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Abstract: Calmodulin (CaM) is an important intracellular protein that binds Ca2+ and functions as a
critical second messenger involved in numerous biological activities through extensive interactions
with proteins and peptides. CaM’s ability to adapt to binding targets with different structures
is related to the flexible central helix separating the N- and C-terminal lobes, which allows for
conformational changes between extended and collapsed forms of the protein. CaM-binding targets
are most often identified using prediction algorithms that utilize sequence and structural data to
predict regions of peptides and proteins that can interact with CaM. In this review, we provide an
overview of different CaM-binding proteins, the motifs through which they interact with CaM, and
shared properties that make them good binding partners for CaM. Additionally, we discuss the
historical and current methods for predicting CaM binding, and the similarities and differences
between these methods and their relative success at prediction. As new CaM-binding proteins are
identified and classified, we will gain a broader understanding of the biological processes regulated
through changes in Ca2+ concentration through interactions with CaM.
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1. Introduction

Calmodulin (CaM) is an intracellular Ca2+-binding protein (CaBP) in eukaryotic
systems, which functions as a second messenger that regulates myriad vital biological
processes through interactions with more than 300 target proteins and peptides. The
CaM protein, encoded by three different genes [1], is primarily expressed in eukaryotic
organisms, and is one of most highly conserved protein sequences, with only histone
proteins H4 and H3, actin B, and ubiquitin exhibiting greater evolutionary conservation.
Genetic mutations to the CaM sequence can lead to various and potentially fatal pathologies,
including ventricular tachycardia [2], congenital arrhythmia [3], and long QT syndrome [4].
These mutations can alter CaM’s affinity for binding Ca2+ and its target proteins and
peptides, thus interfering with their downstream activity.

Structurally, CaM is a predominantly helical protein (Figure 1A) that can be divided
into N- and C-terminal domains. Each domain includes two paired Ca2+-binding EF-hand
motifs (Figure 1B). Each motif consists of a canonical helix-loop-helix (HLH) structure. The
EF-hand motif, exhibiting pentagonal-bipyramidal geometry, includes a highly-conserved
sequence of 12 amino acid residues, identified by relative positions 1–12. Six of these
provide oxygen atoms as the preferred ligands for coordination of Ca2+ ions [5] from side
chains of residues in relative positions 1, 3, 5, and 12 [6], with oxygen from a carbonyl
group in position 7. In addition to oxygen ligands from the amino acids, water molecules
participate in forming the Ca2+-stabilizing coordination complex [7]. The two domains
are connected by an extended helix (Figure 1B) that is observed to be partially unwound
and coiled in the Ca2+-free state of the protein (Figure 1A) [8]. It has been experimentally
verified that the extended helix has a propensity to be inherently disordered, increasing
the overall flexibility of the protein, and allowing CaM to achieve different conformational
states in its interactions with other peptides (Figure 1C–I) [9].
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coiled in the Ca2+-free state of the protein (Figure 1A) [8]. It has been experimentally veri-
fied that the extended helix has a propensity to be inherently disordered, increasing the 
overall flexibility of the protein, and allowing CaM to achieve different conformational 
states in its interactions with other peptides (Figures 1C–I) [9]. 

 
Figure 1. All CaM structures shown in blue, and CaMBPs are shown in red or tan. (A). Apo-CaM 
(PDB ID 1cfd) with central helix unwound/extended. (B). Holo-CaM (PDB ID 4bw8) with 4 Ca2+ ions 
in EF-Hand sites 1–4. (C). Ca2+/CaM/MARCKS (myristoylated alanine-rich C kinase substrate) com-
plex (PDB ID 1iwq). The N-lobe of CaM is not involved in binding [10]. (D). Ca2+/CaM/CaMKIIα 
complex (PDB ID 1cm1) exhibiting 1-5-10 binding mode with collapsed CaM [11]. (E). 
Ca2+/CaM/RyR1 complex (PDB ID 2bcx) exhibiting unusual 1-17 binding mode with collapsed CaM 
[12]. (F). Ca2+/CaM bound to peptide analog of CaM-binding region of chicken smooth muscle my-
osin light-chain kinase (PDB ID 1cdl) [13]. (G). Apo-CaM/Myosin V 2:1 complex (PDB ID 2ix7). Each 
CaM C- lobe is partially open to grip the first part of the IQ motif (IQxxxR), while the closed N-
terminal lobes interact weakly with the second part of the motif (GxxxR) [14]. (H). Apo-CaM (blue) 
bound to zebrafish IQCG protein (red) (PDB ID 4lzx), exhibiting lower affinity than the Ca2+-bound 
state [15]. Sidechain interactions with CaM include residues highlighted in bold from the IQCG se-
quence 400-410 (LQAWWRGTMIR). (I). Ca2+/CaM/Glutamate decarboxylase chains B and C (PDB 
ID 1nwd) [16]. 

In the cell, CaM responds rapidly to increases in Ca2+ concentrations, which normally 
ranges from approximately 10–100 nM, by binding up to four Ca2+ ions in its paired EF-
hand sites. The EF-hand pairs interact cooperatively [17], and it has been proposed that 
cooperativity between two coupled EF-hand binding sites of domains of CaM, causes 
global conformational changes in CaM that are conducive to binding target effector pro-
teins to CaM [18]. The affinity range for each allosteric site has dissociation constant (Kd) 
values between 10−7 and 10−11 M, indicating high affinity binding [19]. In general, the C-
terminus motifs have a greater affinity for Ca2+ than for the N-terminus motifs [20,21]. 
Affinity equilibriums at each binding site, in addition to being sensitive to allosterically-
induced conformational changes, are also responsive to whether or not CaM has formed 
a binding complex with another protein. These changes are binding protein specific. Thus, 
there is a significant, cooperativity-mediated sensitivity to Ca2+ that is both inherent to 
CaM’s native conformation and influenced considerably by intraspecific and interspecific 
factors. 

Figure 1. All CaM structures shown in blue, and CaMBPs are shown in red or tan. (A). Apo-
CaM (PDB ID 1cfd) with central helix unwound/extended. (B). Holo-CaM (PDB ID 4bw8) with
4 Ca2+ ions in EF-Hand sites 1–4. (C). Ca2+/CaM/MARCKS (myristoylated alanine-rich C ki-
nase substrate) complex (PDB ID 1iwq). The N-lobe of CaM is not involved in binding [10].
(D). Ca2+/CaM/CaMKIIα complex (PDB ID 1cm1) exhibiting 1-5-10 binding mode with collapsed
CaM [11]. (E). Ca2+/CaM/RyR1 complex (PDB ID 2bcx) exhibiting unusual 1-17 binding mode with
collapsed CaM [12]. (F). Ca2+/CaM bound to peptide analog of CaM-binding region of chicken
smooth muscle myosin light-chain kinase (PDB ID 1cdl) [13]. (G). Apo-CaM/Myosin V 2:1 complex
(PDB ID 2ix7). Each CaM C- lobe is partially open to grip the first part of the IQ motif (IQxxxR),
while the closed N-terminal lobes interact weakly with the second part of the motif (GxxxR) [14].
(H). Apo-CaM (blue) bound to zebrafish IQCG protein (red) (PDB ID 4lzx), exhibiting lower affinity
than the Ca2+-bound state [15]. Sidechain interactions with CaM include residues highlighted in bold
from the IQCG sequence 400-410 (LQAWWRGTMIR). (I). Ca2+/CaM/Glutamate decarboxylase
chains B and C (PDB ID 1nwd) [16].

In the cell, CaM responds rapidly to increases in Ca2+ concentrations, which normally
ranges from approximately 10–100 nM, by binding up to four Ca2+ ions in its paired
EF-hand sites. The EF-hand pairs interact cooperatively [17], and it has been proposed
that cooperativity between two coupled EF-hand binding sites of domains of CaM, causes
global conformational changes in CaM that are conducive to binding target effector proteins
to CaM [18]. The affinity range for each allosteric site has dissociation constant (Kd) values
between 10−7 and 10−11 M, indicating high affinity binding [19]. In general, the C-terminus
motifs have a greater affinity for Ca2+ than for the N-terminus motifs [20,21]. Affinity
equilibriums at each binding site, in addition to being sensitive to allosterically-induced
conformational changes, are also responsive to whether or not CaM has formed a binding
complex with another protein. These changes are binding protein specific. Thus, there is a
significant, cooperativity-mediated sensitivity to Ca2+ that is both inherent to CaM’s native
conformation and influenced considerably by intraspecific and interspecific factors.

The Ca2+/CaM complex alters the conformation of CaM to interact with CaM-binding
domains (CaMBDs) of target proteins and peptides [22]. It is through interactions with
numerous CaM-binding proteins that CaM regulates diverse physiological processes that
include memory formation [23], muscle contraction [24], cellular metabolism [25], and
cytoskeletal rearrangements [26]. The proteins that CaM interacts with have been found
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in many different cellular locations and physiological environments. Myosin light-chain
kinase [24], calcineurin [27], and CaM-dependent kinases I–IV [28] are cytosolic calmodulin
effector proteins involved in motility, protein dephosphorylation, and protein phospho-
rylation processes, respectively. Recent rapid developments in structural, genomic, and
analytical methods have revealed the important roles of CaM in regulating membrane pro-
teins, including Nav1.2/1.5 channels [20,21], IP3R channels [29], connexins [30], and GPCRs.
These membrane embedded proteins participate in cellular depolarization, intracellular
second-messenger signaling, and paracellular signaling, respectively.

