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Predicting the outcome of cancer therapies using molecular features and clinical observations is a key goal of
cancer biology, which has been addressed comprehensively using whole patient datasets without
considering the effect of tumor heterogeneity. We hypothesized that molecular features and clinical
observations have different prognostic abilities for different cancer subtypes, and made a systematic study
using both clinical observations and gene expression data. This analysis revealed that (1) gene expression
profiles and clinical features show different prognostic power for the five breast cancer subtypes; (2) gene
expression data of the normal-like subgroup contains more valuable prognostic information and survival
associated contexts than the other subtypes, and the patient survival time of the normal-like subtype is more
predictable based on the gene expression profiles; and (3) the prognostic power of many previously reported
breast cancer gene signatures increased in the normal-like subtype and reduced in the other subtypes
compared with that in the whole sample set.

C
ancer genome aberrations observed through clinical and basic research have been used to categorize
patients in an effort to improve clinical decision-making and develop more effective treatments.
Although such grouping methods have improved treatment efficacy of many different cancers, overcom-

ing heterogeneity within these populations is a major challenge. With the advent of high-throughput genomic
technologies, many molecular-based diagnostics have been developed, and several have recently gained regula-
tory approval1,2. Many of these diagnostics are applicable to breast cancer, and suggest that individual molecular
diagnostics for therapeutic strategies may provide objective, precise, and systematic prediction of clinical
outcomes.

Breast cancer is no longer viewed as a single disease; rather, it is heterogeneous consisting of different subtypes
on the molecular, histopathological, and clinical level with different prognostic and therapeutic implications3–6.
Gene expression profiling has classified breast cancer into five biologically distinct intrinsic subtypes: luminal A,
luminal B, HER2-enriched (HER21), basal-like, and normal-like3–5. The luminal A and B subtypes are ER-
positive, and luminal B is associated with a relatively worse outcome. Both HER21 and basal-like breast cancers
have poor outcomes. Parker et al.6 developed an efficient classifier, called PAM50, to distinguish these five
intrinsic subtypes using the expression of 50 ‘‘classifier genes’’. In a more recent study, a large breast cancer
patient cohort (n , 2000) was clustered into 10 molecularly defined subgroups with apparently distinct biology
and disease-specific survival characteristics7. In addition, different breast cancer subtypes have different treat-
ment responses8,9. For example, the basal-like and HER21 subtypes are more sensitive to paclitaxel- and dox-
orubicin-containing preoperative chemotherapy than the luminal and normal-like cancers8. Another study
suggested that the different molecular subtypes of breast cancer could be characterized by distinct response rates
to neoadjuvant chemotherapy using a taxane and anthracycline-containing regimen9.

The molecular heterogeneity among breast tumors suggests that respective stratified therapy and clinical
prediction of prognosis would be beneficial. Here, patients within particular subtypes would be handled with
special subtype-specific treatments10. Among the five intrinsic subtypes, basal-like breast cancer is of particular
clinical interest because of its high frequency, poor prognosis, and its tendency to affect younger women11.
Moreover, because this subtype lacks expression of estrogen receptor (ER), progesterone receptor (PR) and
HER2, the basal-like breast cancers do not benefit from anti-estrogen hormonal therapies or trastuzumab.
Although this subtype does benefit from chemotherapy, less toxic and more targeted treatment options are
necessary12. Several molecular-based studies have focused on basal-like or triple negative breast cancers11–16.
For example, Hassall et al.14 identified a 14-gene signature to distinguish the basal-like subtype into two sub-
groups. They argued that this categorization would guide aggressive therapeutic regimens to the poor prognosis
subgroup, and conversely avoid such therapy in low risk patients. In contrast to the tough basal-like subtype,
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researchers have gained clinical success on HER21 breast cancers
because of effective therapeutic targeting of HER2. The presence of
amplification of the HER2 gene confers sensitivity to the targeted
chemotherapeutic agent herceptin (trastuzumab)17.

In an effort to guide the selection of the most appropriate therapy
for individual patients, numerous prognostic gene expression signa-
tures have been reported1,2,18–21. One of the early studied signatures,
called MammaPrint1, is a commercially available microarray-based
diagnostic, which evaluates the expression of 70 genes. More
recently, OncotypeDX2, a 21-gene quantitative RT-qPCR assay,
was developed and predicts the risk of distant recurrence in tamox-
ifen-treated, node-negative breast cancers and their responsiveness
to CMF chemotherapy18. Whereas many multi-gene signatures exist,
Venet et al.21 found that the prognostic abilities of many published
breast cancer gene signatures are derived from their strong correla-
tion to expression of genes associated with proliferation. Thus, this
group developed a 131-gene proliferation-related signature called
meta-PCNA21. In addition, Wu and Stein22 recently proposed a net-
work module-based method for identifying cancer prognostic signa-
tures and discovered a novel 31-gene signature, which outperformed
48 published breast cancer gene signatures.

