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Cecal microbiota association with tumor load in a colorectal cancer mouse model
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ABSTRACT

Background: Colorectal cancer (CRC) is one of the most common cancer types worldwide.
The role of the intestinal microbiota in CRC, however, is not well established. In particular, the
co-variation between age, tumor progression and microbiota remains largely unknown.

Objective and design: We therefore used a recently developed A/J Min/+ mouse model
resembling human CRC to investigate how microbial composition in cecum correlates with

tumor progression, butyrate and age.
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Results: We found that the association between the gut microbiota and tumor load was
stronger, by far, than the association with both butyrate and age. The strongest direct tumor
association was found for mucosal bacteria, with nearly 60% of the significantly correlating
operational taxonomic units being correlated with CRC tumor load alone.

Conclusion: We favor a systemic association between tumor load and microbiota, since the
correlations are associated with tumor load in gut segments other than the cecum (both

small and large intestine).

Introduction

Colorectal cancer (CRC) is the third most common
cancer in men and the second most common cancer
in women worldwide. In 2012, there were almost 1.4
million new cases and approximately 700,000 deaths
reported [1]. CRC arises through a series of charac-
terized histopathological changes in the colon, and
several different signaling pathways play important
roles in the development of this type of cancer [2].
The rapid renewal of the colonic epithelium also
increases the risk of mutations that can lead to the
development of tumors.

There are three general models for explaining the
association of the gut microbiota with CRC. The
alpha-bug hypothesis suggests that toxigenic bac-
teria induce a self-enforcing systemic response
favoring the alpha-bug [3]. The driver-passenger
hypothesis states that the gut microbiota association
with CRC is mainly a succession process, where
bacteria that are favored by the tumorigenic envir-
onment later replace the initial CRC inducers [4].
Finally, the microbiota adaptation hypothesis sug-
gests that the association between the gut microbiota
and CRC is mainly an adaptation of the gut micro-
biota, as a consequence of the changed environment
during CRC development [5].

The mouse represents one of the most important
gut microbiota models in relation to human disease
[6]. Mouse models have been used to address several

gut microbiota-associated diseased states, such as
obesity [7] and inflammation-associated diseases [8].
Furthermore, mouse models have been used to exam-
ine the correlation between gut microbiota and aging
[9], as well as the role of the gut microbiota in the
host’s susceptibility to colonic tumorigenesis [10,11].
Although age, microbiota and tumorigenesis are
strongly confounded, no studies have yet related age
and CRC to the gut microbiota in mouse models.

The aim of this work was to investigate the co-
variation between tumor progression, age, butyrate
and microbiota in A/] Min/+ mice. Illumina 16S
ribosomal RNA (rRNA) gene sequencing was used
for the characterization of the microbiota in the
cecum (lumen and mucosa), while gas chromatogra-
phy (GC) was used to investigate the potential anti-
tumor effect of butyrate.

The A/] Min/+ mouse model chosen for this
study is a novel mouse model that was only
recently characterized [12]. This new A/] Min/+
mouse spontaneously develops a considerable num-
ber of colonic lesions that will, with time, progress
to carcinoma. The conventional C57BL/6] Min/+
mouse, on the other hand, primarily develops
lesions in the small intestines, and few, if any,
lesions in the colon, which seldom progress to
carcinoma [13,14]. The A/] Min/+ mouse has also
been shown to have the potential for at least local
metastasis [12]. Taken together, these characteris-
tics of the novel A/] Min/+ mouse more closely
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reflect aspects of human colorectal carcinogenesis.
Other models for CRC, where tumorigenesis is
induced by the addition of chemicals, also exist
[15]; however, these suffer from the potential con-
founding effects of the chemicals. We chose to
investigate the cecum microbiota, since the cecum
is the main site of fermentation and microbial-
derived metabolite production with the most pro-
nounced effect on mouse health [16], particularly
related to the antitumor effect of butyrate [17].
Furthermore, the tumor load in the cecum is very
low, reducing the potential confounding effect of
changed environment or physiology due to tumor
progression (unpublished observations).