In this review, we will first provide an overview of different CaM-binding proteins,
the motifs through which they interact with CaM, and shared properties that make them
good binding partners for CaM. We will then review prediction algorithms that utilize
sequence and structural data to predict regions of peptides and proteins that can interact
with CaM. Historical and current methods for predicting CaM binding, and the similarities
and differences between these methods and their relative success at prediction, will also
be discussed.

2. Structural Aspects and Binding Modes of CaM-Binding Proteins

The properties of CaM that facilitate its binding modes include the flexible central
linker domain [31], methionine-rich linker domain, helix-helix movement, and side chain
rearrangements [32]. The N-lobe of CaM participates in binding more effectively during
complex formation associated with increases in local concentrations of Ca2+, while the
C-lobe participates more effectively at lower Ca2+ concentrations. Thus chelation of Ca2+

initiates Ca2+-dependent conformational changes at these lobes through α-helix movement
and rearrangements of side-chain contacts, which in turn affects interactions with CaM-
binding proteins.

Recent work on calmodulin’s different binding complexes [33] has improved our
current understanding of the mechanisms that result in the two CaM termini domains
exhibiting different characteristics in binding complex modes. Despite this, a compre-
hensive understanding of exactly how CaM can interact with such a large number of
proteins and peptides has yet to be established [34]. The use of spectral clustering system
modeling, which evaluates the extent of binding (e.g., loose binding vs. compact binding)
as a function of solvent exposure (hydrophobicity) and interhelical angles, led to three sig-
nificant discoveries. First, shallow binding occurs more often in the Ca2+-free (apo) forms
of calmodulin, which results in more interactions between polar and charged residues
on the calmodulin-binding protein interface. Secondly, the C-terminus of the calmodulin
protein has very fixed conformations for protein binding that usually lead to more compact
binding modes. Interestingly, the C-terminus of CaM typically exhibits higher Ca2+ binding
affinity than the N-terminus of calmodulin, which strongly suggests that the C-terminus
holoproteins represent an intermediate mode for calmodulin. Similar to the apoprotein
form of calmodulin, the third discovery demonstrated that the N-terminus of calmodulin
is flexible and binds more loosely to calmodulin-binding proteins. It is likely that the low
calcium and high calcium binding modes for calmodulin (apo and N-terminal, respectively)
bind with lower affinity to more effectively adjust to changes in Ca2+ concentration. Thus,
CaM may bind targets either in its apo or holo forms, and because CaM is divided into two
lobes (N- and C-terminal lobes), CaM may also functional in a partially saturated state,
where not all of the four EF-Hand sites are occupied.

For CaM-binding proteins (CaMBPs), binding typically involves a disorder-to-order
conformational change [22], and studies on the relationships between ion channels and
CaM have revealed that structural disorder provides the flexibility required for the fine-
tuned modulation needed to maintain intracellular homeostasis within the extracellular
milieu [35].

Targets that bind to CaM interact through regions of positive charge, hydrophilic
residues, and hydrophobicity in the helices [36]. The methionine-rich grooves in the linker
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domain allow for interaction with CaMBPs containing amphipathic α helices that attach to
holo-CaM using a pair of hydrophobic anchors [12].

During interaction with targets, CaM may also be described as exhibiting either an
extended or collapsed form. In the collapsed form, connection of two anchor residues
in the CaM-binding motif may reduce the distance between the two domains from 50 Å
to less than 10 Å [37]. Several variations of this anchoring pattern have been identified,
where the binding domain of the CaMBP include at least two hydrophobic anchor residues.
Examples of sequences containing these anchoring patterns (Table 1) include 1-10, 1-12,
1-14, 1-16 [38], 1-17 [12] and 1-10-14 [39]. An extensive review of known protein structures
of CaMBPs in the Protein DataBank was previously reported by Tidow and Nissen [40].
A 1–5–10 binding mode for holo-CaM in the collapsed form, determined using peptide
models, was observed with the α-subfamily connexins (Cx50p141–166, Cx44p132–153 and
Cx43p136–158) [41,42]. In its extended mode, Ca2+-activated CaM interacts with myosin V
Ca2+ channels, Ca2+ pumps, and SK channels (Small conductance Ca2+-activated potassium
channels), among others [41]. CaM also interacts with myosin light-chain kinase (MLCK),
which binds with a 1-14 anchoring that allows for the N and C-terminals of calmodulin to
wrap around the helix (Figure 1E) [43].

Table 1. CaM-Binding Motifs.

Motif. Sequence

Ca2+ Dependent

1-10 [FILVW]xxxxxxxx[FILVW]
1-5-10 [FILVW]xxx[FAILVW]xxxx[FILVW]

Basic 1-5-10 [RK][RK][RK][FAILVW]xxx[FILV]xxxx[FILVW]
1-12 [FILVW]xxxxxxxxxx[FILVW]
1-14 [FILVW]xxxxxxxxxxxx[FILVW]

1-8-14 [FILVW]xxxxxx[FAILVW]xxxxx[FILVW]
Basic 1-8-14 [RK][RK][RK][FILVW]xxxxxx[FAILVW]xxxxx[FILVW]

1-16 [FILVW]xxxxxxxxxxxxxx[FILVW]

Ca2+ Independent

IQ [FILV]Qxxx[RK]Gxxx[RK]xx{FILVWY]
IQ-like a [FILV]Qxxx[RK]xxxxxxxx

IQ-2A [IVL]QxxxRxxxx[VL][KR]xW
IQ-2B [IL]QxxCxxxxKxRxW

IQ unconventional [IVL]QxxxRxxxx[RK]xx[FILVWY]
Table reproduced from data provided by Mruk et al. [44]. Numbers indicate positions where hydrophobic
residues are required. Residues in brackets can substitute for each other in that position. a Some motifs require
Ca2+ for CaM binding x = any amino acid.

The IQ motif, as seen in myosin V Ca2+ channels, can interact with CaM when it
is Ca2+ free [43] or only partially saturated with Ca2+, and in some cases, in its holo
state [21] (Figure 1G). Calmodulin-dependent protein kinase II (CaMKII) also possesses a
more compact 1-5-10 hydrophobic residue anchor pattern [40] (Figure 1D). This form may
have evolved because the autoinhibitory domains on these proteins require more compact
binding to reactivate the phosphorylation sites on the protein. All of these different patterns
(Table 1) are dependent upon the extent to which calcium binds to calmodulin, meaning
that the activation, inhibition, or regulation of myriad calmodulin-interacting proteins are
all Ca2+ concentration-dependent processes. Thus, proteins with IQ motif binding patterns
are likely activated in the absence of intracellular calcium (Figure 1H), whereas proteins
with auto-inhibitory domains are more likely to be activated by high concentrations of
calcium. Additional insight into distinctions between apo- and holo-CaM, and interactions
with IQ motifs, was recently presented by O’Day et al. [34].

The activity of the skeletal muscle ryanodine receptor (RyR1) is inhibited as a result
of binding of Ca2+ to the C-lobe of the CaM protein (Figure 1E) [12], which facilitates
binding of CaM to RyR1 at its N-terminus through residues P3614-3643 [45–47]. Thus,
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inhibition is regulated at lower Ca2+ concentrations. CaM also interacts with cardiac RyR2.
Brohus et al. reported the use of fluorescence anisotropy to confirm binding of CaM to four
CaMBDs in RyR2, where increasing Ca2+ concentration increased binding affinity with the
CaMBD [48].

CaMBDs have also been identified through experimental data for several connexins
(Cx), which are members of the family of gap junction proteins expressed in the lens of the
eye. High-affinity CaMBDs have been identified in Cx43, comprising residues 138–157 [49],
and in Cx44, comprising residues 129–148 [50]. Both proteins include conserved hydropho-
bic residues in the CaMBD sequences at relative positions 1, 5, 10 and 14, corresponding
to 1-10 and 1-14 CaM-binding motifs (Table 1). Similar motifs have also been reported
for other proteins, including calcineurin and myosin light-chain kinase. A CaMBD was
also identified in the intracellular loop of Cx50, comprising residues 141–166 [42]. Ad-
ditionally, Zou et al., first reported the Ca2+-dependent, direct interaction of CaM with
Cx45 (connexin45) in living cells, and blocking by the CaM inhibitor, N-(6-aminohexyl)-5-
chloro-1-naphthalenesulfonamide hydrochloride [30]. In this scenario, NMR studies have
confirmed that the N-lobe of CaM is more involved in the binding of CaM to Cx45 than the
C lobe [30].

CaM-binding proteins are also involved in neurotransmission and synaptic plasticity
and strength. The activity of kinase α-Ca2+/calmodulin kinase II, which phosphorylates
presynaptic components (e.g., synapsin I), was reported to be modulated in its autophos-
phorylated state by interaction with Ca2+/CaM, resulting in either promotion or inhibition
of neurotransmitter release [51]. Xia et al., reported that the activity of small-conductance
calcium-activated potassium channels (SK channels) is regulated by Ca2+ binding to CaM,
which associates with the alpha subunits in the SK channel [52]. Minakami et al., reported
Ca2+-dependent binding of CaM to metabotropic glutamate receptor 5 (mGluR5), a G
protein-coupled receptor [53]. Protein kinase C (PKC) phosphorylates the CaM-binding
regions of mGluR5; so phosphorylation and CaM binding are antagonistic regulators of this
signaling process. In a subsequent study, O’Connor et al. reported binding of Ca2+-loaded
CaM to group III mGluRs, specifically the C-tail of mGluR 7 [54], which is necessary for
release of G protein βγ subunits during presynaptic glutamatergic neurotransmission.