Given the limited patient number for many of these studies, the
Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) provided an unprecedented resource7 which contains
a large breast cancer patient cohort of ,2000 samples with detailed
clinical measurements and genome-wide molecular profiles includ-
ing gene expression and copy number variation data of the molecular
patterns inside tumors. In line with this, Sage Bionetworks launched
a competition called DREAM Breast Cancer Prognosis Challenge23.
The goal of this competition is to assess the accuracy of computa-
tional models, like METABRIC, that use comprehensive molecular
profiling data and clinical information to predict patient survival.
However, we found that the molecular features such as gene express-
ion only moderately improve the clinical prediction with regards to
the whole cancer cohort.

Taking into account the heterogeneity of breast cancers and the
subtype specific molecular signatures, we hypothesized that making
clinical predictions for five subtypes separately would provide better
prediction performance. In this study, we adopted PAM50 to identify

the five heterogeneous breast cancer subtypes, and then systematic-
ally evaluated patient survival prediction performance on these sub-
groups using both clinical observations and the gene expression
profiles of the METABRIC dataset. Then, we applied a network
module-based cancer prognostic signature identification method
on each subtype to search for network biomarkers to further dem-
onstrate the differences of prediction performance.

Results
Given the heterogeneity among breast cancer patients, we sought to
determine whether significant differences exist in different sub-
groups and whole cancer cohort for predicting survival time based
on molecular and clinical data. To this end, we adopted the five
PAM50 tumor groups defined in the METABRIC dataset for ana-
lysis. We then applied the Cox model to gene expression covariates,
clinical feature covariates or the combination of these two for each of
the five intrinsic subtypes and the METABRIC whole dataset
respectively (see Materials and Methods, and Supplementary
Information).

Breast cancer subtypes show different prognostic performance. As
mentioned above, after defining the subgroups, we applied the
multivariate Cox proportional hazards (multivariate Cox PH)
model on different breast cancer subtypes. This analysis revealed sig-
nificant differences in prognostic performance (Figure 1 and Supple-
mentary Table S1). We also observed similar differences using a
random survival forest model in the same manner (Supplementary
Table S2). First, consistent with the DREAM Breast Cancer
Prognosis Challenge, the multivariate Cox PH model using clinical
feature covariates alone demonstrated performance comparable to
the combination of clinical feature and gene expression data based on
the whole population. Generally, the clinical feature covariates were
more informative for predicting patient survival time than the gene-
expression covariates on the five breast cancer subtype datasets and
the whole dataset. The exception, however, was the normal-like
tumor subtype. In addition, the predictive power of using both
covariates together versus clinical features was increased slightly
except for HER21 (0.597 vs.0.625) and luminal A (0.712 vs.0.715)

Figure 1 | Breast cancer subtypes show different prediction performance. Bar graphs show averaged CIs of the three cases of multivariate Cox PH model

on the five breast cancer subtypes and the METABRIC whole dataset. Red and green bars represent the gene PCs case and clinical feature case

respectively and blue bars represent these two variables together. P-values are from the permutation test. The red dashed line marks the significance level.

P-values for corresponding averaged CIs larger and smaller than the mean value of the 1000 permutation results are assigned with different colors.
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tumors. These data suggests that the inclusion of gene expression
only improves the prediction performance very limitedly.

Both the basal-like and HER21 subgroups had poor survival pre-
diction performance, while the luminal A and normal-like breast
cancer subgroups demonstrated better performance. The clinical
outcome of luminal A and normal-like subtypes, based on genetic
and clinical covariates, was more predictable than the other three
subgroups. Particularly, all three Cox models underperformed when
applied to basal-like breast cancer. This observation is consistent
with previous studies that the basal-like tumor subtype, referred to
as triple-negative breast cancer in some literature, is associated with a
particularly poor prognosis4,5. Compared with the basal-like sub-
group, the HER21 subgroup had a relatively weak prognosis without
significance for all three models. In addition, the concordance index
(CI) dropped when including the three gene principal components
(PCs) to the clinical covariates on the Cox model. It is possible that
the three PCs are not representative of the survival-related informa-
tion hidden in the expression matrix for this subgroup.

