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Abstract: This paper deals with the analysis of stress concentration at the weld toe of a Double-V and
a Single-V butt-welded joints subjected to tensile, bending and shearing loads. For each geometrical
and loading case accurate close form stress concentration factor formula based on more than 3.3
thousand finite element method solutions were obtained. The percentage error of the formulas is
lower than 2.5% for a wide range of values of geometrical parameters including weld toe radius, weld
width, plate thickness and weld toe angle. The limiting case, in which the weld toe radius tends to
zero is also considered. In the cases of shearing loads, a plane model based on thermal analogy was
developed. The whole analysis was performed assuming that a circular arc represents the shape of
the excess weld metal. Presented solutions may be used in computer aided fatigue assessment of
structural elements.

Keywords: butt-welded joints; notch; stress concentration factor; weld toe; finite element analysis;
axial; bending and shearing load

1. Introduction

Welded joints are one the most commonly used types of connection. Years of development in
production technology have increased such qualities as—improved tightness, low cost and shorter
fabrication times. However, some unfavorable phenomena can still be observed at the weld zone,
such as structural irregularities and imperfections of the material, residual stresses, cracks or undercut
defects that may cause a significant decrease in the fatigue life of the structure. Many scientific
works that relate to physical fatigue phenomena, modelling of damage processes and durability
calculations have dealt with the topic of strength of welded joints and the development of appropriate
design procedures.

Fatigue crack growth is a basic phenomenon occurring in welded structures subjected to variable
loading where the fatigue propagation rate may depend on the crack length, weld geometry and
accompanying residual stress field [1–5]. In such cases the fracture mechanics approach based on
the stress intensity factor concept proves to be very convenient. An experimental method useful for
determining the stress intensity factors for real welded structures has been presented by Chung et al. [6].

Numerous methods of fatigue analysis are based on local stress approach [7,8] and various
concepts, such as—structural stress [7,9–12] and corresponding hot-spot stress [11,13–15], effective
notch stress [10,16,17] related to the reference notch radii [10,12,18] and many others. Moreover, local
plastic zone may be produced by a high stress concentration. In such cases cyclic plastic zone may serve
as a proper parameter to determine more accurate predictions of fatigue life [19]. Influence of residual
stresses on fatigue initiation period based on local approach was described in References [3,20,21].
Livieri and Lazzarin Reference [22] proposed a method for the assessment of fatigue strength of welded
joints based on generalized tress intensity factors applicable to sharp v-notches. General problems

Materials 2020, 13, 1798; doi:10.3390/ma13081798 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://dx.doi.org/10.3390/ma13081798
http://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/13/8/1798?type=check_update&version=2


Materials 2020, 13, 1798 2 of 20

related with notches can be also found in recently published review [23] on advances on notch effects
in metal fatigue.

More complex models considering two stage damage phenomenon including fatigue crack
initiation and propagation periods were presented in References [10] and [24].

Two approaches based on the nominal stresses and the notch stresses were studied in Reference [20]
indicating the local approach being more appropriate for predicting fatigue life and fatigue strength.

Numerous standards and recommendations have also been developed to facilitate design [25–30].
One of the basic problems when trying to estimate the fatigue life of a structure is determining

the maximum stress in order to transform the loading history of remote stresses to the weakest point,
where fatigue cracking may be initiated. To this end, stress concentration factors (SCFs) (whose values
depend on geometry and loading conditions) are commonly used [31]. Some research [32–35] has also
provided analytical solutions for bodies of various geometries, subjected to different loading conditions.

The same problem of stress concentration holds for welded structures, where the weakest point
is usually located in the weld zone. Therefore, many SCF solutions have been developed and
published regarding various types of welded joints. Numerous formulas of stress concentration factors
widely used in Japan for various types of welded joints were presented in References [36–38]. These
approximating formulas were based mainly on numerical results obtained using the finite element FE
and the boundary element BE methods. Extended numerical analysis for T-joints and skewed T-joints
was performed by Brennan et al. [39] where two parametric equations were proposed. However,
the authors defined SCFs in a different way considering the maximum stress at the transition point
between the circular arc and the plate surface. Such a definition makes the SCFs values underestimated
of about 7–9% with respect to the ones defined for the maximum principal stress at the curvilinear
surface of the weld toe.

Additional effects of fabrication tolerances, misalignments, undercuts and so forth, are often
included in the analysis. Theoretical values of SCFs for pipelines and pressure tanks, including
fabrication tolerances, have been published by Lotsberg in References [40] and [41]. Effects of stress
concentration in grinded regions of T-butt welded connections were presented in Reference [42].
Extended numerical finite element method (FEM) analysis of geometrical parameters and their impact
on SCF in butt welded joints was shown in References [43–45]. Effects of misalignments in butt welded
joints were discussed in References [46–48] and an analysis of undercut defect and reinforcement
metal has been published in Reference [49]. Assessment of fatigue life requires high accuracy of SCF
solutions because errors made when estimating maximum stresses (of just a few percent) can lead
to tens or even several hundred percent inaccuracy in estimating fatigue life. For this reason SCF
approximating formulas should be highly accurate and cover a wide range of values of all the basic
parameters that influence SCFs.

The use of known approximation formulas in fatigue design encounters some difficulties arising
from their accuracy, range of validity and different ways of defining SCFs, therefore, they should be
used with appropriate caution.

The present work deals with the determination of stress concentration factors in the weld toe
region of Double-V and Single-V, butt-welded joints that have been subjected to tensile, bending and
shearing loads. An extended review of the published formulas dealing with SCFs for weldments
subjected to tension and bending are presented in Reference [45] and they will not, therefore, be quoted
here. The finite element method (FEM) modelling was used in the present work, with particular
attention being paid to the accuracy and wide ranging validity of the developed approximation
formulas, taking into account the limit case when the weld toe radius ρ tends to zero.

2. General Assumptions

Two types of butt-welded joints were analyzed—Double-V and Single-V. Each of them was
subjected to tension/compression, bending and shear. The shapes and basic geometrical parameters of
the full penetration butt-welded joints are illustrated in Figure 1.
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Figure 1. Shape and basic parameters of the butt welded joints: (a) a Double-V and (b) a Single-V. 