In later studies, Huang et al. reported experimental evidence of a CaMBD comprising
residues 871–898 in the C terminus of Ca2+-sensing receptor (CaSR) [55]. CaSR, like mGluR,
is a member of the family C of G protein-coupled receptors, and a putative CaMBD in CaSR
was predicted by the Calmodulin Target Database [56]. Results of this study suggested a
Ca2+-dependent, 1–14-like CaM-binding mode that involves formation of a helix in the
CaMBD, which is consistent with identified CaM-binding motifs (Table 1).

3. Predicting CaM-Binding Proteins Using Generative Models

To understand how CaMs unique characteristics allow it to bind to a vast number
of protein targets in eukaryotic systems, prediction models based on known CaMBD
protein structures and established motifs were initially applied [56]. These models are
computational in nature, and use structural and sequential information to determine
possible CaM-binding sites on query proteins, as well as proteins available in sequential
proteomics databases such as NCBI, UniProt, or the Protein Data Bank (PDB), a structural
proteomics database. These bioinformatic developments have helped to understand where
CaM acts as an additional catalytic subunit for proteins that were not previously identified
as CaM targets.

Methods for predicting CaM-binding proteins have evolved over time, based on data
obtained from prior studies, and in conjunction with the development of new algorithms
and computational approaches to prediction problems. Progress in the calcium sciences
will require improved computational methods to identify previously undiscovered CaM-
target proteins. However, to accomplish that goal, it is important to understand which
bioinformatics approaches have improved our contemporary understanding of CaM-
mediated catalytic mechanisms. In particular, patterns or motifs in CaM-binding proteins,
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as well as circumstances that promote changes to the flexible linker region of CaM and
alter its conformational state for different binding modes, are essential for understanding
the computational tools that are used to predict novel CaM-binding proteins. Generally,
models rely on sequential and structural data to make predictions, and the individual
strengths and weaknesses of using each type of data, as well as the synergy that both data
categories provide together, will be discussed at length.

3.1. Introduction to Machine-Learning for Classification

For classifying proteins as CaM-binding target proteins or otherwise, the use of a
binary classification system is implemented. This system generally uses a 2 × 2 matrix
consisting of true positives (TP), false positives (FP), true negatives (TN), and false negatives
(FN). Classification problems are generally a supervised learning process, where examples
of CaM-binding proteins are training examples that other proteins are trained on, using
various cross-validation methods such as the leave-one-out method for SVMs [57], or the
design of reliability estimation tools for neural networks. Examples of these and other
approaches reviewed in this paper are summarized in Table 2.

Table 2. CaM-Binding Prediction Models.

Supervised Discriminative Classifier Models

Support Vector Machine
Hamilton et al. (2011), Minhas et al. (2012),

Abbasi et al. (2017)

Seeks to classify sequence data by maximizing the margin between positive and
negative features in a Euclidean hyperplane space through various tunable dot

product kernel functions

k-Nearest Neighbor
Li et al. (2018)

Classification is based on a vote of the closest training sequence samples in a data
set that is being classified, k = 1 for Li et al. (2018); guarantees the error rate is no

worse than 2× the Bayes’ error rate

Random Forest Classification
Wang et al. (2012), Li et al. (2018)

Uses various decision trees such that each tree depends on random vector values
that (1) have the same probability distribution for all trees in the forest, and (2) are

sampled independently to determine the mode of both positive and negative
sequence data sets

Neural Network/Logistic Regression
Radivojac et al. (2006)

One layer sorts various features into binary classification using a regression model
at an amino acid level and models the positive examples into likely regions that
are compared at the second level to sequences that are known to bind to CaM to

yield predictions in a binary classification logistic regression model for likely
binding proteins

Supervised Generative Classifier Model

Hidden Markov Model
Yap & Ikura (2000)

Uses related instances in the data to make predictions about a sequential event in
question. It is a computational method that considers all possible transition states

(in this case, amino acid residue represented by N) when forming a transition
probability, but only forms an emission probability based on the most likely

instance. In biological terms, the residue at the N − 1 position forms 20 different,
hidden transition probabilities for the amino acid residue at the N position, but

only the most likely amino acid residue is emitted, which is observed by the user

Unsupervised Clustering Model

Regular Expressions PERL Script
Mruk et al. (2014)

Identifies motifs that are experimentally verified to bind to CaM using a text
degenerate-pattern matching script, and adds motif scores together within a

21-residue binding to represent windows that are likely to bind to CaM based off
the number of binding motifs that are observed within that scoring window

For artificial intelligence-type algorithms, receiver operator characteristic (ROC)
curves are often constructed in order to display the sensitivity and the specificity of the
model in question. Sensitivity is best understood as the true positive rate (TPR), represented
by Equation (1).

Sensitivity (TPR) = ∑(TP)
∑(TP) + ∑(FN)

= 1− FNR = Recall (1)
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Conversely, specificity (i.e., selectivity) is best understood as the true negative rate
(TNR, Equation (2)).

Selectivity (TNR) = ∑(TN)

∑(TN) + ∑(FP)
= 1− FPR (2)

When plotted on a receiver operator curve, specificity is represented as (1—Specificity)
on the abscissa, and sensitivity is the ordinate. Depending on the prediction system,
these values are optimized at thresholds that are deemed appropriate for the problems
being tested. It is also notable to mention that it is ideal for receiver operator curves to
maximize the value on the ordinate at the most minimal value of the abscissa. However,
this is primarily at the discretion of the designer of the model. An example of a binary
classification trade-off where one might choose to maximize specificity over sensitivity
would be the development of a medical diagnostic for a highly infectious and fatal disease.
The cost of a false negative is considerably higher than a false positive—measured in human
lives saved. However, for a cheap diagnostic test usable at home, such as a pregnancy
test, it might be more efficient to maximize sensitivity at the expense of specificity. False
negative results are much less likely to occur than false positive results when one chooses
to approach a binary classification problem in this way. One way of representing this
characteristic is by taking the integral of the curve to compute the area under the receiver
operator curve (AUC). A large AUC represents a robust predictive model and is a common
way to compare different predictive systems to each other, especially with respect to
artificial intelligence systems.

Additionally, another AUC representation that is used for classification and prediction
is known as precision-recall (AUC-PR). Recall is, for all intents and purposes, the same as
sensitivity (see Equation (1)). The AUC-PR models the sensitivity of a classification system
against the positive predictive value (PPV), or precision, of a prediction model.

Precision (PPV) =
∑(TP)

∑(TP) + ∑(FP)
(3)

Modelling sensitivity against precision versus modelling it against the selectivity of
any binary classification system depends on the search objective. The AUC-ROC curve will
yield values that describe how well the classifier works in general, while the AUC-PR curve
will yield values that describe a classifier’s predictive capacity at a baseline probability.
When there are significantly more negative examples than positive examples, it may be
more useful to use the AUC-PR values, as this elucidates the relevance of true positive
examples against all examples that are identified as positive (i.e., both true and false
positives). Datasets of this nature are known as unbalanced datasets. One can conclude
from this logic that for a balanced dataset, where there are equal amounts of positive
and negative examples for binary classification, an AUC-ROC curve better represents the
classification efficacy than an AUC-PR curve.

3.2. Prediction Using Profile Hidden Markov Models

The Calmodulin Target Database (CTD), developed by Yap and Ikura [56], is consid-
ered to be the current “gold standard” for CaM-binding protein prediction, as exemplified
by their use in other CaM protein prediction databases as a standard for comparison [44,58].
This database utilizes Profile Hidden Markov Model (pHMM) algorithms for predictions,
which have proven effective in the case of predicting CaM-binding sites, because they
incorporate probability distributions of all possible sequences on a residue-by-residue basis.
Only one sequence, however, is observed by the user—giving pHMMs their eponymous
“hidden” characteristic. The CTD’s code prunes sequences that are considered improb-
able due to their lack of congruency to expected residue characteristics present in the
CaM-binding motifs by using these pHMMs. Low probability emissions, or “misses”, are
constrained by boundaries inherent to the algorithm, and these inherent boundaries are



Int. J. Mol. Sci. 2021, 22, 308 8 of 26

the high probability predictions, or “hits”, that are considered to be CaM-binding sites
based on their similarity to the training datasets of proteins known to bind to CaM [59]. For
example, if a peptide sequence matches the 1-10 motif perfectly, it will still be considered
a miss if it does not contain the 3 consecutive basic residues preceding the hydrophobic
anchor residue at residue 1.

pHMMs determine the optimal sequence by using a 20-residue “sequence walk”
procedure when making these 1–9 integer assignments. Sequences stretching from 10–20
amino acid residues that earn scores between 7 and 9 are considered a “hit”, and thus
match one of the patterns inherent to these motifs with high probability. This scoring
approach uses dynamic programming [60], which compares two amino acids at a time, and
assigns each residue an identifier such as “match”, “mismatch”, “insertion”, or “deletion”.
Predicted matches are assigned a score of 1, and predicted mismatches are assigned a score
of 0. To understand dynamic programming, it is useful to imagine a 20 × 20 mathematical
matrix created from these data, where one axis represents all 20 possible amino acids and
the other represents the transition associated with a position along the 21-residue sequence
typical to CaM-binding proteins (since there are n-1 transitions, there would be 20 of these
transitions). Certain hypothetical pathways are more likely than others in this matrix,
and are determined by how similar the transition probabilities formed by this matrix are
to the known CaM-binding motifs. Insertion and deletion identifiers introduce penalty
parameters to account for noise in the sequence signal that originates from mismatch codon
sequences at the pre-translational level. There are also other classifiers that optimize the
transition probability parameters, described below.

