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Abstract: Cancer cells produce high levels of mitochondria-associated reactive oxygen species (ROS)
that can damage macromolecules, but also promote cell signaling and proliferation. Therefore,
mitochondria-targeted antioxidants have been suggested to be useful in anti-cancer therapy, but
no studies have convincingly addressed this question. Here, we administered the mitochondria-
targeted antioxidants MitoQ and MitoTEMPO to mice with BRAF-induced malignant melanoma
and KRAS-induced lung cancer, and found that these compounds had no impact on the number of
primary tumors and metastases; and did not influence mitochondrial and nuclear DNA damage
levels. Moreover, MitoQ and MitoTEMPO did not influence proliferation of human melanoma
and lung cancer cell lines. MitoQ and its control substance dTPP, but not MitoTEMPO, increased
glycolytic rates and reduced respiration in melanoma cells; whereas only dTPP produced this effect
in lung cancer cells. Our results do not support the use of mitochondria-targeted antioxidants for
anti-cancer monotherapy, at least not in malignant melanoma and lung cancer.

Keywords: mitochondria-targeted antioxidants; melanoma; lung cancer; mouse models

1. Introduction

Reactive oxygen species (ROS) damage cellular structures and cause oxidative stress,
but they also function as signaling molecules that regulate biological and pathological
processes [1]. Mitochondria produce a substantial portion of cellular ROS, in particular
superoxide (O2

•), as a byproduct of oxidative phosphorylation in complexes I, II, and III
of the electron transport chain (ETC) [2]. O2

• is rapidly converted to hydrogen peroxide
(H2O2) by the enzymatic activity of superoxide dismutases (SODs) located in the mito-
chondrial matrix [3]. The mitochondria-associated H2O2 can in turn stimulate intracellular
signaling pathways by reversibly oxidizing cysteine residues in key proteins [4,5].

Cancer cells produce high levels of mitochondria-associated H2O2 that can promote
growth and proliferation [6,7]. Indeed, oxidation-induced inactivation of the tumor sup-
pressor protein PTEN increases PI3K signaling and stimulates cell growth and prolifer-
ation [8]. Mitochondrial superoxide production can also drive metastasis by activating
SRC/PYK2 signaling [9]. Moreover, mutations in genes involved in the ETC, which re-
sult in increased production of mitochondrial ROS, have been found in several forms of
cancer [10,11].
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Consequently, it has been hypothesized that tumor cells can use increased mito-
chondrial ROS production to their advantage [12]. This idea prompted the develop-
ment of mitochondria-targeted antioxidants, some of which have produced promising
results [9,13–15]. However, few studies have addressed the impact of these antioxidants
on tumor growth in vivo; to our knowledge, no studies have evaluated their impact on
tumor progression in endogenous mouse models of cancer, where physiologic levels of
oncogenes initiate tumors in mice with an intact immune system.

In the current study, we administered two well-studied mitochondria-targeted antiox-
idants, MitoQ and MitoTEMPO, to mice with BRAF-induced malignant melanoma and
KRAS-induced lung cancer, and defined their impact on tumor progression and metastasis.

2. Materials and Methods
2.1. Mice and In Vivo Experiments

For the melanoma model, two-day-old BrafCA/+Ptenfl/fl Tyr-Cre+/0 mice (designated
BPT) were painted with 4-hydroxytamoxifen (H6278, Sigma-Aldrich, Darmstadt, Germany)
on the right flank skin to activate BRAF600E expression and inactivate PTEN expression
in melanocytes, as described [16]. At 3 weeks of age, small nevi were visible on the skin,
and littermate mice were randomized to cages with regular drinking water (Ctrl), water
supplemented with MitoQ (500 µM), or water supplemented with the control compound
decyl-triphenylphosphonium (dTPP, 500 µM) (MitoQ and dTPP were generously pro-
vided by Dr. M. Murphy). MitoTEMPO (SML0737, Sigma-Aldrich, Darmstadt, Germany;
1.25 mg/kg body weight in 200 µL PBS) was injected intraperitoneally every two days;
control mice were injected with 200 µL PBS. Mice were killed when they became listless
because of primary tumor burden, lost 10% of their weight, or when primary tumors
ulcerated. BPT mice at autopsy exhibit primary tumors and distinct black lymph node
metastases [16]. For the lung cancer model, six- to eight-week-old Kras2LSL/+ mice inhaled
a Cre-adenovirus (5 × 107 plaque-forming units (pfu)) under general anesthesia, as de-
scribed [17]. One week later, mice were randomized to receive MitoQ- or dTPP-containing
water, or regular water; or injected with MitoTEMPO or PBS as outlined above. Mice
with lung cancer were killed 10 weeks following Cre-adenovirus inhalation. MitoQ and
dTPP administration did not influence body weight and water intake; neither did PBS and
MitoTEMPO injections. Mice were on a C57BL/6 genetic background. Mouse experiments
were approved by the Research Animal Ethics Committee in Gothenburg (#51-2015 and
#52-2015).

