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Abstract

Reconstruction of anatomical connectivity from measured dynamical activities of coupled neurons is one of the
fundamental issues in the understanding of structure-function relationship of neuronal circuitry. Many approaches have
been developed to address this issue based on either electrical or metabolic data observed in experiment. The Granger
causality (GC) analysis remains one of the major approaches to explore the dynamical causal connectivity among individual
neurons or neuronal populations. However, it is yet to be clarified how such causal connectivity, i.e., the GC connectivity,
can be mapped to the underlying anatomical connectivity in neuronal networks. We perform the GC analysis on the
conductance-based integrate-and-fire (I&F) neuronal networks to obtain their causal connectivity. Through numerical
experiments, we find that the underlying synaptic connectivity amongst individual neurons or subnetworks, can be
successfully reconstructed by the GC connectivity constructed from voltage time series. Furthermore, this reconstruction is
insensitive to dynamical regimes and can be achieved without perturbing systems and prior knowledge of neuronal model
parameters. Surprisingly, the synaptic connectivity can even be reconstructed by merely knowing the raster of systems, i.e.,
spike timing of neurons. Using spike-triggered correlation techniques, we establish a direct mapping between the causal
connectivity and the synaptic connectivity for the conductance-based I&F neuronal networks, and show the GC is
quadratically related to the coupling strength. The theoretical approach we develop here may provide a framework for
examining the validity of the GC analysis in other settings.
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Introduction

The relation between structure and function is one of the central

research themes in biology. In order to fully understand the

function of biological organisms, it is often important to analyze

the structure of the systems [1–3]. The characterization of struc-

ture can be different with respect to the scales one is interested in.

On the molecular level, the structure may refer to microscopic

configurations of atoms, e.g., in hierarchical protein folding.

Whereas, at the system level, such as neuronal circuitry, the

structure often refers to the anatomical connections amongst

neurons. To find the wiring diagram, i.e., synaptic connectivity, is

often regarded as a key step towards understanding of the infor-

mation processing and function of the brain [4–6]. New experi-

mental observation tools, such as diffusion tensor imaging, are useful

to tract fiber pathways in the whole brain, however, they usually

have an insufficient spatial resolution and cannot be used to infer

connections at the cellular level. Systematic assessment of global

network synaptic connectivity through direct electrophysiological

assays has remained technically infeasible, even for some simple

systems such as dissociated neuronal culture [7–9]. However, it

is relatively easy in experiment to obtain dynamical activities of

neuronal populations or individual neurons through, e.g., local

field potential, spike trains measurement, magnetoencephalog-

raphy (MEG), electroencepholography (EEG), or functional

magnetic resonance imaging (fMRI). Based on experimentally

measured data, many network analysis approaches have been

developed in attempt to probe the underlying brain connectivity

through various statistical approaches [10–13], such as Granger

causality [14–16] and dynamic Bayesian inference [17,18].

Through these analyses, the obtained connectivity is often

referred to as functional or effective connectivity [19]. However,

such functional (effective) connectivity obtained from different

computational analysis is often different from one another

[20,21]. Conceptually, they are also different from the structural

(synaptic) connectivity. To infer the underlying network struc-

ture from observation, it is desirable to explore the relation-

ship between structural and functional connectivity [22–25].
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Understanding of how the functional connectivity is mapped to

the anatomical synaptic connectivity in the brain remains one of

the major challenges in systems neuroscience [26–29].

In this work, we study the relationship between structural

connectivity and a particular functional connectivity which we will

describe presently for conductance-based integrate-and-fire (I&F)

neuronal networks. It has been shown in experiment that I&F

models can statistically faithfully capture the response of cortical

neurons under in-vivo-like currents in terms of both firing dyna-

mics and subthreshold membrane dynamics [30–33]. In theoret-

ical and computational neuroscience, the conductance-based I&F

neuron has served as an efficient reduced model of cortical

neurons to study their statistical spike-encoding properties [34,35].