BLAST and FASTA, two algorithms incorporated into the CTD, are responsible for
identifying the motif and/or profile that matches sequences within a query protein [61].
In the context of identifying whether a prospective binding partner is a hit or a miss,
the CTD incorporates many of the known motif patterns that have been experimentally
verified, such as the Ca2+-independent IQ motif, and the Ca2+-dependent 1-5-10 motif
(Table 1). Furthermore, by performing a multiple sequence alignment function on known
protein sequences across different proteins, the motifs are given profile identities [62].
These approaches are very important for identifying and describing CaBPs and CaMBPs,
as there remain numerous Ca2+ concentration-dependent structural conformations for
CaM-modulated proteins that have yet to be resolved by NMR, circular dichroism (CD)
spectroscopy, X-ray crystallography, or other structural-determination strategies. It is
useful to be able to reference structural information for pruning false positives or forming
new hypotheses, but sequential data are more reliable—provided that the protein has a
rigid structure and a high degree of evolutionary conservation at a genomic level (i.e.,
fewer mutation events). These are all important considerations for interpreting the results
of bioinformatics searches at a protein level.

Certain data arise from the integration of aligned motif sequences into profiles. For
example, conserved residues are identified and given more probabilistic weight, and
penalties for likely insertions or likely deletions stemming from mismatch codon sequences
are introduced into the probability functions to account for these exceptions. However, the
only way to optimize penalty parameters is to evaluate the true statistical significance of
penalties, since profiles are often arbitrary, and are only capable of being optimized using
manual trial-and-error methods [59]. Additionally, since conserved residues often descend
from common phylogenetic ancestors, there is a capacity to inadvertently introduce bias
into the prediction functions using profiles alone.

The pHMMs, such as SMART and PFAM, provide a solution to the inherent bias
issue that using profiles as a prediction tool alone, do not. Each residue and sequence
in a profile are treated as if the model itself did not create it, in either pHMM [59]. Both
SMART and PFAM allow for penalty parameters to be determined empirically, and thus,
evaluated for statistical significance without the phylogenetic bias previously described.
Most importantly, these models match the profiles to putative domains that have been
annotated with a wide variety of detail-specific classifiers, such as genetic variants (i.e.,
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isoforms), active sites, phosphorylation sites, and non-catalytic binding sites (e.g., inhibitory,
feedback regulators) [63]. However, there are nuances between the two pHMMs when
performing these functions. PFAM is a much more conservative pHMM than SMART.
SMART allows for subfamily classification and assigns putative domain boundaries to the
entire domain rather than investigating annotated domain fragments unlike the PFAM
system, whose domain boundaries are inherent to each seed alignment [63].

Where SMART and PFAM find common ground is through the addition of another
level of statistical scrutiny when searching for matches between query proteins entered
by the user, and motifs embedded in the profiles. They annotate proteins in the SWALL
database according to their functional domain identities, and match motifs in the profiles
to proteins in the database. Domain-specific identifiers, such as “channel” or “catalytic”,
provide functional context that allow for more robust CaM-binding protein prediction.
There are three verified CaM-functional mechanisms: (1) relief of autoinhibition with the
CaM-binding site adjacent to, or within the autoinhibitory domain of the CaM target;
(2) active-site remodeling, and; (3) CaM-induced dimerization [64]. SMART allows for
the CTD to be more sensitive to functional domains that are coherent with these known
CaM activation mechanisms by using terminology from gene ontology (GO) enrichment
tools [65]. It should be noted that domain-sensitive pHMMs are not usable for query
proteins whose physiological functions are unknown or unpublished.

The Calmodulin Target Database (CTD) derives 176 known full-alignment CaM-
binding sequences using the SWALL database, which integrates search results from SWIS-
SPROT, TREMBLE, and TrEMBLE New. Although the CTD mostly relies on 2D sequential
data, it does include limited 3D structural data from known CaM-binding proteins such as
the skeletal muscle myosin light-chain kinase [66], the smooth muscle myosin light-chain
kinase [13], Ca2+/CaM-dependent protein kinase IIα [67], Ca2+/CaM-dependent protein
kinase kinase [38], and the plasma membrane Ca2+ pump [68]. The CTD also utilizes
biophysical parameters including hydrophobicity (Kyte–Doolittle values) [69], hydropho-
bic moment (Kyte–Doolittle values as a function of the Eisenberg equation) [70], and the
propensity for a residue to contribute to an α helix (Chou–Fasman values) [71] to provide
context-dependent predictive power for each residue.

A total of 1260 seed sequences (from the 176 full sequences) that are homologous
to sequences in one of the four motif classes were identified from these proteins. Using
the dynamic programming approach on this set of proteins, the CTD predicted 24 1-10
motifs, 43 1-14 motifs, 75 IQ class motifs, and 34 motifs in its miscellaneous subclass,
including the 1-12, 1-16, and basic motifs. Of these 34, 16 were unclassified, but are still
used in predictions in case more query proteins are found to be homologous to these in the
future [56].

Various functions, such as the CTD search function that matches a query protein or
query genomic sequence to a motif family, access these pHMMs to make the prediction
problem less complex. These algorithms also provide a domain-based analysis of the
query peptide using known nucleotide codon sequences. By checking the seed alignment
information against the full alignments, the CTD incorporates multiple parameters (i.e.,
biophysical, structural, sequential) to make context-dependent predictions by using known
information about where one might expect a motif to be on a query sequence. For example,
the CaM-binding motifs are usually found immediately after the catalytic domains for
CaM kinases and phosphoryl kinases, and after the channel domains for NMDA receptors,
and both are close to the C-terminus of the peptide. For IP3 receptors, the CaM-binding
motif is typically sequentially distant from the catalytic domain, and falls closer to the
N-terminus of the peptide. Some, such as MAPK/ERK pathway proteins, identify CaM-
binding sequences inside the catalytic domain. These provide reference points that increase
the likelihood that a “hit” exists at those points in similar query proteins [56].
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4. Predicting CaM-Binding Proteins Using Clustering Approaches
4.1. Brief Introduction to Supervised Versus Unsupervised Learning

Many classifiers, such as generative classifying HMMs that have pre-labeled training
sequences, and discriminative classifiers (i.e., SVM, k-NN, RF), use supervised learning.
In fact, supervised learning is inherent to all classification systems. These models use
training examples of known proteins to make predictions about novel query proteins to
determine whether they are CaM-binding targets. HMMs are based on generative training
using a joint probability distribution (P(A∩B)). This is different than a discriminative
classifier, which use a conditional probability distribution (P(A|B)). The former analyzes
the probability that two different events happen simultaneously (A and B), while the
latter analyzes the probability of 1 event (A) occurring as a consequence of another event
(B). Additionally, HMMs tend to use empirical risk minimization, while discriminative
classifiers use structural risk minimization. Empirical risk minimization chooses a decision
rule, defined by a mathematical function, when classifying sets of data. Conversely,
structural risk minimization has two primary goals. One is to control the empirical risk
from the model’s training examples, while the second goal is to regulate the ability of the
decision functions to reach a particular numerical representation of risk [72]. Justino et al.
provided a more in-depth review on how these risk minimization strategies are used for
each classifier system.

Another approach is based on unsupervised learning, which often consists of cluster-
ing methods that look for correlations in unlabeled data. This style of learning requires
human supervision for making inferences. Since some HMMs require the comparison
of sequence-based predictions to the known NMR or X-ray crystal structures for CaM-
binding proteins, the HMM is sometimes considered to be a mixture of both supervised
and unsupervised learning. The next section includes a discussion on a clustering method
used for predicting CaM-binding protein targets. These use an a priori probability distribu-
tion (px(x)).

4.2. Prediction Using Canonical Motif Clustering

The presence of an overlapping binding motif can improve the probability of a true
positive in the data, compared with a single isolated motif. Developed by the University
of Massachusetts, this prediction strategy, engineered by Mruk et al. [44], is available
online as the Calmodulation and Meta-Analysis Predictor. In the associated publication
regarding the search engine for calmodulation [44], the authors elaborate on the site-specific
approach for identifying and predicting calmodulin-binding sites. For this study, 48 known
CaM-binding proteins, and 52 sequences containing CaM-binding motifs were used as
inputs to the model. The use of positive and negative weights, or bags, were applied to
different binding-site windows across the protein sequence. Additionally, a motif score was
assigned for each amino acid residue on the chain being analyzed. This score represented
how many different canonical calmodulin-binding motifs were identified from the dataset
provided. The authors input 16 different motifs, but some of the motifs were subfamilies
of a parent motif class (e.g., 1-8-14 and basic 1-8-14), and were tested separately in this
case, in order to avoid overgeneralizing the dataset. The authors also introduced several
restraints on their algorithm to avoid false positives—for example, a window size of 10
amino acids, an average motif count of ≥2, a net electrical charge of ≥1, and an average
hydrophobicity value ranging between 3 and 2.5. Results reported from the use of these
biophysical parameters as filters indicated that the net electrical charge discriminator was
the most useful filter for correctly identifying motifs for calmodulin binding.

Similar to the Calmodulin Target Database, there are some structural data that are
also incorporated into the Calmodulation Meta-Analysis Database. The structural data,
however, are not as closely tied to biophysical parameters, such as the Chou–Fasman α

helix propensity values used in the Calmodulin Target Database [71]. Instead, the CaM
crystal structure is matched against known crystal structures for any query protein that is
also located in the PDB in order to determine whether there is a strong or weak likelihood
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that the query protein binds to CaM. Although there are biophysical constraints put upon
the datasets used in the Calmodulation Meta-Analysis Database, these are applied at
the sequence-level of prediction that is primarily used to make predictions. Most of the
structural tools used in the prediction are used to prune incompatibilities between sequence
and structure research findings.