Compared with luminal A tumors, luminal B breast cancer was
associated with a worse outcome, which is consistent with previously
published results4,5. The ER-positive and histological low-grade
luminal A tumors have the highest significant averaged CIs using
either clinical covariates alone (0.715, p-value 5 0.001) or combined
with gene expression covariates (0.712, p-value 5 0.01). This result
suggests that the clinical features of luminal A breast cancer are the
most relevant to patient survival time among the five subgroups, and
have the best prognostic power. The selected clinical covariates with
the smallest p-values (Wald test) in the Cox model tested on the
luminal A subtype were patient age at diagnosis, lymph node assess-
ment, HER2 SNP6 state, and treatment received. The attendance of
diagnosis age was probably due to our use of overall survival time as
the patient survival outcome.

The normal-like breast cancer subtype (n 5 200) was of particular
interest because the high expression-based model score (0.686, p-
value 5 0.01) compared to the other four subtypes and the
METABRIC whole dataset. In addition, unlike the other subgroups,
gene expression covariate analysis of normal-like breast cancer was
more predictive of patient survival than clinical features covariate
analysis (0.686 vs. 0.667).

Taken together, these results demonstrate that 1) the predictive
ability of the same method on different cancer subtypes was diverse,
2) gene expression data can improve the predictive performance to
different degrees, and 3) the predictive power of gene expression
covariates on the normal-like subtype was more informative than
that on other subgroups, suggesting that gene expression data of
normal-like subgroup contains more prognostic value for this sub-
group than the other breast cancer subtypes. Further research should
be conducted on this promising subtype-specific molecular dataset
with the purpose of providing effective and reliable support for clin-
ical diagnosis and personalized medicine treatment.

Given that gene expression data improves prediction performance
to varying degrees, we further examined the potential prognostic
power of gene expression covariates for the different breast cancer
subtypes. To this end, the CI between the expression value and the
survival time of the patients for each gene probe was calculated and
used as a measure of its prognostic power. Then, all 49576 probes
were ranked in terms of their CIs calculated for each subtype as well
as the METABRIC whole dataset. This analysis also revealed that the
prediction performance using gene expression profiles was diverse
for each breast cancer subgroup (Figure 2A). Notably, the right tail of
the CI distribution of the normal-like tumors extends beyond those
of other subgroups. This demonstrates that gene expression profiles
of normal-like tumors contain more prognostic probes. This is sup-
ported by the fact that 1299 gene probes have CIs larger than 0.6
for normal-like tumors, while only a few probes have CI values this
high in other subgroups. In addition, the highest CI observed in

normal-like tumors was 0.688, whereas the highest score in other
subgroups was 0.618. Thus, many prognostic genes show strong
relevance between the expression value and patient survival in the
normal-like tumors subgroup. This analysis confirms our obser-
vation using multivariate Cox PH that normal-like breast cancer
benefits more from gene-expression data based predictions than
other breast cancer subtypes.

We next explored the overlaps of the prognostic probes obtained
on each subgroup with those obtained on the METABRIC and
OsloVal datasets respectively (Figure 2B, C, D). Using this compar-
ison, we found that normal-like breast cancers share 30 of the top 100
prognostic probes of the METABRIC whole dataset. The luminal B
subtype was the next closest with only 12 common prognostic probes
(Figure 2B). We also found that the prognostic probes of the five
subtypes show a significant different performance on the
METABRIC and OsloVal datasets respectively (Figure 2C, D). The
top 100 prognostic probes obtained from the normal-like subtype
had significantly higher CIs using both datasets compared those of
the four other subtypes (Kruskal-Wallis test p-value , 0.0001 on
METABRIC dataset and p-value , 0.05 on OsloVal dataset).
Therefore, the prognostic gene probes in the normal-like subtype
were the most consistent with those on the whole dataset. In addition,
prognostic genes from the METABRIC whole dataset tend to be
informative for prediction on the normal-like subtype, but not for
other subtypes. Together, these observations suggest that the pro-
gnostic ability of a gene predictor on the whole breast cancer dataset
may be due to its relative higher prognostic power on a special
subtype.

Identifying subgroup-specific prognostic network gene modules.
The analysis above revealed that gene expression data in different
tumor subgroups demonstrate diverse prognostic power. Thus, we
hypothesized that the functional network of biomarkers defined for
breast cancer are only biologically meaningful for a set of tumor
subgroups. To verify this hypothesis, we applied a recently
published method22 to the current five PAM50 subtypes and the
METABRIC whole dataset to identify network biomarkers or gene
modules that were significantly correlated with patient survival (see
Materials and Methods). We found that six network modules
obtained from the normal-like subgroup had CIs greater than 0.6,
while only one in the basal-like tumors had a CI of 0.605. In addition,
no modules satisfy this for all other subtypes and the whole tumor
dataset (Figure 3 and Table 1). We named each module in terms of
the name of the gene having the highest CI in the module. The BIRC5
module consisting of 25 genes generated from the normal-like
subtype achieved the highest CI of 0.650. The second prognostic
network module (MCM10 module) from normal-like subtype was
comprised of 18 genes and had a CI of 0.640.