The following assumptions have been made for all of the analyzed joints: 
1. Joint material is linear elastic, isotropic and homogeneous 
2. Small deformations occur due to external loading 
3. Joint material is free from residual stresses, structural irregularities and imperfections 
4. Both plates are of the same thickness t and are co-linear 
5. Convex excess weld metal has a constant curvature, described by the radius R 
6. The weld is symmetrical (for Single-V joint) or double-symmetrical (for Double-V joint) 
7. Contour of the weldment is smooth, with a transition radius ρ > 0 
8. Weld toe curvature and the excess weld metal curvature join at the point A (Figure 1) 
9. SCF for tensile and bending loads is defined as σ1max/σt and σ1max/σb, respectively 
10. SCF for shearing load is defined as τmax/τs. 

3. Numerical FEM Modelling and Some Numerical Results 

3.1. Tensile and Bending Loading 

The ANSYS 19 Multiphysics program and PLANE182 finite element were used. PLANE182 
finite element is defined by 4 nodes having 2 degrees of freedom at each node. The shape, loading 
and displacement boundary conditions for each type of welded butt joint are shown in Figures 2 and 
3. 

The length of the modeled body is a vital parameter. According to the theory of elasticity and de 
Saint-Venant principle, if the distance of the load applied is sufficiently far from the weld toe (a few 
times larger than the element thickness in this case) there will be no differences in the values of the 
maximum stress. The proper length was found by conducting preliminary tests and finally the 
distance from the weld toe to the region of the load application was at least 4 times the thickness t. 
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Figure 2. Boundary conditions for a Double–V butt-welded joint subjected to (a) tensile and (b) 
bending loads. 

Figure 1. Shape and basic parameters of the butt welded joints: (a) a Double-V and (b) a Single-V.

The following assumptions have been made for all of the analyzed joints:

1. Joint material is linear elastic, isotropic and homogeneous
2. Small deformations occur due to external loading
3. Joint material is free from residual stresses, structural irregularities and imperfections
4. Both plates are of the same thickness t and are co-linear
5. Convex excess weld metal has a constant curvature, described by the radius R
6. The weld is symmetrical (for Single-V joint) or double-symmetrical (for Double-V joint)
7. Contour of the weldment is smooth, with a transition radius ρ > 0
8. Weld toe curvature and the excess weld metal curvature join at the point A (Figure 1)
9. SCF for tensile and bending loads is defined as σ1max/σt and σ1max/σb, respectively
10. SCF for shearing load is defined as τmax/τs.

3. Numerical FEM Modelling and Some Numerical Results

3.1. Tensile and Bending Loading

The ANSYS 19 Multiphysics program and PLANE182 finite element were used. PLANE182 finite
element is defined by 4 nodes having 2 degrees of freedom at each node. The shape, loading and
displacement boundary conditions for each type of welded butt joint are shown in Figures 2 and 3.

The length of the modeled body is a vital parameter. According to the theory of elasticity and de
Saint-Venant principle, if the distance of the load applied is sufficiently far from the weld toe (a few
times larger than the element thickness in this case) there will be no differences in the values of the
maximum stress. The proper length was found by conducting preliminary tests and finally the distance
from the weld toe to the region of the load application was at least 4 times the thickness t.
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At the initial stage of building the FEM model the finite element mesh density was successively 
increased to obtain a stable numerical solution with the maximum stress value staying constant. As a 
result of gathering a significant number of cases and corresponding numerical solutions a special 
mesh generating procedure was developed. The number of elements along the notch radius was at 
least 100. Moreover, the size of the finite elements changed smoothly the further from the zone of 
maximum stress concentration. These assumptions made the finite element mesh very fine. 

Number of finite elements, nodes and the minimum size of the element depended on the 
proportions between geometrical parameters of the joint represented by X, Y and θ. For a given 
geometry of the model, mechanical or thermal, the EF mesh was identical. For example, the model 

Figure 3. Boundary conditions for a Single–V butt-welded joint subjected to (a) tensile and
(b) bending loads.

Approximately 900,000 finite elements were used for each model and special attention was given
to the finite element mesh density at the weld toe zone. One example of such a mesh is shown in
Figures 4 and 5.
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Figure 5. Finite element mesh in the weld toe zone for the case shown in Figure 4.

At the initial stage of building the FEM model the finite element mesh density was successively
increased to obtain a stable numerical solution with the maximum stress value staying constant. As a
result of gathering a significant number of cases and corresponding numerical solutions a special mesh
generating procedure was developed. The number of elements along the notch radius was at least 100.
Moreover, the size of the finite elements changed smoothly the further from the zone of maximum
stress concentration. These assumptions made the finite element mesh very fine.

Number of finite elements, nodes and the minimum size of the element depended on the
proportions between geometrical parameters of the joint represented by X, Y and θ. For a given
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geometry of the model, mechanical or thermal, the EF mesh was identical. For example, the model
show in Figure 4, where X = 0.1, Y = 2/3 and θ = π/4, contained 1,076,779 elements and 1,078,547 nodes.
The minimum size of the element with respect to the thickness t was 2.497 × 10−5.

Since the SCF values are the same and all dimensions of the body are proportionally changed,
two non-dimensional parameters (X and Y) were introduced:

X = ρ/(ρ + L), (1)

Y = L/(L + t). (2)

Theoretical width L is a hypothetical distance between two symmetrical points, the intersection
of the circular convex arc and the plate surface (Figure 1), while θ represents the theoretical weld
toe angle at the same point, B. Extended numerical calculations were subsequently carried out in the
following ranges—0.05 ≤ X ≤ 0.7, 0.075 ≤ Y ≤ 0.7, with intervals of 0.05 and, for 10◦ ≤ θ ≤ 90◦, changing
by 5◦. More than 3300 SCF numerical results were obtained for each type of joint and loading mode.
One example of such SCF results for a Single-V butt-welded joint, subjected to tension and for θ = 45◦,
is presented in Table 1.

Table 1. Representation of SCF values for a Single-V butt joint subjected to tensile loading.