One consideration that the Mruk approach took into account concerned the presence of
multiple overlapping calmodulin-binding sites that occur frequently in known calmodulin-
binding proteins. Depending on the protein in question, these sites can work synergistically
to enhance calmodulin-binding. For example, the KCNQ channel protein was discovered to
possess a glutamine (Q) in position 2 of an IQ motif (Figure 2) present in the protein, which
is also a part of a 1-12 motif [73]. These overlapping motif data are detected by matching all
of the motif patterns within a particular window to the known motifs contained within the
degenerate text-pattern matching PERL script. The probability of a CaM-binding site within
this window is determined by calculating a motif score for that window. Unlike Hidden
Markov Models, the regular expressions script uses inference tools to find familiar patterns
in the “hidden” emissions to make better predictions. However, pHMMs better represent
a true protein model by cross-referencing previous patterns where indels identified in
previously analyzed sequences, are pre-labeled. Thus, pHMMs are capable of considering
these variables when determining the transition and emission probabilities of each residue
(i.e., state), while the PERL script primarily looks for qualitative similarity, and develops a
scoring system for each window to classify a region as CaM-binding or not.
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There were some limitations in the use of this strategy to successfully predict CaM-
binding proteins. Compared to the Calmodulin Target Database (less than 50% true positive
hit rate), the Calmodulation and Meta-Analysis Predictor was more effective for predicting
CaM-binding motifs in a sample protein (67% true positive hit rate), as long as the query
protein entered was a smaller target (less than 100 amino acid residues). However, results
were significantly worse when attempting to predict calmodulin-binding sites when the
protein target was longer than 100 amino acid residues—a scenario where the Calmodulin
Target Database still remains dominant in prediction power. Further, because the Calmod-
ulation Meta-Analysis Database uses a 1D sequence-dependent strategy (i.e., degenerate
text-pattern matching using the regular expressions algorithm), the potential exists for
conflicting predictions when sequential or structural data are analyzed simultaneously.
In fact, this is a key challenge in predicting binding domains for proteins in general. An
example of this quandary arises within this database with isoform 4 of the PMCA protein.
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The calmodulation strategy does not predict a complex between CaM and any of the
canonical motif patterns that the system recognizes. Yet, the NMR-determined binding
regions of the C20 and C28 were demonstrated to show a high probability of binding to
CaM, according to their Meta-Analysis.

5. Predicting CaM-Target Proteins Using Discriminative Models
5.1. CaM-Binding Protein Prediction Using Logistic Regression Classification of Disordered
Proteomic Characteristics Via Neural Networks

Neural network approaches used by Radivojac and Dunker were designed to be
sensitive to the intrinsic disorder inherent to many of CaM-binding proteins by classifying
positive and negative examples according to features that are associated with proteins of
this nature. For assigning classification labels, the neural network uses logistic regression.
This method uses a sigmoid function to classify examples into positive (1) or negative (0)
labels. However, this function alone is generally prone to error, identified by the term
weight, and represented by the variable, w. A gradient descent function is introduced in
order to correct for the weight contained by the sigmoid function. Another way to make
the model more reliable is by reducing the cost function, which calculates the error between
expected and observed values. These optimization strategies are respectively achieved
using backwards propagation for the gradient descent function and forward propagation
for the cost function. These are modes that help code the logistic regression neural network
into programs such as Python.

Specifically, 157 unique CaM-binding proteins were assembled from the Calmodulin
Target Database to test the predictive power of this approach in the context of features that
are associated with proteins that are inherently disordered. Among this set of 157 proteins,
there were 198 calmodulin-binding target regions, or motifs, identified [74]. The feed-
forward neural network was designed to be dual layered, with one layer operating at the
amino acid residue level, and a second layer working at the calmodulin-binding motif level.
A total of 92 features were incorporated into prediction at the residue level, with four unique
symmetric sliding windows of win (where sequence length = 1, 7, 11, or 21). Sequence
complexity, physicochemical parameters, hydrophobic moment, secondary structure, and
intrinsic structural disorder, were features used as inputs in the first layer. The second
layer integrates likely targets from the first layer, and then calculates probability density
functions based on that data for each motif. This layer is used to form probability density
functions using global indicators of calmodulin-binding related to disorder specifically,
such as the flanking sequence length of the window analyzed, the percentage of predicted
disorder in these flanking sequences as derived from the first layer, the globularity of the
protein as a whole, and the charge-to-hydropathy ratio.

By considering emergent properties from the first layer, this devised system is well
tuned to the effects of structural disorder on successful calmodulin-binding prediction. One
additional self-tuning mechanism also represented and incorporated into the prediction
model at the first layer is the capacity for the sequence window to expand or collapse—also
known as sliding-window approach. Window frames are analyzed for their predictive
power, or classification efficiency, by moving across the sequence to analyze the features
when only the residues within that frame are considered. This approach is useful in
response to changes in the crystal protein structure at the N- and C-termini of a protein—
when it is necessary for the window to collapse to a shorter frame as a consequence of
fewer amino acids available in that specific prediction frame. In this way, the positive
and negative labels of CaM-target binding sites are treated computationally similar to
larger windows by the model. Although the flexibility of the window being analyzed is
important, each window must remain symmetrical numerically, so window sizes are often
chosen to be any odd integer of amino acid residues, even at smaller window sizes.

The 92-fold feature space and the small threshold for predicted true positives regard-
ing accurate calmodulin-binding prediction requires a machine-learning mechanism that
is highly sensitive when extracting relevant parameters. Thus, 20 feed-forward neural
networks with 10 hidden nodes were chosen from separate datasets as a reliability estima-
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tor to identify underrepresented or overrepresented portions of the training dataset for
CaM-target binding. This model was applied to the 198 sequences in the SWISS-PROT pro-
tein sequence dataset, where sequences were then evaluated for all of the features on both
levels described above. Then, each feature classifier was used as input to the feed-forward
neural network, which was trained on an equal number of random data points from a
positive set (e.g., the SWISS-PROT dataset) and a negative set (e.g., the calmodulin-binding
protein dataset). Thereafter, the trained model’s prediction abilities were tested on each
individual motif to cross-verify the efficacy of the model.

Overall, the system designed by Radivojac displayed a sensitivity of 73.2% ± 2.74 and
a specificity of 88.5% ± 0.2 for prediction on an amino acid level. The average of the two
predictive components indicated an accuracy percentage at the amino acid level of 80.8%
and a precision of 29.1% ± 2.1. It is most notable that although the accuracy percentage
between the amino acid level (i.e., first layer) and at the regional level (i.e., second layer)
are comparable, the precision at the amino acid level is higher than at the regional level by
6.3% (pr = 22.8% at regional level). Many previously confirmed features that are known
to be associated with a calmodulin-binding site were also confirmed by this algorithm,
such as net charge and helical propensity. Some of the true findings, however, included
higher total charge and more inherent structural disorder than non-calmodulin-binding
proteins. Unstructured protein domain profiles that were found in proteins affected by
calmodulin included: proteins that regulate signal shuttling between the nucleus and
the cytoplasm; ribosomal proteins that also contain DNA-binding sites (likely for extra-
translational activities of the ribosome); and locations that identify as repeat regions or
phosphorylation sites.

5.2. Prediction Using Various Support Vector Machines on Arabidopsis thaliana Proteins

Profile Hidden Markov Models (pHMMs) are capable of integrating some parameters
while making predictions, ranging from the sequence identity of a known calmodulin-
binding motif to the biophysical parameters of the residues present in a sample sequence
entered into the database. However, there are issues that limit accuracy of predictions. The
Calmodulin Target Database uses the motif sequences derived from structural data as pre-
labeled data that can be matched to a query protein, but it is incapable of identifying novel
motif sequences. Additionally, long-distance correlative relationships between two distinct
amino acids in a protein sequence are not as easily modeled as short-distance correlations,
as seen when two distinct amino acids are side by side [59]. These shortcomings can
increase the likelihood that a query sequence will be classified as a false positive by the
CTD’s prediction system; a problem identified by the authors of the Calmodulin Target
Database, resulting in a 33% false positive rate with their system [56].

To address this false positive dilemma, support vector machine (SVM) algorithms
have been utilized to adjust for the complexity of a prediction system by seeking to find a
linear or non-linear discriminative hyperplane. Using kernel functions, these models are
able to find a space within the many dimensions of parameters that are incorporated into
the model that represents “hits” (represented numerically as +1) and “misses” (represented
numerically as −1) most ideally for multi-dimensional sets of data. There are several
good reasons for using kernel functions to classify complex datasets. First, it allows for
designers of prediction models to work with datasets that have no clear representation
in a Euclidean hyperplane (i.e., linear, polynomial, exponential, etc.), which is the case
with most biomolecules and their respective units (e.g., proteins to amino acids and
DNA to nucleotides). Secondly, it creates decision boundaries for non-linear datasets,
allowing for the application of machine learning techniques usually reserved for linear
classification problems.

Kernel functions tend to solve classification problems either using polynomial or
Gaussian functions applied to a multi-dimensional feature space, allowing for a strategy
that classifies more complex datasets as simply as a linear classifier model can. These
nuances differ between polynomial functions and Gaussian functions. For example, for
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polynomials, the degree (d) of the polynomial of the dot product formulation (Equation
(3)) controls the flexibility of the support vector (SV)

kd,k
polynomial (x, x′) = (<x,x′> + κ)d (4)

Generally, the higher-order polynomials, where d > 0, result in more flexible bound-
aries, but determining which one to use is a function of the datasets being analyzed.
Additionally, for higher-degree polynomial functions, normalization of the function leads
to better computational performance and numerical stability. Thus the use of kernel
methods, using normalization to ensure that features are properly scaled, can improve
AUC-ROC results with higher-degree polynomials [75].