For instance, the I&F neuron has been widely used as basic

neuronal units for modeling large-scale cortical dynamics to

investigate information processing in certain areas of the brain

[36–42]. In our study, the structural connectivity of I&F networks

denotes synaptic connections between neurons, which are char-

acterized by the adjacency matrix of the network. The particular

functional connectivity of I&F networks in our work denotes the

connectivity constructed by the Granger causality (GC) analysis.

The notion of GC was originally introduced by Wiener to

determine causal influence from one dynamical variable X(t) to

the other Y(t) [43]. It was further mathematically formulated

using linear regression/prediction models [43–45]. In this frame-

work, if the prediction of Y(t) can be improved by incorporating

the information in the history of X(t), it is said that there exists a

causal connection from the time series X(t) to Y(t). Due to its

simplicity and easy implementation, the GC theory has been

extensively applied to study the functional connectivity of networks

in neuroscience as well as in other scientific fields such as systems

biology, medical engineering, economics, and social science

[14,46]. By using voltage or spike train time series obtained from

the I&F network dynamics, the functional connectivity of I&F

networks can be obtained from the GC analysis, which we will

term as the GC connectivity, and describe this connectivity by the

causal adjacency matrix.

The main theoretical issue we address in this work is whether we

can establish a direct, quantitative mapping between the structural

connectivity and the GC connectivity for I&F neuronal networks.

That is, whether the underlying structural connectivity, which is

usually not easy to assess in experiment, can be extracted by using

the GC analysis. There are several challenges in this task: (i) the

GC theory is based on linear regression models and assumes that

the causal relationship can be well captured by low order statistics

(up to the variance) of signals, e.g., Gaussian time series [47].

Theoretically, it has yet to determine whether the linear GC

framework is applicable to I&F systems, whose dynamics are

nonlinear and non-smooth; (ii) the notion of GC connectivity is

statistical rather than structural, i.e., quantification of directed

statistical correlation between dynamical elements, whereas the

structural connectivity corresponds to physical connections between

dynamical units. A priori, there is no obvious reason that these

two types of connectivity are always identical to each other

[9,21,48]. For instance, there were indications that strong effec-

tive connections could exist between regions with no direct

structural connections [23,49,50] and the functional connectivity

could vary under different dynamical states associated with the

same structural network [3,51].

We first develop a reliable numerical algorithm for obtaining

the GC connectivity of I&F networks. Through numerical studies,

we show that the GC connectivity is highly coincident with the

structural connectivity, i.e., the synaptic connectivity between

neurons in a network can be well reconstructed by the causal

connectivity obtained from the GC analysis on voltage time series.

We point out that this reconstruction can be achieved despite the

fact that the dynamics of I&F networks are both nonlinear and

non-smooth. As demonstrated in our numerical results, this recon-

struction is quite robust as long as the time series are reasonably

long for the system to reach a statistically steady state. The

reconstruction is also insensitive to the system size and is inde-

pendent of dynamical regimes. We then investigate the theoretical

underpinning of this network reconstruction by means of the spike-

triggered correlation (STC) approach. Our analysis shows that the

STC on voltage time series, often a standard method used for

inference of connectivity in experiment [52,53], cannot capture

the correct inference of the underlying synaptic connections

between neurons. This failure has to do with the fact that voltage

signals usually have a finite autocorrelation time. We further show

that the STC on voltage-signal residuals, i.e., whitened signals

obtained from regression models, is able to link the GC con-

nectivity and the structural connectivity of the network. This is

achieved by first establishing the structure of STC on residuals to

reflect the underlying coupling between neurons, then showing

this STC is linearly related to residual cross-correlations. Further,

by solving the Yule-Walker equations with respect to residuals,

we can obtain a relation between GC and the residual cross-

correlations for the I&F networks, thus connecting GC to the

underlying coupling between neurons through STC on residuals.