Based on the module overlap analysis, we extracted module bio-
markers demonstrating significant overlaps with the BRIC5 module
among those obtained from datasets of other subtypes. The NSUN2
module consisting of 12 genes from luminal A had the largest overlap
with 11 genes also present in the BIRC5 module. However, it only
gets a CI of 0.547 on the luminal A tumor. Other modules overlap-
ping with more than one of the 25 genes had CIs lower than 0.55.
Therefore, the BRIC5 module was only detected in the normal-like
tumors, and it is highly correlated with its overall patient survival.
Moreover, a permutation test revealed a p-value of 0.0025, suggesting
that the BIRC5 module from the normal-like tumor data was not
found by chance (Materials and Methods).

The BIRC5 module contained 25 genes and 9 of them had CIs
larger than 0.60 (Figure 4A and B). The gene BIRC5 had the highest
CI (0.667) among the 25 genes. The prognostic relevance of the
BIRC5 module with normal-like tumors and all breast cancer tumors
(using the METABRIC whole dataset and the OsloVal dataset
respectively) was demonstrated by Kaplan-Meier survival curves.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4002 | DOI: 10.1038/srep04002 3



Figure 2 | Gene-expression profiles of five breast cancer subtypes reveal different prognostic power. (A) The distribution of CIs of all gene probes in the

five breast cancer subtypes and METABRIC whole dataset. The x-axis denotes the CI and y-axis denotes frequency. On each dataset, gene probes are

ranked according to their CIs. The number of probes with a CI higher than 0.60 and the maximal CI of the probes are also plotted for each dataset.

(B) Comparison of the similarity of the prognostic probes for the five breast cancer subtypes with the METABRIC whole dataset. The points on the

curve represent the size (y-value) of the overlap of the top x prognostic probes of a certain subtype and the METABRIC whole dataset. The rank of

the probes is derived from (A) correspondingly. (C) Box-plot for the top 100 prognostic probes of each of the five subtypes with their CIs tested on the

METABRIC whole dataset. The y-axis denotes the CI value. (D) Box-plot for the top 100 prognostic probes of each five subtypes with their CIs tested on

the OsloVal dataset. The y-axis denotes the CI tested on the OsloVal dataset.

Figure 3 | The CIs of the top 10 prognostic network modules from five distinct subtypes and the METABRIC whole dataset. Modules generated

from each dataset were ranked according to their CIs, which were calculated based on the averaged gene expression value of each module and survival time

of corresponding patient cohorts. The dashed red line denotes CI 5 0.60.
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The log-rank p-values for normal-like tumors and the two whole
datasets were ,0.01 (Figure 4C). However, the log-rank p-values
for the other four subtypes were all larger than 0.01 (Supplemen-
tary Figure S1). Generally, patients with high expression of BIRC5
module genes were associated with poor overall survival. The BIRC5
gene is a member of the inhibitor of apoptosis (IAP) gene family,
which encodes regulatory proteins that prevent apoptotic cell death.
By doing functional enrichment analysis, we found that the BIRC5
modules are enriched in the following pathways: mitotic M-M/G1

phases, aurora A and B signaling and chromosome maintenance
(Table 2 and Supplementary Table S4). Previous studies have shown
that increased metrics of mitotic activity are relevant to worse sur-
vival outcome, which confirms our result that high expression of the
BRIC5 module is associated with poorer survival (Figure 4C).
The mitotic serine-threonine kinases have been shown to play roles
in the regulation of cell cycle progression, the p53 pathway, and the
checkpoint-response pathways24. Moreover, it has been shown that
the expression of genes in the aurora A and B signaling pathway is

Table 1 | Network modules obtained from different datasets including five breast cancer subtypes and the METABRIC whole dataset

Basal-like HER21 Luminal A Luminal B Normal-like METABRIC

#modules 62 87 59 43 82 60
#genes 612 750 542 426 827 621
mSize 36 24 29 29 29 58
#(CI . 0.60) 1 0 0 0 6 0
hmCI 0.605 0.578 0.564 0.558 0.650 0.594
hmSize 12 5 7 5 25 5

#modules: number of modules; #genes: total number of genes contained in all modules; mSize: the largest size of modules; #(CI . 0.6): the number of modules having a CI larger than 0.60; hmCI: the highest
CI of the modules; hmSize: the number of genes contained in the module with the highest CI.