θ = 45◦ X = ρ/(ρ + L)
Y = L/(L + t) 0.05 0.075 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

0.075 2.155 2.223 2.041 1.816 1.676 1.578 1.505 1.446 1.397 1.355 1.319 1.287 1.257 1.230
0.10 2.515 2.221 2.040 1.815 1.676 1.578 1.504 1.445 1.396 1.355 1.318 1.286 1.256 1.229
0.15 2.509 2.217 2.036 1.812 1.672 1.575 1.501 1.442 1.393 1.351 1.315 1.282 1.253 1.225
0.20 2.502 2.210 2.029 1.805 1.667 1.569 1.495 1.436 1.387 1.345 1.309 1.276 1.246 1.218
0.25 2.488 2.198 2.017 1.795 1.657 1.559 1.486 1.427 1.378 1.336 1.299 1.266 1.236 1.207
0.30 2.466 2.179 2.000 1.779 1.642 1.545 1.472 1.413 1.364 1.322 1.285 1.252 1.222 1.193
0.35 2.436 2.152 1.976 1.757 1.621 1.526 1.453 1.394 1.346 1.304 1.267 1.234 1.204 1.175
0.40 2.395 2.116 1.942 1.728 1.594 1.500 1.428 1.370 1.322 1.281 1.244 1.212 1.182 1.154
0.45 2.340 2.068 1.898 1.688 1.558 1.466 1.396 1.340 1.293 1.253 1.218 1.186 1.158 1.132
0.50 2.269 2.006 1.842 1.640 1.514 1.425 1.358 1.304 1.259 1.222 1.189 1.159 1.133 1.110
0.55 2.182 1.931 1.774 1.582 1.463 1.379 1.316 1.265 1.224 1.189 1.159 1.133 1.110 1.090
0.60 2.081 1.844 1.697 1.517 1.406 1.329 1.271 1.226 1.189 1.158 1.132 1.110 1.090 1.073
0.65 1.969 1.749 1.614 1.449 1.348 1.279 1.228 1.188 1.156 1.130 1.108 1.089 1.073 1.060
0.70 1.852 1.651 1.529 1.381 1.292 1.231 1.187 1.153 1.126 1.105 1.087 1.072 1.059 1.048

3.2. Shearing Load

In the literature dealing with the strength of welded structures, only SCF solutions for tensile and
bending loads are commonly available. There are two probable reasons for omitting such solutions
for shearing loads. The first is that maximum local stress and corresponding fatigue crack initiation
processes usually appear in the weld toe region, where the nominal stress is normal to the weld line
and shear stress components may vanish. The second reason is that numerical FEM calculations of
SCF for anti-plane problems are more difficult to carry out than in previous cases, due to the lack of 2D
modules for solving such problems in commercial FE programs. However, in many practical cases,
shear stress may make a significant contribution to the maximum effective stresses in the toe region.
This may occur when external variable loads produce cyclic, non-proportional multi-axial stress states
of varying principal directions or when the butt-weld is slanted with respect to the main load of the
structure. In such cases, SCF for shearing load should also be considered in fatigue analysis. For these
reasons, SCF solutions for shear have been taken into account in the present work.

The formulation of two-dimensional problems for anti-plane states of deformation is different
than for in-plane tensile and bending loads. It is well known that any anti-plane case may be treated as
a boundary value problem governed by the Laplace equation, represented in Cartesian coordinates as
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∂2Ψ

∂x2 +
∂2Ψ

∂y2 = 0, (3)

where the potential function Ψ (x,y) is equivalent to the out-of-plane displacement function W(x,y).
The fact that the same relationship also holds for the temperature field T(x,y), in plane thermal problems
of steady-state heat flow, leads to the conclusion that thermal analogy may be used to obtain solutions of
stress concentration factors for anti–plane shear. Thermal modules are widely accessible in the finite
element commercial programs, making the modelling procedure simple and effective. Basic equations
and material constants representing the analogy between the anti-plane shear and the steady-state
heat conduction problem are shown in Table 2.

Table 2. Comparison of basic equations for anti-plane deformation and steady-state thermal problem.

Anti–Plains State of Deformation Steady–State Thermal Problem

Governing equation ∂2W
∂x2 + ∂2W

∂y2 = 0 Governing equation ∂2T
∂x2 + ∂2T

∂y2 = 0

Shear stress components τxz = G ∂W
∂x ; τyz = G ∂W

∂y Heat flux components qx = −k ∂T
∂x ; qy = −k ∂T

∂y
Magnitude of the local

stress τ =
√
τ2

xz + τ2
yz

Magnitude of the local
heat flux q =

√
q2

x + q2
y

Magnitude of the
displacement gradient |∇W| Magnitude of the

temperature gradient |∇T|

Stress concentration
factor Kt

s
τmax
τs

Analogue quantity qmax
qnom

=
|∇T|max
|∇T|nom

G—shear modulus k—thermal conductivity

The ANSYS 19 Multiphysics program with Thermal option and PLANE55 finite element were used
in the present analysis. PLANE55 finite element is defined by 4 nodes with a single degree of freedom
corresponding to temperature at each node. Meshing of the modelled area was the same as in the
previous cases for tension and bending. The shape of the Single-V butt-welded joint model, as well as
mixed boundary conditions, are shown in Figure 6. Nominal uniform heat flux qnom was applied to
the right end of the body, while zero temperature was applied to the left end. Since the upper face
and the lower face of the joint are free from external shearing loads, they have to be insulated in the
thermal model. The potential function Ψ (x,y), corresponding to anti-plane displacements W(x,y), is
now represented by the temperature field T(x,y). It is clear that the shear stress components, related to
the partial derivatives of the potential in particular directions, are proportional to the corresponding
heat flux components.Materials 2020, 13, 1798 7 of 21 
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anti-plane loading. 

Figure 6. Boundary conditions for calculating stress concentration factors (SCFs) of a butt-welded joint
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Numerical SCF values are easily calculated as a ratio of the maximum magnitude of the temperature
gradient |∇T|max at the weld toe zone (point D in Figure 6) to the magnitude of the nominal temperature
gradient |∇T|nom over the right end of the body. It is well known that SCF values in such cases do
not depend on the conductivity of the medium, therefore the same result is obtained by comparing
corresponding heat flux quantities qmax/qnom.