Conversely, Gaussian functions of the dot product formulation (Equation (4)) are also
useful formulations for support vector machines. Curvature of the vector space that the
function occupies is important for classification.

kσ
Gaussian(x, x′

)
= exp

(
− 1
σ

∣∣∣∣x − x′
∣∣∣∣2) (5)

Here, the primary variable that controls the classifier is the width parameter variable σ.
When σ is small, the decision boundary for classification becomes more flexible. However,
if σ becomes too small, overfitting of the datasets becomes inevitable. On the other hand,
as the value of σ increases, the curvature becomes smoother, thus relaxing the boundary
between positive and negative examples. If the boundary for classification becomes too
relaxed (i.e., σ is too high), the Gaussian function begins to exhibit linearity, which is not
ideal for classifying unbalanced sets of data. However, depending on the dataset being
used, it may be useful to have a more relaxed classifier system—especially when one is
optimizing a classifier for sensitivity and selectivity.

There is a tradeoff between flexibility and overfitting that is important for using kernel
methods to make computational predictions. Depending on how unbalanced the dataset
being analyzed actually is, it may be important to only allow certain extents of flexibility,
which are commonly adjusted by computational biologists when designing kernels. In fact,
with respect to designing kernels for protein–protein interactions, as is the case with CaM
and its target proteins, it has proven useful to combine several kernels together to increase
the performance of a classifier system [75]. CaM prediction generally uses Gaussian kernels,
exhibited by the choice of classifiers used for SVM methods [58,76].

For CaM-binding protein classification, these kernels have been designed to be sensi-
tive to different features. The 1D kernel machine function, for example, is sensitive to amino
acid residues in a potential CaM-binding protein. PSI-BLAST, another kernel machine
function, is sensitive to highly conserved proteins that have co-evolved in response to
CaM’s ubiquitous influence on second messenger signaling. The use of different kernels to
optimize the predictive capacity of a SVM has been researched extensively in context of
the plant species Arabidopsis thaliana and its CaM-binding partners. A review by Ben-Hur
et al. [75] offers an extensive elaboration regarding the mathematical specifics of many of
these kernels.

Smaller cost terms found in linear SVM formulations [77] result in larger margins,
and ultimately reflect a smaller penalty for misclassification by the model than larger cost
terms. By having a large-margin for classification, the model is able to make predictions
on examples that the model has not seen before (i.e., new query proteins). There are other
points of control for the classification efficacy that depend on the type of kernel function
that is being used. Generally, the width variable controls the margin for Gaussian functions,
while the order of the polynomial controls the margin for polynomial functions. The
margins become too flexible when smaller width Gaussian functions and higher-degree
polynomial functions are used, which is similar to the cost terms in linear SVM becoming
too small. These are all examples of overfitting the data. Developing the ideal predictive
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system using SVM will require a balance between allowing the model to handle new data,
and not overfitting the data used to create the model.

Hamilton, Reddy, and Ben-Hur [64] sought to simplify the complex computational archi-
tecture of the model developed by Radivojac and Dunker by using SVM algorithms—because
doing so allows for the model to apply many kernel functions to a given binary model
in order to allow the model to handle a wide range of potential parameters in a multi-
dimensional feature space. One way that their approach differs significantly from using a
pHMM rests in the fact that the use of the sliding window approach allows for the proba-
bility of a prospective binding window to be a “hit” while not being influenced by penalty
factors introduced by previous amino acid residues—particularly if these residues are not
present in the window being analyzed. Thus, the SVM allows for the prediction of possible
binding partners that are only subjected to the influence of a kernel function within a
specific window. This strategy allows the model to recognize particular features that are in-
fluential in determining whether a potential binding site is a likely “hit”. Examples of these
features are similar to the features identified by Radivojac as being critical to CaM-target
binding, including helicity, charge, and aromatic content of amino acid residues.

Multiple kernels provide more sensitivity to different types of data, as previously
discussed, but research indicates that this does not always lead to equal classification
accuracy among all of the tested kernels. Among the kernels tested, one that is sensitive
to evolutionary conservation (i.e., psi) and one that is sensitive to short motifs, like the
IQ motif (i.e., gappy-pair), were calculated to have the highest AUC among all kernels
(AUC = 0.88, 0.89, respectively). Additionally, when these two kernels were compared
to Radivojac’s work with respect to their receiver operator characteristic, both kernels
exhibited a higher maximum value of true-positive rate (e.g., y axis) at the specificity
threshold of 0.026 (specificity = 0.974) than the neural network approach by Radivojac. The
psi kernel yielded a value between 0.20 and 0.25 at this specificity value—representing the
highest sensitivity at a considerably high specificity threshold used for their gene ontology
(GO) analysis.

The SVM developed by Hamilton et al. [76] was compared to a novel SVM developed
by the Minhas’ group, who extended Hamilton’s strategy by applying a SVM algorithm
to a large-margin classification problem with multiple instance learning [58]. The authors
developed and later applied a novel SVM algorithm of their own to improve the likelihood
that a sequence is a true binding motif. The improved SVM, also known as the MI-1 SVM,
considers not only the specific amino acid residues, but also the sequential coordinates of
the binding motif in a designated window of N amino acid residues (i.e., a positive window,
referred to as a bag), and the likelihood that the sequence will produce a hit in that specific
location in the sequence by referencing coordinates in the sequence where the motif will not
likely yield a match (i.e., a negative bag). This strategy is called multiple instance learning.
Additionally, it presents a less complex constraint, in that at least one of the windows in a
sample binding site needs to score higher than the negative windows from the same protein
in order to be considered a positive window. Previously, all examples were used as the slack
variables meant for training the model. In their novel MI-1 SVM, only the binding sites, or
positive bags, are treated as the slack variables used for optimizing the margin between
positive and negative bags. This reduces the number of variables that the algorithm needs
to be trained on, and it also eliminates the need for a bias term to be introduced. The slack
variables cause the boundary line to be sensitive to positive examples of CaM-binding
proteins, which are merely a subset of the large number of training sets used. For example,
a 6 residue IQxxxR sequence may have a greater emission probability at residues 6 through
11, than at 5 through 10. This example is within a total 21 amino acid sequence—the
average number of residues in a calmodulin-binding motif. By self-referencing the test
sequences, a weight system that predicts the likelihood of the motif occurring at any point
in the sequence is able to improve the likelihood of a true hit, and mitigate the likelihood of
a false hit. The utilization of the triplet gappy kernel, which can represent motifs within the
function used for separating the feature hyperplane into positive and negative examples,



Int. J. Mol. Sci. 2021, 22, 308 16 of 26

allows for the model to use position-dependent information when determining whether a
window contains a binding site for CaM or not. Two other kernels, the p-spectrum and the
position-dependent p-spectrum, were also used to define the hyperplane between positive
and negative examples. These two kernels were also combined to determine whether
both position-dependent and position-independent features had a measurable impact on
predictive power of the SVMs.

In addition to testing an improved version of the same algorithm used by Hamilton
et al., the Minhas group also tested an improved computational strategy against the one
used by Hamilton. While earlier work only used a discriminant function strategy based
on maximum discriminant function score across all windows in a protein to make CaM
predictions, Minhas and his group added another layer of refinement to the previous
strategy, using cascaded classification. This approach helped to filter out any noise (i.e.,
increase the sensitivity) by defining the most probable CaM-binding sites in all positive
examples within a window that are known to bind to CaM, as well as negative windows
that are known not to bind to CaM. In this way, it becomes possible to filter out any non-
ideal contributions to the Gaussian distribution chosen for this approach stemming from
non-CaM-binding proteins—ultimately leading to more accurate CaM-binding prediction.

Although the experimenters chose 210 proteins from the Calmodulin Target Database
to test the algorithm, only 153 proteins with 185 binding sites were selected, in order to fit
the criteria that no two proteins have more than 40% identical sequence identity, and no
two binding sites have more than 50% identical similarity in respect to CaM-binding motifs.
The AUC and ROC values for the discriminative function approach were verified with
a “leave-one-protein-out” (LOPO) strategy. This optimized the receiver operator curve
by testing the predictive strength of the model through observation of the corresponding
changes in the AUC and ROC values to a cut-off at the first 10% of false positives (AUC0.1)
to elucidate the number of true positives produced at low false positive rates. Between each
iteration of the LOPO, a 5-fold cross-validation was used to help choose the cost function,
C, for the SVM. For the cascaded classification approach, a 5-fold stratified cross-validation
with nested grid search was used for optimization. Specifically, different Gaussian widths
and cost function values, C, were tested on the model’s examples using this approach.

As summarized in Table 3, the MI-1 SVM using the position-dependent features was
more successful (AUC = 96.8, Max Std. 0.14) at increasing the likelihood of a true positive
than the vanilla SVM with the position-dependent features (AUC = 95.6, Max Std. 0.16).
The smaller standard deviation with the MI-1 SVM represents a smaller variability in the
training samples of the MI-1 SVM, as a consequence of changes in the data, than the vanilla
SVM using the previously described cross-validation methods. Improved fitting of the
sample data using cascaded classification was believed to help in avoiding the overfitting of
the test data, and considered the possibility that a motif might have an increased probability
of being a CaM-binding site based on relative location. However, the ROC-AUC for
cascaded classification, using the position-dependent feature representation, only yielded
an accuracy one percentage point higher than the discriminative function prediction.

Table 3. Comparison of Results for Vanilla SVM and MI-1 SVM.

