stem cell marker expression 

  Accumulation of vascular smooth muscle cells in the 
tunica intima plays a major role in the pathogenesis of 
atherosclerosis. Aging represents a risk factor for the de-
velopment of vascular lesions (60-63) and the prevalence 
of atherosclerotic lesions in aged subject must be consid-
ered in therapeutic and experimental approaches (19, 64). 
Beside proliferation and differentiation, intrinsic aging 
enhances stem antigen expression in aortic SMCs (65) 
and, in parallel, susceptibility to atherosclerosis (60). 
Atherosclerotic lesions and also macroscopically normal 
human and rat aortas show an increased number of 
VEGFR-1+, c-kit+ and sortilin+ cells in the intimal thick-
ening (65, 66). Both circulating and resident progenitor 
cells have been evocated to contribute to the response of 
the adult arterial wall to damage during atherogenetic 
process and aging (58). Inflammatory cell recruitment in-
duces VEGFR-1-mediated physiological and pathological 

angiogenesis that favors the increase of vessel lumen in-
crease and its stabilization and counteracts pathological 
angiogenesis stimulated from PlGF-mutated variants that 
not bind VEGFR-1 (67, 68). These findings suggest that 
with aging stem cells with a synthetic VEGFR-1+ myocitic 
phenotype prevail and contribute to aortic myointimal 
thickening and to vascular angiogenetic/arteriogenetic and 
healing processes (69, 70). If this population derives from 
perpetual proliferation of VRSCs or phenotypic con-
version of previously differentiated SMCs is still object of 
debate.

Conclusions

  SMCs within the normal tunica media of the adult vas-
cular wall are heterogeneous, and prevalence of a “synthetic” 
phenotype is found in atherosclerotic and restenotic 
lesions. Starting from SMC heterogeneity, a considerable 
accumulating evidence suggests the presence of a small 
population of VRSCs in different layers of the normal 
adult arterial wall, and its potential contribute to the ho-
meostasis of post-natal arterial wall but also to patho-
logical remodelling. Progenitor cell mobilisation may be 
tracked using genetic markers or co-localisation of stem 
and myocitic markers, but still variability of results is en-
countered according to the different experimental proce-
dures and techniques. Further accurate studies are needed 
to define the positive or negative role of VRSCs in arterial 
pathobiology and to identify if the selective control of 
VRSC intraparietal mobilization may represent an attrac-
tive therapeutic opportunity. 
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