Figure 4 | The BIRC5 prognostic module. (A) The subnetwork of the 25-gene BIRC5 module. The nine genes in gray have CIs larger than 0.60. (B) The 25

genes are ranked according to their CIs. The nine genes with CIs larger than 0.60 are marked in gray (C) Kaplan-Meier cumulative survival curves of two

breast cancer groups based on the expression of the BIRC5 module over a 15-year period on the normal-like tumor dataset, the METABRIC whole

dataset and the OsloVal dataset respectively. The two patient groups in each plot were defined by partitioning the patients into two equal-sized sets using

the median value of the averaged gene expression profile of the BIRC5 module.
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cell-cycle related25–29. The chromosome maintenance was shown to
be critical for stable chromosome function in mammalian and other
eukaryotic cells30. These functional analyses reveal that the BRIC5
module is related to cell cycle and proliferation, which is likely rel-
evant to cancer processes. Kaplan-Meier survival curves and func-
tional enrichment analysis of the other six prognostic modules (CI .

0.6) were provided in Supplementary Information (Supplementary
Table S3–S4 and Figure S2–S7).

Previously reported gene signatures show similar subtype-specificity
with the BRIC5 module. Recently, Wu and Stein22 discovered a 31-
gene signature using five independent breast cancer datasets. In their
research, the signature was compared with 48 published breast cancer
gene signatures with regard to overall patient survival. We found that
this 31-gene signature had a strong overlap with the 25-gene BIRC5
module obtained from normal-like tumors (Figure 5A). These two
modules had 11 genes in common, among which, 6 were in the top
9 BIRC5 module genes with CIs larger than 0.60. Moreover, the BIRC5
gene was also found to be the most prognostic in this signature.

The winners of the Breast Cancer Prognosis Challenge developed a
model based on three universal signatures, called attractor meta-
genes, defined previously through a multicancer analysis of gene
expression data31,32. We found that the mitotic CIN attractor meta-
gene, which is the most prognostic of the METABRIC and OsloVal
datasets, also has significant overlap with the BRIC5 module
(Figure 5B). Here, 14 of the 25 genes in the BRIC5 module were in
the top 100 genes of the CIN attractor.

In another study, Venet et al.21 observed that many published
breast cancer gene signatures have strong correlation to a cell pro-
liferation-related gene set called meta-PCNA. This gene set contains
131 genes whose expression levels were correlated most positively
with the proliferation marker PCNA. In our analysis, we found that
the meta-PCNA signature significantly overlapped with the BIRC5
module and the MCM10 module, which are the top two prognostic
modules obtained from the normal-like tumors (Figure 5C). In this
comparison, 7 of the 25 BIRC5 module genes, and 10 of the 18
MCM10 module genes were among the meta-PCNA signature
respectively. Notably, all three of these gene signatures were defined

Table 2 | Functional annotations of BIRC5 module based on pathway enrichment analysis

Gene set Size Overlap FDR BIRC5 module gene names in Gene set

Mitotic M-M/G1 phases 222 16 P , 5.0e-4 AURKB, SPC25, CDCA8, CENPA, INCENP, CENPN, CKAP5, SGOL2,
SGOL1, CENPP, BIRC5, NDC80, CENPK, SMC2, SMC4, CENPH

Aurora B signaling 40 13 p , 5.0e-4 AURKB, NCAPH, CDCA8, CENPA, NCAPG, INCENP, NSUN2, SGOL1,
BIRC5, NDC80, SMC2, SMC4, NCAPD2

Chromosome Maintenance 105 8 p , 3.3e-4 RSF1, HJURP, CENPA, OIP5, CENPN, CENPP, CENPK, CENPH
Aurora A signaling 31 4 p , 2.5e-4 AURKB,CENPA,CKAP5,BIRC5

Figure 5 | Comparison of breast cancer prognostic gene signatures. Overlap between the BIRC5 module and three other signatures are shown. The three

gene signatures include the 31-gene signature from Wu and Stein22 (A), the top 100 genes of the CIN attractor metagene from Cheng et al.32 (B), and

the PCNA signature from Venet et al.21 (C). P-values were calculated using the hypergeometric test. Overlapping genes among the 9 most prognostic

BIRC5 module genes are labeled in red. (D) CIs of the five breast cancer signatures on the five subtypes, the METABRIC dataset and the OsloVal dataset.
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based on whole breast cancer or multicancer datasets without con-
sidering tumor heterogeneity. Interestingly, they tend to share a
significant number of genes with the modules found to be the most
prognostic for the normal-like tumor subgroup.