Here, we present evidence that tumor load is more
important than age and butyrate in the association
with the gut microbiota. From our results, we there-
fore favor the alpha-bug hypothesis in explaining the
association between gut microbiota and CRC.

Materials and methods

An outline of samples and analyses is given in
Figure 1. This study was conducted in strict accor-
dance with the Norwegian Regulation on Animal
Experimentation, and approved by the Institutional
Animal Care and Use Committee at the Norwegian
University of Life Sciences, Campus Adamstuen.

Mouse samples

For this study we used a Min/+ mouse strain that is
well suited as a model for human CRC [12]. The
mouse strain, called A/] Min/+, was established at
the Norwegian Institute of Public Health, and is the
result of a backcross with C57BL6/] Min/+ mice and
A/] wild-type mice for more than 12 generations. The
A/] Min/+ mouse has been maintained at the
Norwegian University of Life Sciences (Adamstuen,
Norway) as an inbred colony for several years [12,18].
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Cecum from 68 mice from a previous study [12] and
an ongoing study at the same institute was used in
this project. The housing facilities and experimental
conditions were similar across the studies. Samples
were preserved in STAR buffer (Roche Diagnostics,
Basel, Switzerland) according to the producer’s
recommendations before further processing.

Sample processing

Lysis and DNA extraction was performed as pre-
viously described using the mag™ midi kit (LGC
Genomics, Berlin, Germany) [19]. The V3 and V4
region of the 16S rRNA gene was amplified using
forward primer PRK341 and reverse primer PRK806
[20], with further processing for Illumina sequencing
as previously described [19]. Finally, quantification of
butyric acid in cecum content was performed by GC
[21]. Butyric acid was chosen as a biomarker because
this is the most well-documented short-chain fatty
acid to be protective against CRC [17].

Data analysis

The Illumina sequencing data were analyzed using a
standard workflow from a Quantitative Insights Into
Microbial Ecology (QIIME) pipeline [22]. In the first
step, paired-end reads were combined and clustered
with 97% identity level using usearch v. 7 [23], which
implements the error-minimizing uparse algorithm
[24] against the Greengenes v. 13.8 database [25].

Statistical analyses were performed using RStudio
(https://www.rstudio.com/), with R v. 3.2.2 (https://
www.r-project.org/) and package Vegan v. 2.3-0
(cran.r-project.org/web/packages/vegan/). All statisti-
cal tests were conducted at a 95% confidence level
after correction for multiple testing by controlling the
false discovery rate (FDR).
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Figure 1. Overview illustrating the workflow of this project. Tasks in the gray areas were performed before the start of the
project or by an external part of the project. SCFA, short-chain fatty acid; GC, gas chromatography.
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Results

Library characteristics, taxonomic composition
and diversity

In total, 2,495,371 sequences were obtained from all
samples (n = 188); on average, this corresponded to
13,273 sequences per sample with a standard devia-
tion of 10,742. The operational taxonomic unit
(OTU) table was rarified at 2000 sequences per sam-
ple. The library contained a total of 326 OTUs dis-
tributed in seven phyla and a total of 13 bacterial
classes (Supplementary Table 1).

Firmicutes was the most dominant phylum in both
cecum content and mucosa. Bacteroidetes was the sec-
ond most dominant phylum in cecum content, while in
the mucosa, this was found to be bacteria belonging to
the phylum Deferribacteres (Figure 2). For the mucosal
samples, there were no major changes in the microbiota
composition with age, while for the lumen samples there
was an increase in Bacteroidetes and a decrease in
Firmicutes (Figure 3). For the alpha-diversity, there
were increases in diversity up to 20 weeks (Figure 4) for
both mucosa and cecum, while the beta-diversity did not
show any clear clustering patterns (results not shown).