2.2. Histology

For routine histology, primary tumors and lymph node metastases from BPT mice
were fixed in paraformaldehyde and embedded in paraffin, and 5-µm sections were stained
with hematoxylin and eosin. For lung histology, 4-µm sections of paraformaldehyde
inflation– fixed and paraffin-embedded lungs were stained with hematoxylin and eosin.
Immunohistochemical analyses were performed as described [16,17]. The sections were
incubated with antibodies recognizing Ki67 (RTU (ready-to-use), RM-9106-R7, Thermo
Scientific), γ-H2AX (1:1000, ab11174, Abcam, Cambridge, UK), and 8-hydroxyguanosine
(1:1000, 48508, Abcam, Cambridge, UK), and then processed with the Vectastain Elite
ABC Kit (PK6101) and the DAB Peroxidase Substrate Kit (SK4100, Vector Laboratories).
Histological slides were scanned with a MIRAX SCAN microscope and processed with
the MIRAX Control software (Zeiss). The scans were quantified with Visiopharm software
(Visiopharm Integrator System version 2017.2.5.3857).

2.3. Mass Spectrometry

Liver and lung samples were dissected, weighed, snap-frozen, and stored at −80 ◦C.
The content of MitoQ in the tissues was then quantified by liquid chromatography–tandem
mass spectrometry (LC/MS/MS) as described [18].
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2.4. Mitochondrial DNA Damage

Mitochondrial DNA damage was assessed by PCR as described [19]; with minor
modifications. Genomic DNA, total RNA, and protein were extracted from tissues pre-
served with AllProtect Tissue Reagent (76405, Qiagen, Hilden, Germany) using the AllPrep
DNA/RNA/protein mini kit (80004, Qiagen, Hilden, Germany) in a QiaCube machine. Up
to 30 mg of tissue pieces from primary tumors and lymph node metastases were lysed in
RLT buffer in a TissueLyser II (2 × 2-min rounds at 20 Hz). The lysate was centrifuged,
and the supernatant transferred into a new 2-mL tube before further processing in the
QiaCube. The resulting DNA solution was further cleaned with the Genomic DNA Clean &
Concentrator (D4064, Zymo Research, Irvine, CA, USA), and the purity and concentration
were assessed by Nanodrop analyses. The DNA was diluted to a concentration of 3 ng/µL,
and 5 µL were used per amplification reaction along with 400 nM primer mix and 45 µL
Platinum PCR SuperMix, High Fidelity (12532016, Thermo Fisher, Waltham, MA, USA) in a
final volume of 54 µL. Duplicates were run for each sample tested along with non-template
control samples. The concentrations of amplicons were quantified with Quant-iT PicoGreen
dsDNA Assay Kit (P11496, Thermo Fisher, Waltham, MA, USA).

2.5. Cell Culture and Proliferation

Human malignant melanoma cell lines (A375 from the American Type Culture Col-
lection; IPC-298 from the German Collection of Microorganisms and Cell Culture) were
cultured in DMEM GlutaMAX High Glucose (4.5 g/L, 10569-010) supplemented with 10%
fetal bovine serum (10270-106) and 1% penicillin/streptomycin (15070-063). Human lung
cancer cell lines A549 and H838 were from the American Type Culture Collection and were
cultured in DMEM GlutaMAX Low Glucose (1 g/L, 21885-108) supplemented with 10%
fetal bovine serum (10270-106) and 1% penicillin/streptomycin (15070-063, Thermo Fisher,
Waltham, MA, USA).