Given this correlation, we deduced that these previously defined
gene signatures were also tumor subtype specific, and have signifi-
cantly high prognostic performance for the normal-like tumor sub-
group. To confirm this, we calculated their corresponding CIs for
each of the five subgroups, the METABRIC whole dataset and the
OsloVal dataset by the similar strategy applied for our identified gene
modules (Figure 5D). To be consistent with the original study, we
used the top 10 genes of the CIN attractor metagene signature for
calculation. This analysis revealed that all these gene signatures had
the highest CIs for the normal-like breast cancer subgroup, and CIs
on METABRIC dataset were also larger than those on other four
subgroups. In addition to the BIRC5 module, CIN attractor and
Wu’s signature had comparable performances with subtle differ-
ences on the normal-like subtype and METABRIC dataset. We also
adopted a multivariate Cox PH regression model to confirm our
observations (Supplementary Table S5).

Recently, Fredlund et al.33 discovered a breast cancer subtype-
dependent network module containing fibroblast and stroma-related
genes that are associated with less malignant tumors for luminal
subtypes and aggressive lymph node positive disease among basal-
like tumors. We investigated the prognosis ability of this stroma
module consisting of 32 genes in the METABRIC dataset.
However, unlike the five gene signatures, the stroma module doesn’t
show significant prognostic power (Supplementary Table S6) and it
shared no overlap with the five gene signatures.

Distribution of tumors within the molecular subtypes doesn’t
affect the outcome of the analysis. Normal-like and luminal A
breast cancers tend to have good prognosis based on gene expres-
sion and clinical feature predictors. However, compared to the other
three subtypes, more patients with the typical ‘‘low risk’’ characteris-
tics (i.e., ER positive, lymph node negative and low grade) exist in the
luminal A and normal-like subgroups. The well-known OncotypeDx
and Mammaprint signatures also suggest that expression data may
provide information for this type of ‘‘low risk’’ patients that
potentially differentiate patients at higher risk for distant
metastasis or recurrent disease1,2. Thus, it is quite possible that the
prediction ability of gene profiles is higher in the clinical ‘‘low risk’’
samples than in other clinically defined groups regardless of PAM50
subtypes. In other words, the relative better performance on normal-
like and luminal A subtypes is a result of a significantly more ‘‘low
risk’’ tumors present in these subgroups. Actually, The percent
composition of each subtypes confirmed that normal-like and
luminal A subtypes were indeed made up of more ‘‘low risk’’
patients than other three (Supplementary Figure S8). We then
tested whether former mentioned gene signature have better
performance on the clinical defined ‘‘low risk’’ patients (Supplemen-
tary Table S7). However, the results demonstrated that the clinical
‘‘low risk’’ subgroup cannot get special benefits from the well-
developed gene signature, which means the observed diverse gene-
based prognostic performance on the intrinsic breast cancer subtypes
cannot be interpreted simply by these traditional clinical features.

Besides the risk levels, we also investigated the potential effect of
tumor cellularity among different subtypes and found that the dis-
tribution of the tumor cellularity also has no much effect on the
prognostic prediction of the normal-like tumors (Supplementary
Figure S9 and Table S8). Interestingly, compared to other subtypes,
the normal-like tumors possess a more balanced distribution of the
three different cellularity types (low, moderate, high), which imply-
ing it is more heterogeneous in some extent. Furthermore, we studied
the distribution of tumor histological type and observed that the
normal-like tumors have a significant different histological type

distribution compared with other four subtypes (Chi-squared test,
p-value , 1e-05, Supplementary Figure S10).

Discussion
Human cancers frequently display substantial tumor heterogeneity
in all distinguishable phenotypic features, and this can have pro-
found implications both for tumor development and therapeutic
outcomes. In this study, we explored the diverse prognostic perform-
ance of standard prediction tools by applying genetic and clinical
characteristics to breast cancer subtypes individually. We observed
that prediction tools show distinct diversity of survival prediction
ability when applied to breast cancer subtypes individually compared
to whole breast cancer data. Unlike the other three subtypes, the
luminal A and normal-like tumors are associated with good pro-
gnosis. Applying clinical feature covariates revealed strong predic-
tion power for patient survival on luminal A breast cancer, which was
not increased by adding gene expression covariates. However, gene
expression covariates demonstrated significant prognostic power
when applied to the normal-like subgroup.