In addition, we can obtain the relationship that GC for neuron j to

neuron i is proportional to S2, where S is the synaptic coupling

strength from neuron j to neuron i.

To investigate the range of applicability of our method, we

further demonstrate that the GC analysis is also capable of

detecting synaptic connections between individual neurons and a

subnetwork of neurons (i.e., a group of interacting neurons), or

connections between subnetworks. This is motivated by the signals

measured by extracellular recordings in experiment, i.e., the local

field potential. Our results indicate that the synaptic connection

may also be detected from measured signals between intracellular

(individual neuron) and extracellular recordings (a group of

neurons, i.e., subnetworks). In addition, we show that the network

reconstruction through the GC theory can also be achieved using

spike train time series. In comparison with the precise voltage-

trace measurement, we note that spike train time series are

relatively easy to measure in experiment, thus, rendering spike-

train GC analysis particularly useful for practical settings. This is

rather striking in that one can essentially reconstruct the synaptic

connectivity of I&F networks by only examining the raster plot of

a group of neurons. In addition, we also demonstrate that our

reconstruction can be extended to networks with both excitatory

and inhibitory neurons, or to more realistic neuronal networks,

e.g., of the exponential I&F neurons. Note that our results provide

a direct link between the GC connectivity and the structural

connectivity with no intervention of systems and no prior

knowledge of neuronal model parameters. Therefore, this method

may be potentially useful in experiment to infer the structural

information of neuronal networks. Because the GC theory is often

used to investigate the direction of information flow within

networks, our work may also shed light on how propagation of

information flow within networks can be influenced by the

network topology.

Results

The systems we study are conductance-based, integrate-and-fire

type neuronal networks [See Eqs. (23), (24) and (25) in Methods]. As

mentioned previously, with in-vivo-like current injection, the I&F

Reconstruction of Neuronal Networks
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neuronal model can capture well both the firing rate and sub-

threshold dynamics of cortical neurons [30,31]. Consequently,

networks of I&F neurons have served as prototypical theoretical

models to provide insight into fascinating dynamics of many

neuronal networks in the brain [32,33,35,54].

The Granger causality characterizes causal interactions between

time series by distinguishing the driver from the recipient (See

theoretical definitions in Methods), namely, the driver, which is

earlier than the recipient, contains information about the future of

the recipient, and thus the variance of the prediction error is

reduced when the information of the driver is incorporated. In

general, the causal influence between time series reflects a drive-

response scenario and this influence can be either reciprocal or

unidirectional. As discussed later, such causality which is based on

temporality is characterized by the directional correlation relations

between time series.

We apply the Granger causality analysis to these widely used

I&F neuronal networks to investigate the relationship between

causal and structural connectivities (See GC algorithm in Methods).

By applying the GC algorithm to the I&F networks, we can obtain

all the GC values from neuron j to neuron i, denoted by FVj?Vi
,

for i,j~1, 2, � � �,N. Then, we perform the p-value test (p~0:001 in

our simulations) to determine a GC threshold FT (See Text S1 for

more details). If FVj?Vi
wFT, we define that there is a significant

causal interaction from the jth neuron to the ith neuron and

denote this by Gij~1. Otherwise, we say there is no causal

influence from the jth neuron to the ith neuron and denote this by

Gij~0. Because GC interactions between two neurons are in

general not symmetric, by representing them as edges in a graph,

we can define a directed graph or a causal connectivity network, as

characterized by the matrix G~(Gij), for the I&F systems [55,56].

Meanwhile, the structural connectivity of our I&F system is char-

acterized by the synaptic adjacency matrix, denoted by A~(Aij)

(See Methods). Note that, the causal connectivity can be viewed as a

type of functional connectivity [19,29], whereas the structural

connectivity reflects physical connectivity. As discussed in the

Introduction, our causal connectivity is a statistical measure, and it is,

in general, not equivalent to the underlying physical connections

between dynamical variables [56].