Method Features AUC AUC0.1 TH % FH %

Vanilla SVM 1-Spec 95.5 53.9 66 2.6
PD-1 95.6 54.5 64 2.5

Comb. 95.9 55.1 65 2.1
Max. Std. 0.16 0.59 2.2 0.15

MI-1 SVM 1-Spec 96.0 54.3 62 2.1
PD-1 96.8 58.5 72 1.3

Comb. 96.9 59.0 75 1.2
Max. Std. 0.14 0.80 3.4 0.11

Gappy 96.5 58.5 68 1.6
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In this way, it became conceptually possible to expand the number of possible CaM-
binding motifs that exist by adding a position-dependent element to where the motif has a
greater likelihood of binding to CaM compared to its relative position in other parts of the
same window. The MI-1 SVM exhibited the ability to classify and define new subcategories
for different pre-existing classes by defining the windows within the window where motifs
are more likely to exist. However, one considerable shortcoming to the Minhas’ SVM
is that it only includes sequence-based information in its prediction model. Despite the
novel ability of MI-1 SVM, it does not consider the whole-scale protein influence on the
likelihood that a protein binds to CaM. Examples of whole-scale protein influence on
prediction include 3D structure of the protein in its native conformation, as well as the
general bioenergetics of the protein itself.

To this end, Abbasi and Minhas [78] innovated another CaM-binding prediction
system that also uses a large-margin classification problem approach with multiple instance
learning. However, their new approach, called the Calmodulin Interaction Learning
System (CaMELS), is designed differently from MI-1, which uses a discriminate function
system (DFS), in that it uses features extracted from the whole protein to make predictions,
whereas MI-1 only looks at the most probable binding window to make predictions.
Compared to MI-1, CaMELS significantly improved accuracy [79], which can help guide
the identification of CaM-binding proteins and binding sites experimentally. Thus, protein–
protein interaction (CaMELS) and binding site prediction (DFS) in this approach are treated
as separate problems, and thus are assigned different classifiers. CaMELS is also designed
to handle the imprecisions in gene ontology (GO) annotations in a manner that SVM based
strategies are not designed to perform. For interaction, tertiary and quaternary structural
features are used as classifiers, while secondary structural features are used for binding-site
prediction using the sliding-window method.

Only small modifications were made to the binding-site window prediction system in
this iteration of the algorithm—in which a stochastic subgradient algorithm is incorporated
into MI-1 in order to improve the computational simplicity and, thus, the overall speed
of the algorithm. Feature representations containing kernels for amino acid composition
(AAC), amino acid position (PDC), physiochemically similar amino acid substitutions
(Blosum), emergent physiochemical features stemming from amino acid sequential order
(PD-Blosum), sequence-derived structural features (propy) and motif sequence identities
(PDGT), are used at the binding-site prediction level. Similarly, kernels sensitive to amino
acid composition and physiochemical properties were mostly used for the protein-level
prediction analysis as well, but kernels sensitive to sequential similarity in the known CaM-
binding protein training set (n = 157) were also utilized. The logic of implementing this
kernel in prediction is rooted in the idea that structural similarity at the global proteomic
level implies that two proteins will also share a similar function—lending to the problem
of predicting CaM interactors.

Many types of analyses and validation methods were used to test the performance of
the CaMELS method including GO enrichment, independent dataset validation analysis,
in silico mutation analysis, and 10-fold stratified cross-validation. New representations
of accuracy used were the AUC of the precision–recall (PR) curve, which is useful when
the number of positive examples are significantly outnumbered by the number of negative
examples. Additionally, a method called “rank of the first positive prediction”, or RFPP,
provides bioinformaticians with a metric that ranks the top true positive predictions across
all proteins. Both of these metrics provide different insights of accuracy—the former
referencing hit–miss ratios, and the latter drawing conclusions about predictive accuracy
by comparing the predictive power of the model with the highest rank with the most
probable CaM-binding site.

Using the AUC-PR metric, there was a 43.5% increase from the predictive performance
of the MI-1 SVM algorithm (58.3% vs. 14.8%) using CaMELS. With the AUC-ROC0.1 metric,
there was a 21.2% increase between MI-1 and CaMELS performance (59.0% vs. 80.2%). The
leading hypothesis as to why this system fairs much better in performance than the previous



Int. J. Mol. Sci. 2021, 22, 308 18 of 26

MI-1 SVM developed by Minhas is that the whole sequence of the protein provides a more
robust predictive system than merely observing the binding sites. This is not surprising
when one considers that CaM-binding proteins normally have multiple CaM-binding sites
across the protein sequence. However, one caveat to this logic proposed by Abbasi is that
due to significant sequential diversity across eukaryotes, using motif-based methods are
not ideal. Even if a motif is likely to be a binding site, if it is not energetically or structurally
accessible, it will not participate in a binding event with CaM. This is verified by the PR
curve results where motif-based approaches (using the gappy-triplet sequence kernels)
only have a 1.0% precision rate using CaMELS. So far, CaMELS appears to represent the
most successful design of an artificial intelligence system with respect to CaM-binding
protein prediction accuracy (Table 4). Interestingly, within the RFPP representation, the first
8 ordered binding sites yielded by the model were bound to possess the true CaM-binding
site on a protein. Thus, Abbasi’s group proposed that with the CaMELS model as a guide,
a maximum of only 8 wet-lab experiments must be performed to validate a prospective
CaM-binding target’s binding site using their model.

Table 4. Comparison of CaM-Binding Site Prediction Results.

Method (Author) Features AUC-ROC AUC-ROC 0.1 AUC-PR

20 Feed-forward neural
networks (Radivojac) - 0.89 - -

SVM (Hamilton) 1-spec 0.87 0.62 -

psi 0.88 0.61 -

gappy-pair 0.89 0.61 -

MI-1 SVM (Minhas) 1-spec 0.96 0.543 -

gappy 0.965 0.585 -

comb 0.969 0.59 -

CaMELS (Abbasi) PD-Blosum * 0.991 * 0.802 * 0.87

Comb(AAC and PDC) 0.989 0.776 0.856

PDGT 0.99 0.78 0.854

PDC 0.984 0.762 0.841

propy 0.98 0.747 0.812

AAC 0.978 0.723 0.807

Interaction prediction

SVM (Hamilton) 1-spec 0.71 - -

Gappy-pair 0.71 - -

psi 0.74 - -

CaMELS (Abbasi) Propy * 0.867 * 0.651 * 0.55

Blosum 0.784 0.326 0.114

AAC 0.747 0.404 0.268

SW 0.784 0.519 0.402
* Highlighted numbers indicate the best value using a particular feature representation.

5.3. Prediction Using Random Forest Models and k-Nearest Neighbor
5.3.1. Classifying Short Linear Motifs (SLiMs) for CaM-Binding Protein Classification
Using Various Classification Methods

Contrary to the argument against motifs as a prediction tool, Abbasi [78] and Li [80]
attempted to use short linear motifs (SLiMs) as a means for predicting CaM-binding
sites. These types of motifs differ from the CaM-binding motifs as they contribute to
folding upon binding of CaM to a CaM-binding motif. Thus, their prediction systems
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specifically targeted these SLiMs located within structurally-disordered regions of CaM-
binding proteins, specifically to avoid energetically and structurally unfavorable motif
regions. Their algorithm of choice, known as the Multiple EM for Motif Elucidation
(MEME), discovers novel motifs by using Expectation Maximization, or EM. This optimizes
the statistical parameters, while a statistical sequence model determines the identity and
width of motif sequences. SLiMs are identified both from positive and negative sets
separately (SM) and clustered together (CM) in their prediction model. They are scored
using both the SWS_PPM and the SWS_RE methods.

The difference in these methods is nuanced. SWS_PPM will score each prospective
binding site in window increments regardless of how likely that the window in question is
a binding site. SWS_RE scores the site only if it matches the regular expression script for
the motif that is being searched. Three different classifications methods are primarily used
from these scoring strategies for predicting whether a SLiM is a binding site or not. These
classifiers include SVM, random forest, and k-nearest neighbor (k-NN). RF is used to rank
the features that are extracted from the scored data, while all three are used to classify the
features, in general. Clustering both positive and negative examples together proved to be
the most efficient way of predicting known CaM-binding sites, especially when used with
the random forest (RF) approach using the S scoring matrix (generally, the S-matrix for
scoring uses the entire population of samples, while the T-matrix uses a random sampling
method). On the other hand, the k-NN classifier [81] from the SM method best classified
predicted CaM-binding motifs, in general, regardless of whether they were previously
known or unknown. The accuracy for this method was 80.6%, despite the fact that CM
had better accuracy using all classifiers overall. Additionally, the S-matrix proved to yield
better accuracy than the T-matrix did across all classifiers.

5.3.2. Random Forest Modelling Hot Spot Regions from Alanine-Scanning Mutagenesis for
CaM-Prediction

There is a growing body of evidence suggesting that an amino acid residue’s free
energy of binding plays an important role in discerning which sequences are binding sites
for CaM. Binding free energy, represented as Gibbs free energy (i.e., ∆G), represents an
equilibria state where an amino acid residue within a peptide contributes a significant
amount of energy that is required for protein–protein binding interactions. The propensity
for a residue to contribute to binding within a peptide is considerably non-uniform, and few
residues among the entire peptide sequence will therefore contribute to a protein’s binding
free energy. Alanine scanning mutagenesis, a technique that involves mutating sequence
residues for the simplest, chiral amino acid alanine, allows for the native conformation of
the wild type protein to be used as a standard for measuring that residue’s binding free
energy contribution. Thus, in order to determine whether an area is considered to be a” hot
spot” for binding or not, this approach uses the thermodynamic differences in binding free
energy between the native amino acid residue and a alanine-mutated peptide sequence.
Using this approach, another quantity that can be measured by walking an amino acid
sequence is the ∆∆G value for each individual residue after mutation. Large changes in
binding free energy between wild-type and alanine mutants within a given number of
consecutive residues likely reflects a binding “hot spot”.