Antioxidant doses were selected based on results from viability assays, which were
carried out by seeding 2 × 104 cells per well on 96-well plates. MitoQ, dTPP, and Mi-
toTEMPO (SML0737, Sigma-Aldrich, Darmstadt, Germany) were added at 25, 50, 100,
250, 500, and 1000 nM. Viability was determined 6, 24, and 48 h later using PrestoBlue
(A13262, Thermo Fisher, Waltham, MA, USA). The highest concentration that did not affect
the viability of untransformed control cells (melanocytes and fibroblasts) was selected for
subsequent experiments; this concentration was 100 nM. Real-time analysis of proliferation
was assessed by seeding 104 cells per well in 96-well plates in 8 technical replicates each for
control medium and medium supplemented with MitoQ, dTPP, or MitoTEMPO. Photomi-
crographs were taken every 2 h using an IncuCyte Zoom live cell imaging system (Essen
Biosciences, Ann Arbor, MI, USA), and cell confluence was measured using the IncuCyte
software (Essen Biosciences, Ann Arbor, MI, USA) over 72 h.

2.6. Metabolic Flux Analysis

The oxygen consumption rate (OCR) and extra-cellular acidification rate (ECAR) were
measured in adherent cells with a XF96 Extracellular Flux Analyzer (Seahorse Bioscience,
Agilent, Billerica, MA, USA) using the Seahorse XFCell MitoStress Kit (103015100, Seahorse
Agilent, Billerica, MA, USA). Cells were seeded (6–8 replicates) in XF 96-well cell culture
microplates (Seahorse Bioscience, Billerica, MA, USA) at a density of 2 × 104 cells/well in
200 µL of DMEM and incubated with MitoQ, dTPP, or MitoTEMPO for 16 h. The medium
was replaced with 180 µL 37 ◦C pre-warmed bicarbonate-free Seahorse XF Base Medium
(102353-100, Seahorse Agilent) supplemented with Glucose (5 or 10 mM for lung cancer and
melanoma cells, respectively), 1 mM Glutamine, and 1 mM pyruvate. The cells were then
incubated for 45 min before starting the assay procedure. After baseline measurements
of OCR and ECAR, OCR was again measured after sequentially adding to each well
oligomycin and carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), to reach
concentrations of 1 µM. Rotenone/Antimycin A was added to reach a concentration of
0.5 µM. Data were normalized to numbers of viable cells obtained from additional wells
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using Presto Blue Cell viability. Basal respiration, proton leak, maximal respiration, and
spare respiratory capacity were calculated using the MitoStress Test Report Generator.

2.7. Statistics

Values are presented as means ± standard error of the mean. GraphPad Prism
software (versions 7.02 and 8.1, α < 0.05; San Diego, CA, USA) was used for statistical
analyses. One-way ANOVA was used for in vivo analyses. For in vitro studies, one-way
ANOVA was used except for cell proliferation, where two-way ANOVA was applied.

3. Results

To define effects of mitochondria-targeted antioxidants on the progression of ma-
lignant melanoma, we first used MitoQ, a MitoQuinone conjugated with the lipophilic
triphenylphosphonium (TPP) cation that stimulates its accumulation in the inner mito-
chondrial membrane [20]. We administered MitoQ and its control compound decyl-TPP
(dTPP) in the drinking water of 3-week-old BrafCA/+Ptenfl/flTyr-Cre0/+ mice (designated BPT
mice) [16] with early stages of malignant melanoma (they had been painted with tamoxifen
on the flank skin 2–3 days after birth to activate BRAFV600E expression and inactivate Pten
in melanocytes). The dose and administration route of MitoQ—500 µM in the drinking
water—was shown previously to protect against oxidative stress in mice [21–27] without
causing toxicity [18] (Figure 1A,B). MitoQ administration had no significant impact on
the number of primary tumors and lymph node metastases in BPT mice (Figure 1C,D);
and no impact on survival, body weight, lymph metastasis size, and liver and spleen
weights (Figure S1A–D). To determine whether MitoQ exerted a protective effect in the
mitochondria, we analyzed mitochondrial DNA (mtDNA) damage from primary tu-
mor and lymph node metastasis lysates by PCR. The levels of mtDNA damage in the
three groups were similar (Figure 1E,F). Moreover, nuclear DNA damage, as judged by
γH2AX and 8-hydroxyguanosine staining, remained unchanged with MitoQ administra-
tion (Figure 1G–J).

The outcome of the MitoQ melanoma experiments (Figure 1) prompted us to test the
effects of MitoTEMPO, a mitochondrial superoxide scavenger, on malignant melanoma
progression (Figure 2A,B). Similar to the MitoQ experiments, the dose chosen for the
MitoTEMPO experiments was previously reported to protect against oxidative damage
without causing toxicity [9,14]. The number of primary tumors and metastases in untreated
mice and in mice injected with MitoTEMPO or vehicle did not differ (Figure 2C,D); and the
drug did not influence body weight, lymph metastasis size, or liver and spleen weights
(Figure S1E–H). Moreover, MitoTEMPO did not influence the levels of mitochondrial and
nuclear DNA damage in primary tumors and metastases (Figure 2E–J).