Causal connectivity vs. structural connectivity for I&F
networks

As described above, the GC connectivity can be characterized

by the causal adjacency matrix G~(Gij), whereas the structural

connectivity is characterized by the synaptic adjacency matrix

A~(Aij), i,j~1,2, � � � ,N. In the following, we discuss the rela-

tionship between G and A for the I&F networks, i.e., the

relationship between GC connectivity and structural connectivity.

Figure 1A and C shows examples of synaptic connectivity (Aij)

between neurons for a two-neuron and a three-neuron networks.

Figure 1B and D displays the corresponding causal adjacency

matrix (Gij) constructed by using our GC algorithm on the voltage

time series. It can be clearly seen that the causal connectivity is

coincident with the synaptic connectivity. These examples present

compelling evidence that the synaptic adjacency matrix of the I&F

networks can be successfully reconstructed by using the GC

algorithm on neurons’ voltage trajectories.

Next, we address the question of whether these successful

reconstructions are merely accidental cases or whether there is a

large class of networks that are amenable to this analysis. To

examine whether the reconstruction is dependent on particular

dynamical regimes, which are often described by a particular

choice of network system parameters, we investigate the robustness

of the reconstruction by scanning the magnitude f and the rate m
in the Poisson drive of the I&F networks [See Eq. (23) in Methods].

The choice of these parameters covers the realistic firing rates

(5*150 Hz) of real neurons [35,57]. Note that there are typically

three dynamical regimes for the I&F neurons for each fixed input

strength f : (i) a highly fluctuating regime when the input rate m is

low; (ii) an intermediate regime when m is moderately high; (iii) a

low fluctuating or mean driven regime when m is very high

[58,59]. Figure 2A–C shows the voltage trajectories of two neurons

for different choices of input rate m with the input strength f fixed.

It can be seen from Fig. 2A–C that the firing pattern is rather

irregular when m is low (*0:3ms{1), whereas the spiking activity

of neurons becomes relatively regular (nearly periodic) when m is

very high (*2:0ms{1). For all these dynamical regimes, we can

demonstrate that there is a wide range of the network parameters

whose synaptic connectivity can be analyzed using the GC

analysis. As shown in Fig. 1E and F, the GC connectivity (G ) and

the synaptic connectivity (A) are highly coincident with each other

Figure 1. GC connectivity for small excitatory networks. For
networks of two excitatory neurons and three excitatory neurons in (A)
and (C), the edge with only a triangle at the end signifies a directed
connectivity. Parameters in (A)-(D) are chosen as m~1 ms{1 (Poisson
input rate), f ~0:007 ms{1 (Poisson input strength), and the coupling
strength S~0:01 ms{1 (the corresponding EPSP is *1 mV). (A) A two-
neuron network with only a synaptic connection from neuron 1 to
neuron 2. (B) Causal adjacency matrix G~(Gij) constructed by GC,
which captures the synaptic connectivity in (A). (C) A three-neuron
network with a synaptic connection from neuron 2 to neuron 3 and
with bidirectional synaptic connections between neuron 1 and neuron
2. (D) Causal adjacency matrix G~(Gij) constructed by GC, which
captures the synaptic connectivity in (C). The coincidence between the
synaptic adjacency matrix A and the causal adjacency matrix G as a
function of rate m and magnitude f in the Poisson drive for (E) the two-
neuron network as shown in (A), and (F) the three-neuron network as
shown in (C). The parameter region labeled by the white color indicates
that A=G , and by the black color indicating that A~G .
doi:10.1371/journal.pone.0087636.g001
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Figure 2. Characteristics of different dynamical regimes. Illustrated here are the dynamic characteristics of the two-excitatory-neuron network
in Fig. 1A with different Poisson input rate m for highly fluctuating regime [(A),(D),(G),(J) and (M)] with m*0:3ms{1 , intermediate regime [(B),(E),(H),(K)
and (N)] with m*0:8ms{1 and mean-driven regime [(C),(F),(I),(L) and (O)] with m*2:0ms{1 . The fixed input strength f*0:02 ms{1 . For these three
dynamical regimes, we plot the corresponding quantities: (A), (B), and (C) are voltage trajectories V1(t) (black online) and V2(t) (red online). (D), (E),