One example of a steady-state heat conduction solution is shown in Figures 7 and 8. Temperature
field and its equipotential lines are shown in Figure 7, where temperature values, interpreted as
anti-plane displacements W of the body, increase from left to right. All equipotential lines are normal
to both upper and lower faces.
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Hence, the two solutions of the SCF values for a Double-V and a Single-V butt-welded joint are 
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Figure 9. The only difference to consider when describing SCF values using approximating formulas, 
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Figure 8. Magnitudes of the temperature gradient normalized with respect to |∇T|nom = 1 and
corresponding to the temperature field shown in Figure 7.

Qualitatively identical results can be reached for the heat flux magnitudes q, which also can be
obtained directly by recalling “thermal flux vector sum.” Such solutions served in each geometrical
case for calculating SCFs values.



Materials 2020, 13, 1798 8 of 20

Such a formulation of the anti-plane problem has some additional consequences. Since the heat
flux normal to the lower surface of the Single-V butt-welded joint equals zero (Figure 6), this surface
may be considered as a plane of symmetry for a Double-V butt-welded joint, where displacement field
W(x,y) is an even function about the x axis, as shown in Figure 9.
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Hence, the two solutions of the SCF values for a Double-V and a Single-V butt-welded joint are
identical, regardless of whether both halves of the body are joined together or separated, as shown in
Figure 9. The only difference to consider when describing SCF values using approximating formulas,
lies in defining the plate thickness t, indicated here as tsym and tasym. By considering tsym = 2tasym and
taking into account Equation (2), the relationship between Ysym and Yasym is

Ysym =
Yasym

2−Yasym . (4)

4. SCF Approximating Formulas

4.1. Singularity Effects at the Weld Toe

Correct description of the limiting case, when the weld toe radius ρ tends to zero, is a necessary
condition for obtaining parametric functions when approximating SCF values for a given weldment
geometry and loading conditions. In such a case, the weld toe region is transforming into a sharp
corner, as shown in Figure 10, producing theoretically infinite stress at the apex. Thus, the main
objective now is to find the correct relationship between the radius ρ and the maximum principal stress
σ1max at the notch root.
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In cases of tensile or bending loading, the characteristic equation for λ [50,51] is given by
Equation (5):

sin(2αλ) + λ sin(2α) = 0. (5)

while, for anti-plane shear, the characteristic equation [51] is:

cos(λsα) = 0. (6)

Two characteristic quantities, λ and λs, represent exponents of the displacement fields for normal
and shear loads, respectively. This leads to the conclusion that every approximating function should
contain an exponential term of the form Xn, corresponding to the strength of the singularity in the
limiting case, when the toe radius ρ tends to zero. Since 2α = π + θ (as shown in Figure 10), the n value
should depend on the θ angle related to the eigenvalues, λ and λs, obtained from Equations (5) and
(6). It is also clear that the quantity σ1maxρ

n should have the unit MPa (mm)1−λ which corresponds to
that of the generalized stress intensity factor of the sharp corner [51]. Thus, particular values of both
exponents, n and ns, may be obtained from Equations (7) and (8):

n = λ− 1 (7)

ns = λs − 1. (8)

The correctness of such a conclusion is presented in Figures 11 and 12, where particular SCF
values (for n = 0) obtained using FEM for a Double-V butt-welded joint subjected to tension and
shear, respectively, are normalized by the term Xn for arbitrarily chosen n values. Only the exponents,
n = −0.42613 and ns = −0.2, corresponding to theoretical solutions, lead to the finite limits at X = 0.
For higher exponents than these theoretical ones, normalized stress concentration factors, Kt/Xn,
are infinite; for lower exponents, they equal zero.
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t of a Double-V butt-welded joint under tension,

when Y = 0.5 and θ = 75◦.
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shear, when Y = 0.5 and θ = 45◦.

Unfortunately, an analytical solution of the characteristic Equation (5) is not known and
approximating numerical procedures need to be applied for calculating λ. Thus, Equation (9),
based on numerical solutions of Equations (5) and (7), is proposed:

Equation (9) is valid in the range 0 ≤ θ ≤ π/2, representing values of exponent n with an accuracy
of 5 significant digits.

n =
−0.63662θ− 0.0933θ2

1 + 0.77635θ+ 0.04075θ1.5 − 0.00499θ2 + 0.13365θ2.5
. (9)

For shearing load, the exact solution of Equations (6) and (8) gives

ns =
(
−θ
π+ θ

)
. (10)

where θ is in radians.
Results of the analysis presented above have proven that particular values of n and ns depend on

the angle θ and the loading mode. The application of constant exponents in approximating formulas
for SCF is not correct and leads to inaccurate results for relatively small weld toe radii.

4.2. General Form of the SCF Formulas

After normalizing the numerical results, with respect to the singular term Xn (as shown in Figures 11
and 12), the SCF values for any particular joint may be represented by a regular function P(X,Y,θ),
depending on the geometry and loading mode. Thus, the general form of the SCF approximating
function is:

Kt = XnP(X, Y,θ). (11)

Six particular SCF formulas for Double-V and Single-V butt-welded joints, each subjected to
tensile, bending and shearing loads, are presented in the Appendix A. For each case of the function
P(X,Y,θ), the number of terms and values of the exponents were chosen using a “step by step” approach
in order to find the best qualitative representation of the known, normalized numerical Kt/Xn values
with respect to X. In the next step, all coefficients for particular terms were obtained by means of the
least squares method. The procedure was then successively repeated for the other variables, Y and θ.
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In spite of the fact that the approximating procedure of P functions is sometimes troublesome and time
consuming, it allows us to control accuracy and minimize the number of terms.

4.3. Validation of Approximating Formulas

Numerical FEM SCF values have been compared to their equivalencies obtained by means of
the approximating functions. Some examples of such comparisons are presented in Tables 3–5 for a
Double-V butt welded joint of θ = 30◦, subjected to tensile, bending and shearing loads.

Table 3. Comparison of SCFs calculated using formula (A1) (*) to the FEM results for a Double-V
butt-welded joint subjected to tensile loading, where θ = 30◦.