To investigate the effects of mitochondria-targeted antioxidants on the progression
of a different cancer form, we administered MitoQ, dTPP, or no drug, to Kras2LSL/+ mice
one week following activation of KRASG12D expression in the lungs through intranasal
inhalation of Cre-adenovirus [28] (Figure 3A). Lung tumor burden was similar in MitoQ-
treated and untreated mice (Figure 3B,C); oddly however, the mean lung tumor burden was
significantly higher in dTPP-treated than untreated mice, and tended to be higher than in
MitoQ-treated mice (Figure 3B,C). Nevertheless, the proliferative index in tumors from the
three groups of mice did not differ, as judged by Ki67 immunostaining (Figure 3D). MitoQ
was detected in lung and liver tissue, as judged by mass spectrometry (Figure 3E). Similar
to the results of the MitoQ experiments, MitoTEMPO administration did not significantly
affect lung tumor burden (Figure 3F,G).
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Figure 1. The mitochondria-targeted antioxidant MitoQ does not influence malignant melanoma progression in mice.
(A) Structure of MitoQ and its control substance dTPP. (B) Schematic showing how two-day-old BrafCA/+Ptenfl/flTyr-Cre+/0

mice (designated BPT mice) were painted with 4-hydroxytamoxifen on the flank skin to activate BRAFV600E expression
and inactivate PTEN expression in melanocytes (start). dTPP and MitoQ were administered in the drinking water to
newly-weaned mice (3 weeks). (C) Number of primary tumors in BPT mice administered regular water (Ctrl), dTPP,
or MitoQ. (D) Number of lymph node metastases in BPT mice administered regular water (Ctrl), dTPP, or MitoQ. (E,F)
Quantification of mitochondrial DNA (mtDNA) damage in primary tumors (E) and lymph node metastases (F); data are
normalized to Ctrl. (G,H) Top, percent H2AX-positive area in primary tumors (G) and lymph node metastases (H). Bottom,
representative photographs of H2AX-stained sections. (I,J) Top, percent 8-HG-positive area in primary tumors (I) and
lymph node metastases (J) of dTPP- and MitoQ-treated BPT mice. Bottom, representative photographs of 8-HG-stained
sections. Numbers in bars = n. Scale bars = 50 µm.
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Figure 2. The mitochondria-targeted antioxidant MitoTEMPO does not influence malignant melanoma progression in mice.
(A) Structure of MitoTEMPO. (B) Schematic showing how two-day-old BPT mice were painted with 4-hydroxytamoxifen
on the flank skin to activate BRAF600E expression and inactivate PTEN expression in melanocytes (start). MitoTEMPO
(1.25 mg/kg) or vehicle (PBS) were injected i.p.—starting at weaning (3 weeks)—every other day for a total of 30 injections;
a separate group of mice were left untreated (Ctrl). (C) Number of primary tumors in Ctrl BPT mice and BPT mice injected
with PBS or MitoTEMPO. (D) Number of lymph node metastases in Ctrl BPT mice and BPT mice injected with PBS
or MitoTEMPO. (E,F) Quantification of mitochondrial DNA (mtDNA) damage in primary tumors (E) and lymph node
metastases (F); data are normalized to Ctrl. (G,H) Percent γH2AX-positive area in primary tumors (G) and lymph node
metastases (H). (I,J) Percent 8-HG-positive area in primary tumors (I) and lymph node metastases (J). Numbers in bars = n.
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Figure 3. MitoQ and MitoTEMPO does not influence tumor growth in mice with lung cancer. (A) Schematic showing how
a Cre-adenovirus given intranasally to 6–8-week-old Kras2LSL/+ mice activated KRASG12D expression in the lung (start).
One week later, mice were given regular water (Ctrl) or water supplemented with MitoQ (500 µM) or dTPP (500 µM);
in separate experiments, mice were left untreated or injected i.p. with MitoTEMPO (1.25 mg/kg) or PBS. (B) Tumor
burden (percent tumor area per lung area) in lungs from Ctrl, dTPP-treated, and MitoQ–treated Kras2LSL/+ mice, 10 weeks
after inhalation of Cre-adenovirus. (C) Representative hematoxylin and eosin–stained lung sections from mice in panel
B. (D) Proliferation index (percent Ki67-positive cells). Right panels, representative photographs of Ki67-stained lung
sections. (E) Mass spectrometry–based detection of MitoQ in lung and liver samples of tumor-bearing Kras2LSL/+ mice
administered MitoQ in the drinking water for 10 weeks, as described in panels A and B. (F) Tumor burden (percent tumor
area per lung area) in lungs from Ctrl and PBS- and MitoTEMPO-injected Kras2LSL/+ mice, 10 weeks after inhalation of
Cre-adenovirus. (G) Representative hematoxylin and eosin–stained lung sections from mice in panel F. Numbers in bars = n.
Scale bar = 50 µm. * p < 0.05.