and (F) are spike-triggered correlation on voltage [Eq. (1)]: V̂V1j2(t) (cyan online) and V̂V2j1(t) (black online). (G), (H), and (I) are spike-triggered

correlation on residuals [Eq. (2)]: EA
1 j2(t) (cyan online) and EA

2 j1(t) (black online). (J), (K), and (L) are numerically computed regression coefficients b̂bJ
k

Reconstruction of Neuronal Networks
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for both two-neuron and three-neuron networks over a wide range

of dynamical regimes.

We further examine whether the synaptic connectivity of large

networks with multiple neurons can be revealed by the GC

connectivity analysis. For a network of 100 neurons with random

connectivity, its synaptic adjacency matrix (Aij ) is shown in Fig. 3A,

where the total number of nonzero Aij , as indicated by the black

color, is approximately 2000. Applying the GC analysis to this

network, we can construct its causal connectivity matrix (Gij).

Figure 3B shows the difference between A and G , where the white

color represents jAij{Gij j~1, i.e., Aij=Gij , and the black color

represents Aij~Gij . It can be seen that the synaptic adjacency

matrix A can be successfully reconstructed by the causal adjacency

matrix G with very high accuracy (§98%). Incidentally, we also

point out an interesting phenomenon as observed for the GC

connectivity of large excitatory neuronal networks: if we rank the

GC by magnitude for all possible directed connections between

neurons, there often is a gap separating these ranked GC values as

indicated by the gray horizontal line (blue online) in Fig. 3C. This

gap clearly divides the GC values into two distinct groups.

Surprisingly, by using this gap, for example, by choosing a

horizontal line within the gap as the GC threshold FT, we obtain

that G is identical to A.

Mechanism underlying the successful reconstruction
In this section, we address the issue of why the GC framework,

based on linear systems, can be used to reveal the synaptic

connectivity of nonlinear network dynamics of I&F neurons. For

dynamical systems of pulse-coupled type, such as I&F neurons, the

spike-triggered correlation (STC) or spike-triggered averaging

method has been widely applied in studies of synaptic connections

in such systems [52,60]. The STC on voltages from the jth neuron

to the ith neuron is defined as

V̂Vijj(t)~SV̂Vi(Tj,kzt)Tk, ð1Þ

where V̂Vi(t)~Vi(t){E½Vi(t)� has zero mean, Tj,k is the kth spike

time of the jth neuron as defined in Eq. (23) (See Methods) and S:Tk

is the average with respect to k, i.e., average over all spikes of the

jth neuron. Note that, the STC contains the information of both

the statistics of the spike drive from the jth neuron and the

response of the ith neuron [52,60]. Therefore, this drive-response

scenario apparently reflects the causal connectivity from the jth

neuron to the ith neuron. On the other hand, the existence of this

drive-response relation might imply the existence of synaptic

connectivity from the jth neuron to the ith neuron, i.e., Aij~1.

Therefore, it appears that the feature of STC on voltage can be

used to relate the causal connectivity to the synaptic connectivity

for the I&F network system.