Wang and Chen’s group sought to use the change in binding free energy as a novel
approach to calmodulin-binding site prediction [82]. Their system used a dataset of binding
free energy data originating from 125 mutated residues in 18 protein complexes. Using
their random forest (RF) model, when the change in binding free energy was greater
than or equal to 2.0 kcal/mol, the native residue corresponding to this alanine mutation
was considered to contribute to a prospective hot spot. Using the random forest model
algorithm, 38 hot spots and 87 non-hot spots were identified from a set of protein residue
sequences, and these sets were used to train their RF model.

Random forest models work by using the hot spots (positive bags) and non-hot spots
(negative bags) from the training set to extract features from the mutated residue being
inspected. In order to introduce ecological relevance into their prediction approach, the
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system also considered the amino acid residues neighboring the hot spot residue, referred
to as intra-contact residues, as well as residues that interact with the hot spot residue in
a front-to-back plane, or mirror-contact residues. Feature descriptors for each hot spot
residue and its closest intra-contact and mirror-contact residues were extracted using their
system. The 19 descriptors were categorized into five groups by the authors: residue
category (e.g., hydrophilic, polar) and secondary structure; atom contacts and atom contact
areas; residue contacts and physicochemical features; relative accessible surface area and
relative side-chain accessible surface area; and lastly, depth index. For the three residues
(query residue, intra-contact residue, and mirror-contact residue) inspected, a total of 57
features are analyzed for each alanine-mutated residue that has been assigned “hot spot”
or “non-hot spot” labels.

Once the feature descriptors are extracted, they are entered into the RF model, and
vetted for their accuracy to contribute to the accurate prediction of CaM-binding proteins.
The impetus for using an ensemble classification algorithm such as RF comes from the
capacity to use numerous decision trees to reduce the output variance of individual trees,
which stabilizes classification stability and accuracy. Unpruned trees are trained on boot-
strap samples, and the tree is pruned using the feature that exhibits the maximum decrease
in the Gini index, which is defined as the area under the curve (AUC) between the receiver
operator characteristic (ROC) curve and its diagonal. Majority voting of all possible trees
is used after training, and thus, the most important features for determining a hot spot
specifically can be extracted.

Utilizing these models, the prediction results determined that the top five most im-
portant features for determining a hot spot are the residue mass, residue polarizability,
residue isoelectric point, relative side-chain accessible surface area, and non-residue specific
relative accessible surface area, for each target residue. These features are agreeable with
the characteristics that are known to be conducive to CaM–CaM ligand binding. Wang
and Chen verified their model’s ability to identify both hot spots and non-hot spots on
one of calmodulin’s target proteins, smooth muscle myosin light-chain kinase. The model
identified 5 out of 6 known hot spots, and 4 out of 6 known non-hot spots. The model was
more effective than other programs such as MINERVA and KFC at predicting hot spots,
and was either more effective or equally as effective at predicting non-hot spots. Thus, the
RF algorithm approach possesses the ability to reliably predict calmodulin-binding sites
using an approach that does not include motif-based data.

6. Conclusions and Perspectives

Over the past 20 years, a handful of computational tools have been reported to
identify new CaM-binding proteins. The CaMELS method, for example, tested their
prediction model using LCa and SGS3, two proteins synthesized by Nicotiana benthamiana
that have little sequential homology to the training dataset of proteins that were used to
create CaMELS. Within the external validation dataset of proteins, many of the individual
and CaM-complexed structures had already been previously determined, which allowed
cross-verification of predicted binding sites with true binding sites. In general, residues
contributing to a binding site according to the CaMELS prediction tool occurred within
5Å of the CaM structure in the CaM–CaM-binding target protein complex. Therefore,
computational systems have demonstrated their ability to identify CaM-binding proteins
sourced from novel species.

Overall, the computational approaches that have worked best in predicting protein–
protein interactions have been the kernel-based SVM methods for protein–protein interac-
tions. Kernel methods allow for the classification of high-dimensional, unbalanced datasets
such as amino acid residue sequences. For protein–protein interactions in general, the
combination of pairwise sequence-based kernels that evaluate k-mer frequency, motif con-
tent, and domain content, simultaneously demonstrated improved classification success
over methods that evaluate proteins based on individual features [83]. The combination
of several types of kernel methods for the prediction of CaM are exemplified with the
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CaMELs prediction model, where amino acid composition (AAC) and amino acid position
(PDC) kernels are used synergistically in one of their kernel methods [78].

Integrating and feeding gene ontology (GO) information into protein–protein inter-
action classifiers is generally practical as well, because proteins that are not found within
the same cellular compartments (i.e., nucleus, mitochondria, cytosol, ER, etc.) generally
do not interact with one another [83], although, it is important to consider missing data
in these annotations, as they may misguide the classifier, especially if the training dataset
used contains a considerably smaller number of proteins. Lastly, evaluating proteins at dif-
ferent structural levels (i.e., secondary, tertiary, quaternary) has provided the most accurate
classification, demonstrated by using both the discriminate function system (DFS), which
considers secondary sequential information, and CaMELs, which looks at higher-order
(e.g., tertiary and quaternary) protein structure similarities [78]. Within the context of
methods evaluated in this review, CaMELS appears to represent the most successful design
of an AI system with respect to CaM-binding protein prediction accuracy (Table 4).

Several additional aspects may be combined to improve the prediction ability of
CaM-binding sites in proteins. First, identifying key residues that act as “hot spots” for
contributing to binding interface energetics since it less likely that interactions between
all residues in the target protein will have uniform energetic contributions to the protein–
protein interface with CaM [84]. Further, the substitutions of Leu449Ala and Leu465Ala
resulted in a 7-fold binding affinity decrease in CREB-binding protein (CBP)/p300 to the
transcriptional activation domain (TAD) of ReIA—a crucial initiator of the NF-κB inflamma-
tory response pathway [85]. Annotating the residues within these hot spot protein residues
with some of the surface-area accessible ∆∆G values, or with alternate hydrophobicity
values for membrane-soluble proteins (e.g., the Engelman hydrophobicity value system),
may improve the shortcomings in CaM prediction for specific proteins. Second, there
are often several phosphorylation sites on proteins that bind to CaM–CaM-target protein
complexes, which allow for the fine-tuning of cellular responses to environmental cues.
Thus, it would be helpful to annotate CaM-binding sequences that are subject to phospho-
rylation and are sensitive to physiological changes. Third, we have recently shown that the
helical propensity of CaM-binding motifs from gap junction connexins contributes to their
binding affinity to CaM. Connexin Cx45 with the highest helical propensity, exhibits the
strongest CaM-binding affinity among three families of connexins including Cx43, Cx44,
and Cx50 [30]. This is likely due to the fact that pre-formed structural elements, such as the
various CaM-binding motifs with a strong α helical folding propensity, are energetically
favorable to CaM-binding [86]. Fourth, electrostatic interactions in the proximity of CaM-
binding sites of the target protein are likely tuning CaM-binding affinity. The formation
of CaM complex often largely alter CaM’s ability to sense local calcium concentration
change. It has been shown that the binding of connexin CaM-binding peptide motif results
in differential increase in calcium binding affinity of two domains of CaM [42,50]. Fifth, it
is important to expand CaM-binding databases by including membrane proteins that may
provide additional factors tailored to specific cellular environment. Sixth, since most CaM-
target protein interactions are multi-dimensional, extending the current prediction of short
sequence motif to 3D structure information analysis is expected to provide comprehensive
analysis of key determinants for CaM interaction. Molecular dynamic studies of CaM and
its targeted proteins will also reveal ensemble of their conformational states that can be
selected by calcium gradient changes under physiological conditions [87].

Computational methods are constantly evolving, and being replaced by newer ap-
proaches that are faster, more efficient, and more accurate. Machine Learning will become
increasingly more sophisticated, allowing for more nuanced decision making from the pro-
gram itself. Arguably, it is unlikely that any single approach will offer a universal solution
to structural prediction, and that existing systems will merge computational methods for
improvement, and/or will involve more comprehensive efforts to leverage existing data
into predictors or filters to improve computational approaches. For example, common
structural biomolecular features identified through statistical analyses have been used to
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create filters for identifying/predicting or designing Ca2+ binding sites in proteins [88–92].
Similarly, Abbasi et al. recently reported the combined use of 3D structural data from pro-
tein complexes and sequence data during training, as part of a Learning Using Privileged
Information (LUPI) framework, to distinguish between low- and high-binding-affinity
protein complexes and generate better predictions during testing when only sequence data
are available [93].

As our prediction methods become increasingly more accurate and broaden our
ability to predict structural aspects of CaM binding, our ability to understand the role of
CaM in signaling pathways will become easier to untangle, which should lead to major
improvements in the diagnosis and treatment of disease.
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CaBP Calcium-binding protein
CaM Calmodulin
CaMBP Calmodulin-binding protein
CaMBD Calmodulin-binding domain
CaMELS Calmodulin Interaction Learning System
CaMKII Calmodulin-dependent protein kinase II
CaSR Calcium-sensing receptor
CBP CREB-binding protein
CTD Calmodulin Target Database
FFNN Feed forward neural network
FN False negative
FNR False negative rate
FP False positive
FPR False positive rate
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HMM Hidden Markov model
K-NN K-nearest neighbor algorithm
LOPO Leave-one-protein-out strategy
MLCK Myosin light-chain kinase
PDB Protein DataBank
PPV Positive predictive value
PKC Protein kinase C
RF Random forest algorithm
ROC Receiver operator characteristic
SLiMs Short linear motifs
SVM Support vector machine
TAD Transcriptional activation domain
TN True negative
TNR True negative rate
TP True positive
TPR True positive rate
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