θ = 30◦ X = ρ/(ρ + L)
Y = L/(L + t) 0.05 0.15 0.25 0.35 0.45 0.55 0.65

0.15 2.251
2.253 *

1.717
1.720 *

1.518
1.519 *

1.400
1.400 *

1.318
1.317 *

1.255
1.255 *

1.203
1.205 *

0.25 2.257
2.254 *

1.722
1.721 *

1.521
1.519 *

1.403
1.400 *

1.321
1.317 *

1.258
1.254 *

1.205
1.204 *

0.35 2.262
2.253 *

1.724
1.720 *

1.523
1.518 *

1.403
1.398 *

1.319
1.314 *

1.254
1.250 *

1.198
1.199 *

0.45 2.250
2.243 *

1.713
1.711 *

1.511
1.508 *

1.389
1.386 *

1.303
1.301 *

1.234
1.236 *

1.175
1.183 *

0.55 2.198
2.200 *

1.670
1.673 *

1.469
1.472 *

1.347
1.351 *

1.260
1.266 *

1.191
1.201 *

1.134
1.149 *

0.65 2.084
2.079 *

1.581
1.576 *

1.389
1.384 *

1.274
1.270 *

1.193
1.192 *

1.132
1.133 *

1.085
1.086 *

Table 4. Comparison of SCFs calculated using formula (A2) (*) to the FEM results for a Double-V
butt-welded joint subjected to bending load, where θ = 30◦.

θ = 30◦ X = ρ/(ρ + L)
Y = L/(L + t) 0.05 0.15 0.25 0.35 0.45 0.55 0.65

0.15 2.245
2.226 *

1.712
1.699 *

1.512
1.500 *

1.394
1.381 *

1.311
1.299 *

1.247
1.236 *

1.194
1.186 *

0.25 2.218
2.214 *

1.690
1.690 *

1.491
1.490 *

1.373
1.372 *

1.291
1.289 *

1.226
1.227 *

1.172
1.176 *

0.35 2.157
2.169 *

1.643
1.654 *

1.449
1.458 *

1.333
1.341 *

1.252
1.260 *

1.189
1.198 *

1.137
1.148 *

0.45 2.057
2.068 *

1.568
1.576 *

1.384
1.390 *

1.276
1.280 *

1.201
1.204 *

1.144
1.147 *

1.099
1.102 *

0.55 1.925
1.913 *

1.472
1.462 *

1.305
1.296 *

1.209
1.201 *

1.146
1.138 *

1.101
1.093 *

1.067
1.060 *

0.65 1.772
1.780 *

1.365
1.372 *

1.223
1.227 *

1.146
1.150 *

1.099
1.101 *

1.067
1.069 *

1.044
1.048 *

Table 5. Comparison of SCFs calculated using formula (A3) (*) to the FEM results for a Double-V
butt-welded joint subjected to shearing load, where θ = 30◦.

θ = 30◦ X = ρ/(ρ + L)
Y = L/(L + t) 0.05 0.15 0.25 0.35 0.45 0.55 0.65

0.15 1.604
1.604 *

1.369
1.369 *

1.271
1.272 *

1.211
1.212 *

1.167
1.169 *

1.133
1.135 *

1.105
1.107 *

0.25 1.596
1.596 *

1.361
1.362 *

1.264
1.265 *

1.204
1.205 *

1.161
1.162 *

1.126
1.128 *

1.098
1.100 *

0.35 1.579
1.579 *

1.347
1.347 *

1.251
1.252 *

1.191
1.192 *

1.148
1.150 *

1.114
1.116 *

1.086
1.088 *

0.45 1.550
1.550 *

1.323
1.323 *

1.229
1.229 *

1.171
1.171 *

1.129
1.130 *

1.097
1.098 *

1.070
1.071 *

0.55 1.509
1.508 *

1.288
1.288 *

1.198
1.198 *

1.143
1.143 *

1.105
1.104 *

1.075
1.075 *

1.052
1.052 *

0.65 1.452
1.452 *

1.242
1.243 *

1.159
1.159 *

1.110
1.109 *

1.077
1.076 *

1.053
1.052 *

1.036
1.034 *
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Accuracy for all approximating formulas and variables in the range of validity shown in the
Appendix A, is better than 97.5%.

5. Discussion

5.1. Transformation of the Measurable Weld Parameters into Theoretical Ones

Previously defined variables X, Y and θ, are very suitable for theoretical analysis but from the
point of view of engineering applications, some measurable parameters (as identified in real structures)
are necessary. L and θ are inaccessible from the weld surface and it is much better to work with the
total width w and the weld toe angle θ* defined in Figure 1. In spite of the fact that the values of both
angles θ and θ* (as well as lengths L and w) are almost the same for small weld toe radii, they formally
represent different quantities and should be treated separately.

Unfortunately, the assumptions of constant curvature of the excess metal and smoothness of the
weld contour make the geometrical quantities of the chosen weldment mutually related. For instance,
parameters w and θ* are enough to determine H. The same holds for R, ρ and w.

H =
w
2

Tan(θ∗/2) = R + ρ+

√
(R + ρ)2

−
w2

4
. (12)

This means that smaller or higher H values are not freely accessible, as long as all of the geometrical
conditions defined in Figure 1 are satisfied. However, the constant curvature described by the R radius
is close to the real shape of the weld and should give a good approximation of the real shape.

Other formulas, expressing various relations between geometrical parameters of the butt-welded
joint, are as follows:

R
H

=
1
8

(w
H

)2
−
ρ

H
+

1
2

(13)

L = H

√(w
H

)2
− 8

ρ

H
=

√
w2 − 8Hρ (14)

θ = arcsin


√(

w
H

)2
− 8 ρH

1
4

(
w
H

)2
− 2 ρH + 1

. (15)

Equations (12) to (15) make it possible to transform the measurable parameters into the theoretical
ones and calculate SCFs using the sets of formulas given in the Appendix A.