We next defined effects of MitoQ and MitoTEMPO on cultured human melanoma and
lung cancer cells. The mitochondria-targeted antioxidants did not affect proliferation of
the cancer cells; but the control compound dTPP reduced proliferation, particularly in lung
cancer cells (Figure 4A,B). To determine whether the mitochondria-targeted antioxidants
influence the mitochondrial electron transport chain, we measured the oxygen consumption
rate (OCR) and the extracellular acidification rate (ECAR). Both dTPP and MitoQ reduced
the basal respiration in melanoma cells, and increased the ECAR, when compared to
untreated cells (Figure 4C); MitoTEMPO also increased the ECAR, but did not influence
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the mitochondrial respiration (Figure 4C). In lung cancer cells, dTPP produced similar
effects as in melanoma cells, but MitoQ and MitoTEMPO had little or no discernible effects
(Figure 4D). Thus, we find no reproducible effects of MitoQ and MitoTEMPO on cancer
cell proliferation and metabolism.

Figure 4. Mitochondria-targeted antioxidants have minimal effects on cell proliferation and inconsistent effects on metabolic
parameters in vitro. (A) Proliferation of human malignant melanoma cell lines A375 and IPC298 incubated with the
indicated compounds in an Incucyte Live-Cell Imaging system. Note Y-axis scale. (B) Proliferation of human lung cancer
cell lines A549 and H838 incubated with the indicated compounds in an Incucyte live-cell imaging system. Note Y-axis
scale. (C) Basal mitochondrial respiration and extracellular acidification rate (ECAR) of A375 and IPC298 melanoma cell
lines. (D) Basal mitochondrial respiration and extracellular acidification rate (ECAR) of A549 and H838 lung cancer cell
lines. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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4. Discussion

In this study, we found that MitoQ and MitoTEMPO administration had no impact on
the number of primary tumors and lymph metastases in mice with BRAF-induced malig-
nant melanoma and no impact on tumor burden in mice with KRAS-induced lung cancer.
These results question the rationale of using these mitochondria-targeted antioxidants in
anti-cancer therapy.

Even though MitoQ and MitoTEMPO had no impact on malignant melanoma, they
actually tended to increase tumor burden compared with untreated mice with KRAS-
induced lung cancer. Although this effect was not statistically significant, it is reminiscent
of effects of the common antioxidants N-acetylcysteine and Vitamin E, which markedly
increased lung cancer progression and metastasis in the same model [17,29]. However,
the most marked effect was a statistically significant increase in lung tumor burden in
dTPP-treated mice. There is no obvious explanation for this unexpected result, but it
demonstrates the importance of using untreated controls in drug experiments; indeed,
without the untreated controls, MitoQ would have seemed to reduce lung tumor burden
by 50% compared with dTPP treatment.

The mitochondria-targeted antioxidants MitoQ and MitoTEMPO have been success-
fully used to improve some disease phenotypes of cardiovascular disease [21,27,30–32],
inflammation [22,23], neurodegenerative disorders [33–37], and diabetes [38,39]. Thus,
testing these compounds in other ROS-related disorders such as cancer is highly relevant,
particularly as mitochondria-associated ROS are known to stimulate cell proliferation and
tumor progression. Indeed, mitochondria-associated ROS can move into the cytosol and
subsequently into the extracellular environment, where they can trigger different signaling
cascades and pathways [1,3]. Moreover, mitochondrial ROS can target and mutate mito-
chondrial DNA and thereby contribute to carcinogenesis [10,40]. However, several reports
show conflicting results on the efficiency of MitoQ and MitoTEMPO to limit tumor growth
and metastasis [9,14,26,41]. Importantly, none of those studies used endogenous mouse
models of cancer; and they used either orthotopic injections of melanoma cells [9,14] or
chemically-induced hepatocarcinogenesis [26,41].