Given the additional prognostic power associated with gene
expression data for normal-like breast cancer, we examined this
subtype with other gene signatures. We found that prognostic net-
work biomarkers for the normal-like subtype had significant overlap
with cancer signatures previously defined for whole breast cancer.
The finding that previously reported gene signatures show similar
subtype-specificity with the BRIC5 module suggests that the high
prognostic ability of these gene signatures on the whole breast cancer
samples likely results from their relative higher prognostic power on
the normal-like subtype. They also support the finding that normal-
like subtype patient survival is more predictable than other subtypes
based on gene expression data. In conclusion, the gene-based signa-
tures derived from all breast tumors have an extremely diverse clin-
ical predictive ability when applied to intrinsic subtypes, and breast
cancer heterogeneity greatly affects clinical prediction tasks.

However, unlike the other four breast cancer subtypes with well
recognizable molecule characteristics, the significance of normal-like
subtype is still largely undefined. Several studies suggest that the
normal-like subtype is mainly an artifact resulting from a high per-
centage of normal cells in the tumor specimen6,34. Another study
considered this subtype as a potential new one referred as claudin-
low tumors35. These examples highlight the importance of consi-
dering tumor heterogeneity when predicting patient survival. In
addition, the significant prognostic power of gene expression covari-
ates on the normal-like breast tumors observed in this study support
the theory that cancer biomarkers or signatures defined for the whole
cancer cohort may be biased by the tumor heterogeneity. Thus, more
detailed histologic, immunohistochemical, and gene expression ana-
lyses are needed to resolve this issue.

Developing computational methods based on genomic profiling to
improve clinical diagnosis and survival prediction is an increasingly
important issue in computational biology. In this study, we system-
atically evaluated the patient survival prediction performance of
genomic and clinical data on the five intrinsic breast cancer subtypes.
Our results revealed that molecular gene profiles and clinical features
have different prognostic power when applied to the breast cancer
subtypes individually. Specifically, gene expression profile of nor-
mal-like breast cancer contained more prognostic value than it did
for the other four subgroups. In addition, we performed a network-
based method on the five breast cancer cohorts to identify prognostic
gene modules. The results of this analysis validated previous obser-
vations and uncovered a 25-gene module related to cell cycle and
proliferation that was highly correlated with patient survival in the
normal-like tumors. Thus, this study supports the notion of consid-
ering tumor heterogeneity when using gene expression data to pre-
dict patient survival, and opens new avenues for this type of analysis.

www.nature.com/scientificreports
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Methods
Materials. METABRIC dataset. The Molecular Taxonomy of Breast Cancer
International Consortium (METABRIC) dataset contains detailed clinical
annotations, patient overall survival time, expression profiles, CNV profiles, and SNP
genotypes derived from 1981 breast tumors collected from participants of the
METABRIC trial7. Nearly all oestrogen receptor (ER)-positive and lymph node (LN)-
negative patients did not receive chemotherapy, whereas ER-negative and LN-
positive patients did. None of the HER21 patients in this trial received trastuzumab.
This dataset was accessed through Synapse (synapse.sagebase.org) and was used as
the training data in the Sage Breast Cancer Challenge (BCC) competition. The
expression profiles contain 49576 probe sets, performed on the Illumina HT 12v3
platform, re-normalized at Sage Bionetworks by the BCC Support Team. The clinical
feature profiles contain 25 clinical covariates including size, grade, age at diagnosis,
lymph nodes status, and the PAM50 subtype annotations. The dataset was composed
of 328 basal-like tumors, 238 HER21 tumors, 719 luminal A, 490 luminal B, 200
normal-like tumors and 6 samples with unclear category. More detailed description
on METABRIC data is available at the Breast Cancer Challenge support page (https://
sagebionetworks.jira.com/wiki/display/BCC).

OsloVal dataset. The OsloVal cohort consists of 184 breast cancer patients collected
from 1981 to 1999 at the Norwegian Radium Hospital. This relative small dataset was
used as a validation set for the BCC, and as a result, has the same data structure and
pre-processing as the METABRIC dataset. It contains 11 clinical features but no
PAM50 subtype annotations. This dataset was accessed through Synapse
(synapse.sagebase.org).