5.2. Comparison of the Present SCF Results with Other Solutions

Parametric equations for calculating SCFs for a Single-V and a Double-V butt-welded joint,
subjected to tensile and bending loads, have been published in Reference [45]. The authors analyzed
the height of the excess weld metal and its influence on SCF values, assuming that the upper part of
the weld is plane and w/t = 1.46. Such a weld shape is shown in Figure 13, compared to the circular
one of radius R considered in the present analysis. All remaining geometrical parameters (H, w, ρ and
θ*) are the same.
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For the plane weld, the following parametric equation has been proposed [45]:

Kt
t = 1 + 1.3905

(H
t

)0.2081θ∗

(θ∗)1.0756EXP[−1.7483θ∗]
(ρ

t

)−0.259θ∗(
0.021 +

ρ

t

)−0.4413
(16)

which results in SCF values with 96% accuracy.
A comparison of two SCF solutions given by Equations (16) and (A4) for a Single-V butt-welded

joint under tension (for w/t = 1.46), is shown in Table 6. Corresponding SCF values are almost the same.
More noticeable differences only appear for relatively small toe root radii (ρ/t < 0.05 for θ* = 60◦).

Table 6. Comparison of SCFs calculated using formula (A4) (*) to the results obtained from Equation
(16) for a Single-V butt-welded joint subjected to tension, when w/t = 1.46.

ρ/t
θ*

10◦ 20◦ 30◦ 40◦ 50◦ 60◦

0.01 1.79 *
1.83

2.53 *
2.56

3.19 *
3.19

3.71 *
3.75

4.12 *
4.26

4.41 *
4.73

0.025 1.64 *
1.67

2.15 *
2.19

2.55 *
2.60

2.84 *
2.91

3.03 *
3.16

3.16 *
3.36

0.05 1.53 *
1.53

1.90 *
1.92

2.16 *
2.19

2.33 *
2.37

2.43 *
2.49

2.48 *
2.57

0.1 1.43 *
1.41

1.69 *
1.68

1.84 *
1.84

1.92 *
1.94

1.96 *
1.99

1.98 *
2.00

0.2 1.34 *
1.30

1.50 *
1.48

1.58 *
1.58

1.61 *
1.62

1.62 *
1.63

1.62 *
1.62

0.4 1.26 *
1.22

1.34 *
1.34

1.37 *
1.39

1.38 *
1.41

1.38 *
1.40

1.38 *
1.38

H/t 0.06387 0.12872 0.19560 0.26570 0.34041 0.42147

Similar results were obtained for bending loads on a Single-V, butt-welded joint and for tensile
and bending loads of a Double-V butt-welded joint, making use of other formulas in the Appendix A
and those presented in Reference [45], corresponding to each case. This leads to the conclusion that
both solutions are correctly performed and that the shape of the upper part of the excess weld metal
has no significant influence on SCFs, if all remaining geometrical parameters of the joint are the same.

6. Conclusions

After performing extended numerical FEM modelling including about 20,000 cases, six
approximating formulas for SCF’s covering both geometrical types of butt-welded joints and three
independent loading modes were derived. The accuracy of the formulas is better than 97.5%, while the
ranges of applications for the toe radius ρ, weld width L, plate thickness t and weld toe angle θ, are:
0 < ρ/L ≤ 2, 0 ≤ L/t ≤ 2 and 0 ≤ θ ≤ π/2 covering all geometrical situations occurring in engineering
applications including the limiting case, when the weld toe radius ρ tends to zero.

Calculated SCF’s values agree very well with those obtained from parametric equations derived
by Kiyak et al. in Reference [45] for some particular shapes of butt-welded joints.

In the cases of shearing loads, a plane FEM model developed for anti-plane problems and based
on thermal analogy appeared to be very effective.

All the formulas derived here may be easily used in computer aided design for fatigue assessment
of butt-welded joints.

Author Contributions: Conceptualization, K.L.M.; methodology, K.L.M.; software, P.T.; validation, K.L.M. and
P.T.; formal analysis, K.L.M. and P.T.; investigation, K.L.M. and P.T.; resources, K.L.M. and P.T.; data curation, P.T.;
writing—original draft preparation, K.L.M. and P.T.; writing—review and editing, K.L.M. and P.T.; visualization,
K.L.M. and P.T.; supervision, K.L.M.; project administration, P.T.; funding acquisition, K.L.M. and P.T. All authors
have read and agreed to the published version of the manuscript.



Materials 2020, 13, 1798 14 of 20

Funding: This publication was financed through the program of the Ministry of Science and Higher Education of
Poland named “Regional Initiative of Excellence” in 2019–2022 project number 011/RID/2018/19.

Acknowledgments: This research was co-founded through subsidy of the Ministry of Science and Higher
Education for the discipline of mechanical engineering at the Faculty of Mechanical Engineering Bialystok
University of Technology.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

G shear modulus
H height of the excess weld metal
k thermal conductivity
Kt stress concentration factor (SCF)
Kt

t sym stress concentration factor for tensile (axial) load, Double-V weld
Kt

t asym stress concentration factor for tensile (axial) load, Single-V weld
Kt

b sym stress concentration factor for bending load, Double-V weld
Kt

b asym stress concentration factor for bending load, Single-V weld
Kt

s sym stress concentration factor for shearing load, Double-V weld
Kt

s asym stress concentration factor for shearing load, Single-V weld
L theoretical width of the butt weld
n stress field exponent for a sharp corner for tensile and bending load
ns stress field exponent for a sharp corner for shearing load
q magnitude of the heat flux
qmax magnitude of the maximum heat flux
qnom magnitude of the nominal heat flux at the right end of the body
R radius of the excess weld metal
t thickness of the main plate
tsym thickness of the main plate of a Double-V butt weld subjected to shear
tasym thickness of the main plate of a Single-V butt weld subjected to shear
T temperature
|∇T| magnitude of the temperature gradient
|∇T|max magnitude of the maximum temperature gradient
|∇T|nom magnitude of the nominal temperature gradient at the right end of the body
w measurable total width of the butt weld
W displacement component corresponding to anti-plane deformation in z direction
x,y,z Cartesian coordinates
X = ρ/(ρ + L) normalized weld toe radius parameter
Y = L/(L + t) normalized weld width parameter
2α total angle of the sharp corner
θ theoretical weld toe angle
θ* measurable weld toe angle
λ eigenvalue of the characteristic equation corresponding to normal load
λs eigenvalue of the characteristic equation corresponding to shearing load
ρ weld toe radius
σt nominal tensile (axial) stress
σb nominal bending stress
σ1max maximum principal stress at the weld toe due to tensile or bending load
τ shearing stress
τs nominal shearing stress corresponding to anti-plane deformation
τmax maximum shear stress at the weld toe due to shear stress longitudinal to the weld
Ψ potential function
∂Ψ /∂n partial derivative normal to the bonding contour
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Appendix A

Formulas for calculating SCFs for a Double-V and a Single-V butt-welded joint under tension, bending
and shear.