In our experiments, we used previously established treatment regimens of MitoQ and
MitoTEMPO that were proven to suppress oxidative stress in several animal studies [21–27].
Although we cannot rule out the possibility that using higher doses could produce mea-
surable effects on tumor progression, we were reluctant to use higher doses since this
strategy would increase the risk of adverse general effects, as judged by the earlier stud-
ies. Moreover, the current doses tended to increase tumor growth, which also makes it
unlikely that a higher dose would produce opposite effects that were significant. In line
with a previous report [18], mass spectrometry analysis of tissue lysates confirmed the
bioavailability of MitoQ, showing that the drug reached the tissue of interest. However, mi-
tochondrial DNA damage remained unchanged across treatments and tissues, suggesting
that mitochondria-targeted antioxidants had no protective effect on mitochondrial DNA
damage in our studies. Moreover, we observed no differences in ROS-specific and nonspe-
cific DNA damage, as judged by 8-hydroxyguanine and γ-H2AX staining (although these
markers might not be able to detect local reduction of ROS and direct DNA damage in the
mitochondria). Indeed, the availability of reliable tools to measure endogenous ROS with
the sufficient spatial resolution in vivo is still one of the major limitations when studying
redox in the biomedical field, although some progress has been recently made [42,43]. Of
note, several studies indicate that mitochondria-targeted antioxidants reduce mitochon-
drial ROS and improve overall mitochondrial fitness [21–27], whereas others conclude that
these compounds could act as pro-oxidants [44,45].

Using the highest dose that did not reduce viability of untransformed cells (fibroblasts,
melanocytes), we found that MitoQ and MitoTEMPO did not influence proliferation of hu-
man malignant melanoma and lung cancer cells. Importantly, MitoQ increased the ECAR
in all human cancer cell lines and markedly reduced the basal mitochondrial respiration in
melanoma cells, suggesting that the drug can alter the metabolism of cancer cells. The effect
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can likely not be attributed to the antioxidant properties of MitoQ since similar results were
observed with dTPP. One potential explanation is that accumulation of the cation moiety,
which is common to both compounds, in the mitochondrial membrane contributed to the
metabolic change. Interestingly, a glycolytic switch has been reported in other studies,
where it was also proposed that this family of compounds could create a therapeutic vulner-
ability to glycolysis inhibitors [13]. The reduced mitochondrial respiration observed with
MitoQ has also been linked to protection against ferroptosis [46]; however, that particular
study did not use dTPP as control, making it unclear whether the protective effect is due to
the quinone or the long alkyl chain. Indeed, several studies also reported deleterious effects
of the triphenylphosphonium moiety itself on mitochondrial fitness including autophagy
induction, disruption of the ETC, and mitochondrial depolarization [47–50]. In line with
these observations, MitoTEMPO, which does not share the same molecular structure and
lacks the long alkyl chain, did not induce metabolic changes.

Overall, our study suggests that the mitochondria-targeted antioxidants MitoQ and
MitoTEMPO have little effect as monotherapy agents against malignant melanoma and
lung cancer. However, we cannot rule out the possibility that alternative strategies to
target mitochondrial ROS might be useful in the clinic, since mitochondria are a ma-
jor source of cellular ROS [2]. Indeed, given the difficulties linked to the delivery of
mitochondria-targeted compounds, there is an increasing need for the generation of en-
dogenous mouse models that can help elucidate the importance of mitochondria-associated
ROS in disease [51,52]. Moreover, since we did not observe any effects of these compounds
on the tumors and metastases themselves, one possibility would be to explore whether
mitochondria-targeted antioxidants instead exert a cytoprotective effect on normal tissues
and alleviate off-target effects of standard-of-care treatments [53]. Some studies have also
shown advantageous effects when similar antioxidant compounds have been combined
with metabolic inhibitors [13], which opens up a possibility for the identification of new
metabolic vulnerabilities and potential therapies. Altogether, further studies are needed to
clarify the role of mitochondrial redox balance in cancer [54].

In conclusion, although the mitochondria-targeted antioxidants MitoQ and MitoTEMPO
have shown promising and exciting results in other pathologies, they do not hinder ma-
lignant melanoma and lung cancer progression as monotherapy in our models. Based on
these and previous findings [16,17,29,55,56], we warrant caution in the use of antioxidant
compounds in cancer.
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