Correlations between microbiota, tumor load and
age

In total, 76 OTUs were significantly correlated with age
and/or tumor progression (small and large intestine) in

(2)

(b)

Figure 2. Taxonomic composition at phylum level in (a) cecum mucosa and (b) cecum content.
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samples from cecum content, and 66 OTUs for mucosa
samples (p < 0.05, FDR-corrected Spearman correla-
tion) (Figure 5). In the cecum content, 20 OTUs belong-
ing to the S24-7 family (phylum Bacteroidetes) were
positively correlated either with age and/or with
tumor progression in both small intestine and colon.
Similarly, 12 of the positively correlating OTUs
belonged to S24-7 for the mucosal samples. We were
not able to extract systematic information for other
phylogroups. All significant FDR-corrected correlations
are shown in Supplementary Table 2.

Correlations between microbiota, tumor load and
butyrate

The level of butyrate was 13.1 £ 7 mM (mean + SD)
for the cecum content, while there were no significant
correlations between butyrate levels and tumor load.
However, two OTUs were negatively correlated with
butyrate: OTU 69 was classified as Ruminococcaceae
(p = 0.003, FDR-corrected Spearman correlation) in
cecum content, and OTU 220 was classified as
Ruminococcus (p = 0.045, FDR-corrected Spearman
correlation) in tissue samples.

Discussion

There were major associations between gut microbiota
and tumor load, seemingly overruling the associations
with both age [12] and butyrate [17]. OTUs belonging
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Figure 3. Relative abundance of each phylum and how the abundance varies with age in (a) cecum content and (b) tissue samples.
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Figure 4. Calculated alpha-diversity using the Shannon and Simpson indices. (a) Simpson index in cecum content; (b) Shannon
index in cecum content; (c) Simpson index in tissue samples; (d) Shannon index in tissue samples.
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Figure 5. Number of operational taxonomic units (OTUs) with significant correlation with age, tumor load in colon and tumor
load in small intestine. Left: samples from cecum content; right: tissue samples. Numbers in parentheses indicate whether the

correlations are positive (+) or negative (-).

to the Bacteroidetes family S24-7 showed the majority
of the positive correlations with tumor load. An over-
representation of Bacteroidetes has previously been
reported in several studies related to human CRC
[26,27], as well as in small intestinal tumors in adeno-
matous polyposis coli (APC) Min/+ mice [28]. With
regard to potential mechanisms, Bacteroidetes have
been suggested to be strains that can trigger CRC
through systemic modulations [29]. The main CRC-
correlating Bacteriodetes family S24-7 has previously
been associated with liver injury and TLR4 signaling,
which points towards a role in inflammation [30].
Therefore, inflammation can be a potential trigger of
CRC in the A/] Min/+ mouse model [31].

Regarding the association between microbiota and
CRC, the alpha-bug hypothesis [3] is the most likely
explanation. Most of the mucosa-associated strains
showed a correlation with tumor load in both large
and small intestine. Therefore, it is unlikely that the
association is a consequence of adaptation to the
changed environment due to the tumorigenesis
(microbiota adaptation hypothesis) or a succession
process (driver—passenger hypothesis). One hypoth-
esis is that the association is due to the triggering of
systemic tumorigenic conditions by key members of
the microbiota, as in the concept of the alpha-bug
hypothesis, potentially through the induction of
inflammation [30].

Although mouse models have been used to inves-
tigate a range of gut microbiota-associated diseases,
the mouse gut microbiota still remains poorly char-
acterized [6]. In this study, Deferribacteres was found
to be the second-most dominant phylum in the
mucosal samples. This phylum is most likely to be
represented by Mucispirillum schaedleri, which has
previously been associated with mucosa and potential
translocation from the intestine to the hepatobiliary
system in laboratory mice [32]. However, very little is
known about its role in health and disease.

In conclusion, our work provides evidence for a
strong correlation between gut bacteria and tumor
load in a novel CRC model, thereby supporting the
alpha-bug hypothesis. Thus, the A/] Min/+ mouse
CRC model could form the basis for general mechan-
istic insights into how the microbiota is associated
with CRC development.
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