Double-V butt-welded joint–tensile load

Kt sym
t = Xn

(
At

0 + At
1X + At

2X1.1
)

(A1)

where: range of application: 0 < X ≤ 2/3; 0 ≤ Y ≤ 2/3; 0 ≤ θ ≤ π/2

At
0 = At

00 + At
01Y5 + At

02Y6

At
00 = 1 + 1.703θ0.75

− 1.591θ− 0.860θ2 + 0.709θ3
− 0.153θ4

At
01 = −1.672θ+ 9.310θ2

− 8.407θ3 + 2.216θ4

At
02 = −2.768θ− 5.558θ2 + 8.088θ3

− 2.499θ4

At
1 = At

10 + At
11Y5.25 + At

12Y5.5 + At
13Y6

At
10 = 1.510θ0.75

− 21.753θ2 + 60.095θ3
− 59.047θ4 + 26.468θ5

− 4.594θ6

At
11 = 3347.164θ2.5

− 484.574θ4

At
12 = −5482.603θ2.5 + 732.855θ4

At
13 = 2150.066θ2.5

− 231.877θ4

At
2 = At

20 + At
21Y5.25 + At

22Y5.5 + At
23Y6

At
20 = −2.129θ0.75 + 23.927θ2

− 61.415θ3 + 58.649θ4
− 25.829θ5 + 4.425θ6

At
21 = −3505.908θ2.5 + 484.581θ4

At
22 = 5691.409θ2.5

− 710.326θ4

At
23 = −2192.311θ2.5 + 204.792θ4

Double-V butt-welded joint–bending load

Kb sym
t = Xn

(
Ab

0 + Ab
1X + Ab

2X1.1
)

(A2)

where: range of application: 0 < X ≤ 2/3; 0 ≤ Y ≤ 2/3; 0 ≤ θ ≤ π/2

Ab
0 = Ab

00 + Ab
01Y5 + Ab

02Y6

Ab
00 = 1 + 1.484θ0.75

− 1.334θ− 0.926θ2 + 0.756θ3
− 0.170θ4

Ab
01 = −30.294θ+ 55.779θ2.5

− 56.321θ3.5 + 23.951θ4

Ab
02 = 38.179θ− 73.520θ2.5 + 75.297θ3.5

− 32.206θ4

Ab
1 = Ab

10 + Ab
11Y5 + Ab

12Y6 + Ab
13Y7

Ab
10 = 2.312θ− 21.029θ2 + 54.420θ3

− 52.168θ4 + 23.152θ5
− 4.022θ6

Ab
11 = −314.24θ+ 3564.88θ2

− 8769.47θ3 + 8002.34θ4
− 3330.18θ5 + 533.64θ6

Ab
12 = 1025.2θ− 11913.7θ2 + 28711.0θ3

− 26287.0θ4 + 11020.5θ5
− 1779.3θ6

Ab
13 = −859.1θ+ 9788.0θ2

− 22921.6θ3 + 20762.3θ4
− 8633.3θ5 + 1382.0θ6

Ab
2 = Ab

2 + Ab
2Y5 + Ab

2Y6 + Ab
2Y7

Ab
20 = −3.593θ+ 25.590θ2

− 60.017θ3 + 55.916θ4
− 24.518θ5 + 4.233θ6
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Ab
21 = 363.50θ− 3822.05θ2 + 8964.60θ3

− 8059.43θ4 + 3330.82θ5
− 531.86θ6

Ab
22 = −1183.2θ+ 12837.1θ2

− 29545.4θ3 + 26651.4θ4
− 11096.5θ5 + 1785.4θ6

Ab
23 = 987.1θ− 10552.8θ2 + 23619.1θ3

− 21060.0θ4 + 8688.1θ5
− 1384.5θ6

Double-V butt-welded joint–shearing load

Ks sym
t = Xns

(
As

0 + As
1X + As

2X2 + As
3X3

)
. (A3)

where: Ysym = L/(L + tsym), range of application: 0 < X ≤ 2/3; 0 ≤ Ysym
≤ 2/3; 0 ≤ θ ≤ π/2