Methods. Multivariate Cox PH regression model. We adopted a multivariate Cox PH
model to examine the association between covariates and survival time, and to predict
clinical survival time. For gene expression data, we performed a supervised principal
component analysis with the superpc package developed by Tibshirani et al.36. The
first three principal components (PCs) were used as the gene expression input
variables. Ten types of clinical features were selected from the 25 clinical covariates
due to their level of completeness and availability in the OsloVal dataset. These ten
clinical features/input covariates include: age at diagnosis, tumor size (cm), lymph
node assessment, grade of disease, estrogen receptor (ER) immunohistochemistry
status, HER2 SNP6 state, treatment received, HER2 expression, ER expression, and
progesterone receptor (PR) expression (Supplementary Table S9). We used overall
survival time as the survival outcome, and applied three-fold cross validation (CV) on
the testing data. At each validation, two folds of the partition were used for
performing the superpc analysis, training the multivariate Cox model, and selecting
the clinical feature variables with Akaike information criterion. Afterwards, the
trained model was tested on the third fold to conduct survival prediction. The
concordance index (CI) was used to estimate the prognostic effect of the model. To
eliminate the randomness of sample partition in the three-fold CV, each model was
repeated 100 times. The final assessment of prognostic effect was measured by the
average of the 300 CIs on the test folds. We applied this calculation process on gene
expression covariates, clinical feature covariates or the combination of these two for
each of the five intrinsic subtypes and the METABRIC whole dataset respectively. The
p-values which indicated the significance of the results were calculated using a
permutation test, in which samples were randomly divided into five classes keeping
the subtype size and repeated 1000 times.

The concordance index. The concordance index is one of the most commonly used
performance measures for assessing predicting models in survival analysis37. It is the
probability of concordance between the predicted and the real survival, and calculated
as follows:

CI~
1
N

X

Ti uncensored

X

TivTj

1pivpj

The indicator function 5 1 if a , b, otherwise it is 0. For patient i, pi is the predicted
survival time by the model p while Ti denotes the real survival time. A usable patient
pair for calculating the CI is that the patient with the shorter survival time must be
uncensored, or in other words, have event. N denotes the number of all usable patient
pairs. Therefore, CI with a range of 0 , 1 can be interpreted as the fraction of all
patient pairs whose predicted survival times are correctly ordered among all patients
that can actually be ordered. CI 5 1 indicates perfect prediction accuracy and CI 5

0.5 indicates a random guess. We use CI as a measurement of the prognostic power of
individual genes and gene modules, and to assess the prediction performance of the
multivariate Cox PH model. In this work, CIs lower than 0.5 were adjusted as follows:
adj-CI 5 1 2 CI.

Identifying cancer prognostic signatures based on Reactome functional interaction (FI)
network. A network biology method developed by Wu and Stein22 was adopted for
identifying cancer prognostic signatures. Using this method (see the Reactome FI
cytoscape plug-in at http://wiki.reactome.org/index.php/Reactome_FI_Cytoscape_
Plugin), we first discovered the modules using the Markov Clustering (MCL) pro-
cedure from a weighted gene functional interaction (FI) network consisting of 10,956
proteins and 209,988 interactions38. Then, an averaged expression profile for each
module, calculated from the member gene expression profiles, was used for the
downstream survival analysis. We applied this method onto the five PAM50 subtypes

and the METABRIC whole dataset to search for network biomarkers that were
significantly correlated with patient survival for each cohort respectively.

To run the plug-in, probes were mapped to the gene symbol from HGNC (http://
www.genenames.org/), and the expression profiles of multiple probes that were
mapped to the same gene were averaged as the gene expression profile of this gene.
Probes that either mapped to multiple genes or could not be mapped were removed.
The mapping resulted in 15696 genes. For the MCL clustering, we used 5.0 as the
inflation coefficient. Only those modules with a size of 5 or larger, and an average PCC
equals to or larger than 0.25 were kept for further analysis. An expression profile was
assigned for each module by averaging the gene expression profiles of all genes in the
module, and using it to calculate the CI for each module on the corresponding patient
group. Pathway and GO term enrichment analysis of the genes within a certain
module were also conducted with this Cytoscape Plug-in.

To determine the statistical significance of the detectability of a network biomarker
(e.g., a module generated from the normal-like breast cancer cohort), we performed a
permutation test on the given patient group (e.g., the normal-like breast cancer
cohort). 10000 simulated gene modules with the same size were randomly generated
from the network, among which n modules get the CIs larger than that of the given
module, leading to the permutation p-value of n/10000.

R package. We used R package BCC and predictiveModeling downloaded from
Synapse (synapse.sagebase.org) to access the METABRIC and OsloVal datasets, build
the models, and perform the cross validation. R package missForest was used to
impute missing values in the METABRIC dataset. We used R package superpc to
perform the principal component analysis (http://www-stat.stanford.edu/,tibs/
superpc/). R package survival was used for Cox proportional hazards model, Kaplan-
Meier survival analysis, Wald test, log-rank test and concordance index calculation. R
package randSurvivalForest was applied to run the rand survival forest model.
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