For the two-neuron network in Fig. 1A, the STCs on voltages

between neuron 1 and neuron 2 [V̂V1j2(t) and V̂V2j1(t)] in the three

different dynamical regimes are displayed in Fig. 2D–F. From the

definition of STC [Eq. (1)], if the ith neuron’s response

V̂Vi(Tj,kzt), averaged over all the spikes of the jth neuron,

exhibits significant deviations from zero when tw0, it might imply

that the jth neuron is presynaptic to the ith neuron, otherwise

SV̂Vi(Tj,kzt)Tk should be nearly zero after statistical average

[52,60,61]. However, as shown in Fig. 2D–F, both STCs, V̂V1j2(t)

and V̂V2j1(t), exhibit significant deviations from zero for tw0 when

t is small and naturally vanish when t is sufficiently large in all

dynamical regimes shown in Fig. 2A–C. These nonzero features in

STCs, V̂V1j2(t) and V̂V2j1(t), may suggest that the connections

between two neurons are bidirectional [61,62]. However, from the

network synaptic connectivity as shown in Fig. 1A, there is only a

unidirectional synaptic connection from neuron 1 to neuron 2.

Therefore, one needs to address the question of why the STC

V̂V1j2(t), similarly V̂V2j1(t), exhibit nonzero features for tw0 despite

the fact that there is no synaptic connection from neuron 2 to

neuron 1. Intuitively, we can understand the phenomenon as

follows: because the voltage signal V̂V1(t) is not white, i.e., there is a

finite correlation time for the voltage signal, the future of V̂V1 will

be correlated with its own history. On the other hand, neuron 1 is

presynaptic to the neuron 2, thus giving rise to the possibility that

V̂V2(t) is also correlated with the history of V̂V1. Therefore, V̂V2(t)

would be likely correlated with the future of V̂V1. This correlation is

reflected in the nonzero feature of the STC V̂V1j2(t) for tw0, and it

can give rise to an incorrect inference of the synaptic connection

from neuron 2 to neuron 1.

(blue ‘‘plus’’ online), ĉcJ
k (red ‘‘cross’’ online) and their corresponding approximations Yk~rk=Var(EA

2 ) (‘‘square’’ symbol), Zk~r{k=Var(EA
1 ) (‘‘circle’’

symbol). (M), (N), and (O) are the GC FV1?V2
(red ‘‘star’’ online) as a function of coupling strength S, the line (black online) is a quadratic fit.

doi:10.1371/journal.pone.0087636.g002

Figure 3. GC connectivity for large excitatory networks. For an I&F network of 100 excitatory neurons with random connectivity, the synaptic
adjacency matrix A~(Aij) is shown in (A) with the white color indicating that Aij~0 and the black color for Aij~1. The total number of nonzero Aij is
*2000 (the percentage of connections is *20%) and the average neuronal firing rate is *20Hz. (B) The absolute difference between A and the
causal adjacency matrix G , i.e., jAij{Gij j. The white color indicates that jAij{Gij j~1, i.e., Aij=Gij and the black color when Aij~Gij . By significance
test (p~0:001, See Text S1 for more details), the total number of Aij=Gij is 163 out of *10,000 possible pairs of connections. (C) Ranked GC in order

of magnitude with the horizontal line (blue online) indicating a threshold in the gap of the ranked GC. Parameters are chosen as m~0:24 ms{1

(Poisson input rate), f ~0:02 ms{1 (Poisson input strength), and the coupling strength S~0:005 ms{1 (the corresponding EPSP is *0:5 mV).
doi:10.1371/journal.pone.0087636.g003
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From the above argument, the nonzero feature of the STC

V̂V1j2(t) is closely related to the finite-time autocorrelation structure

of voltage signals. This has led us to investigate the STC on signals

without finite-time autocorrelations, i.e., whitened signals, in order

to extract correct synaptic connectivity between neurons. Note

that, the residuals EA
1 (t) and EA

2 (t), as obtained in auto regression

(AR) models [See Eq. (17) in Methods], are whitened signals

[44,45], i.e., with only instantaneous correlation. Therefore, we

may study the STC on residuals EA
i and EA

j :

EA
i jj(t)~SEA

i (Tj,kzt)Tk: ð2Þ

As shown in Fig. 2G–I, for tw0, the STC EA
2 j1(t) possesses similar

features to that of the STC V̂V2j1(t), indicating the existence of

synaptic connectivity from neuron 1 to neuron 2. However, unlike

the STC V̂V1j2(t), the STC EA
1 j2(t) statistically vanishes for tw0,

suggesting that neuron 2 is not presynaptic to neuron 1. These

results indicate that the STC on residuals, i.e., whitened signals,

can provide a correct inference about the unidirectional connec-

tion between the two neurons.