As
0 = As

00 + As
01(Y

sym)3 + As
02(Y

sym)4

As
00 = 1 + 0.4068θ0.75

− 1.2554θ2 + 1.3008θ3
− 0.6596θ4 + 0.1331θ5

As
01 = −1.2337θ+ 0.6550θ2

− 0.1106θ3

As
02 = 0.4757θ− 0.3672θ2 + 0.1963θ3

− 0.0528θ4

As
1 = As

10 + As
11(Y

sym)2 + As
12(Y

sym)3 + As
13(Y

sym)4 + As
14(Y

sym)5

As
10 = −0.3474θ+ 0.5466θ2 + 0.0682θ3

− 0.0682θ4

As
11 = −0.3487θ2 + 0.0671θ3

As
12 = −1.4274θ+ 3.6342θ2 + 1.4638θ3

− 3.1567θ4 + 0.9430θ5

As
13 = 5.7757θ− 14.9509θ2 + 6.2601θ3

− 0.5036θ4

As
14 = −4.9147θ+ 12.0219θ2

− 3.8935θ3

As
2 = As

20 + As
21(Y

sym)4 + As
22(Y

sym)5 + As
23(Y

sym)6

As
20 = −0.4520θ+ 2.5654θ2

− 3.6200θ3 + 1.8544θ4
− 0.3575θ5

As
21 = 23.291θ− 53.144θ2 + 29.009θ3

− 5.837θ4

As
22 = −77.789θ+ 168.428θ2

− 93.726θ3 + 21.225θ4

As
23 = 65.663θ− 131.421θ2 + 71.156θ3

− 16.786θ4

As
3 = As

30 + As
31(Y

sym)3 + As
32(Y

sym)4 + As
33(Y

sym)5 + As
34(Y

sym)6

As
30 = 0.1683θ2

− 2.0633θ3 + 3.4158θ4
− 2.0331θ5 + 0.4279θ6

As
31 = 2.7387θ− 11.7784θ2 + 4.0711θ3

− 0.4858θ4

As
32 = −32.282θ+ 83.466θ2

− 19.037θ3

As
33 = 86.427θ− 176.451θ2 + 35.193θ3

As
34 = −65.409θ+ 112.572θ2

− 18.945θ3

Single-V butt-welded joint–tensile load

Kt asym
t = Xn

(
At

0 + At
1X + At

2X1.1
)

(A4)

where: range of application: 0 < X ≤ 2/3; 0 ≤ Y ≤ 2/3; 0 ≤ θ ≤ π/2

At
0 = At

00 + At
01Y3 + At

02Y4

At
00 = 1 + 1.1074θ0.75

− 0.5271θ− 2.1097θ2 + 2.0446θ3
− 0.8531θ4 + 0.1407θ5

At
01 = −2.4005θ+ 2.0601θ2 + 0.6306θ3

− 1.1627θ4 + 0.3199θ5
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At
02 = 0.9584θ− 3.7036θ2 + 6.0216θ3

− 6.0896θ4 + 3.2921θ5
− 0.6987θ6

At
1 = At

10 + At
11Y5 + At

12Y5.25 + At
13Y5.5

At
10 = 0.9070θ0.5

− 19.5924θ2 + 60.6784θ3
− 63.9954θ4 + 30.2690θ5

− 5.4716θ6

At
11 = 7477.38θ2

− 5846.23θ3 + 1285.50θ4

At
12 = −16743.10θ2 + 12540.39θ3

− 2653.18θ4

At
13 = 9357.28θ2

− 6701.62θ3 + 1354.26θ4

At
2 = At

20 + At
21Y5 + At

22Y5.25 + At
23Y5.5

At
20 = −1.2239θ0.5 + 20.1999θ2

− 58.7856θ3 + 60.3360θ4
− 28.0141θ5 + 4.9914θ6

At
21 = −7866.99θ2 + 5610.80θ3

− 1146.49θ4

At
22 = 17594.2θ2

− 11995.8θ3 + 2338.7θ4

At
23 = −9813.03θ2 + 6375.03θ3

− 1172.33θ4

Single-V butt-welded joint–bending load

Kb asym
t = Xn

(
Ab

0 + Ab
1X + Ab

2X1.1
)

(A5)

where: range of application: 0 < X ≤ 2/3; 0 ≤ Y ≤ 2/3; 0 ≤ θ ≤ π/2

Ab
0 = Ab

00 + Ab
01Y3 + Ab

02Y4

Ab
00 = 1 + 1.1795θ0.75

− 0.6774θ− 1.8094θ2 + 1.7034θ3
− 0.6927θ4 + 0.1135θ5

Ab
01 = −1.8984θ+ 1.0254θ2 + 9.9490θ3

− 14.8128θ4 + 8.0715θ5
− 1.5835θ6

Ab
02 = −0.1129θ2

− 10.6173θ3 + 16.1861θ4
− 9.0484θ5 + 1.8049θ6

Ab
1 = Ab

10 + Ab
11Y5 + Ab

12Y5.25 + Ab
13Y5.5

Ab
10 = 8.6792θ0.75

− 14.9200θ+ 7.1263θ2 + 8.2688θ3
− 8.7331θ4 + 2.1718θ5

Ab
11 = 6924.89θ2

− 9279.74θ3
− 2437.21θ4 + 8431.29θ5

− 2910.74θ6

Ab
12 = −14637.24θ2 + 18486.92θ3 + 6589.89θ4

− 18798.04θ5 + 6396.51θ6

Ab
13 = 7683.85θ2

− 9027.16θ3
− 4421.30θ4 + 10556.38θ5

− 3532.62θ6

Ab
2 = Ab

20 + Ab
21Y5 + Ab

22Y5.25 + Ab
23Y5.5

Ab
20 = −0.9558θ0.5 + 16.6843θ2

− 45.4073θ3 + 42.5769θ4
− 18.2659θ5 + 3.0640θ6

Ab
21 = −755.879θ2

− 2293.872θ3 + 2749.303θ4
− 1090.224θ5

Ab
22 = 1.875θ2 + 9543.03θ3

− 9328.61θ4 + 3200.30θ5

Ab
23 = 962.36θ2

− 7792.15θ3 + 6987.82θ4
− 2216.02θ5

Single-V butt-welded joint–shearing load

Ks asym
t = Xns

(
As

0 + As
1X + As

2X2 + As
3X3

)
(A6)

where: Yasym = L/(L + tasym), range of application: 0 < X ≤ 2/3; 0 ≤ Yasym
≤ 4/5; 0 ≤ θ ≤ π/2

As
0 = As

00 + As
01

(
Yasym

2−Yasym

)3

+ As
02

(
Yasym

2−Yasym

)4
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As
1 = As

10 + As
11

(
Yasym

2−Yasym

)2

+ As
12

(
Yasym

2−Yasym

)3

+ As
13

(
Yasym

2−Yasym

)4

+ As
14

(
Yasym

2−Yasym

)5

As
2 = As

20 + As
21

(
Yasym

2−Yasym

)4

+ As
22

(
Yasym

2−Yasym

)5

+ As
23

(
Yasym

2−Yasym

)6

As
3 = As

30 + As
31

(
Yasym

2−Yasym

)3

+ As
32

(
Yasym

2−Yasym

)4

+ As
33

(
Yasym

2−Yasym

)5

+ As
34

(
Yasym

2−Yasym

)6

Formulas for calculating As
i j coefficients are the same as for a Double-V butt-welded joint that has been

subjected to shear.
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