As the STC on residuals may be used to successfully detect the

synaptic connectivity between neurons, it is natural to ask whether

the GC connectivity between the signals of residuals are related to

the underlying mechanism for the success of the reconstruction of

networks. From the AR models for V̂V1(t) and V̂V2(t) [See Eq. (17)

in Methods], we can construct the moving average representations

of V̂V1(t), V̂V2(t) in terms of residuals EA
1 (t), EA

2 (t) [63,64].

V̂V1(t) ~
P

kw0

PkEA
1 (t{k)zEA

1 (t),

V̂V2(t) ~
P

kw0

QkEA
2 (t{k)zEA

2 (t),
ð3Þ

where Pk and Qk are constant coefficients. Then, substituting Eq.

(3) into the joint regression (JR) models for V̂V1(t) and V̂V2(t) [See

Eq. (18) in Methods], we obtain the corresponding JR models for

EA
1 (t) and EA

2 (t):

EA
1 (t)~

X

kw0

âaJ
kE

A
1 (t{k)z

X

kw0

b̂bJ
kE

A
2 (t{k)zEJ

1,2(t), ð4aÞ

EA
2 (t)~

X

kw0

ĉcJ
kE

A
1 (t{k)z

X

kw0

d̂dJ
kE

A
2 (t{k)zEJ

2,1(t), ð4bÞ

where EJ
1,2(t) and EJ

2,1(t) are the same residuals as those in the

original JR models for V̂V1(t) and V̂V2(t) [See Eq. (18) in Methods].

Note that Eqs. (4a) and (4b) can also be obtained by using the least-

squares method. On the other hand, we can construct the AR

models for EA
1 (t) and EA

2 (t) as

EA
1 (t) ~

P
kw0

âaA
k E

A
1 (t{k)z~EEA

1 (t),

EA
2 (t) ~

P
kw0

d̂dA
k EA

2 (t{k)z~EEA
2 (t),

ð5Þ

Eqs. (4) and (5) represent JR and AR processes for residuals EA
1 (t)

and EA
2 (t), respectively. By the definition of GC, we can obtain

FEA
2
?EA

1
~ ln

Var(~EEA
1

)

Var(EJ
1,2

)
and FEA

1
?EA

2
~ ln

Var(~EEA
2

)

Var(EJ
2,1

)
. Note that the

residuals EA
1 (t) and EA

2 (t) are whitened signals. Therefore, the

coefficients âaA
k , d̂dA

k in the AR models (5) are zero and we have

~EEA
1 (t)~EA

1 (t), ~EEA
2 (t)~EA

2 (t). This yields that the GC is invariant as

FV2?V1
~FEA

2
?EA

1
and FV1?V2

~FEA
1
?EA

2
: ð6Þ

From Eq. (6), it can be seen that the causal connectivity is indeed

embedded in the whitened residuals EA
1 (t) and EA

2 (t). In the

following, we will show how the STC on residuals bridges the

causal connectivity and the synaptic connectivity.

We first derive analytical expressions of GC for the I&F

networks and show that they are closely related to the residual

cross-correlation between EA
1 and EA

2 . Multiplying Eq. (4a) by the

residual EA
1 (t{l) or EA

2 (t{l), for l~1, 2, � � �, and taking

expectations, we obtain the Yule-Walker equations [63,64] with

respect to the coefficients âaJ
k and b̂bJ

k as

Var(EA
1 )âaJzRb̂b

J
~0,

RTâaJzVar(EA
2 )b̂b

J
~rz,

ð7Þ

where R~½rij � is the covariance matrix with rij~E½EA
1 (t)EA

2 (tz

i{j)�. The column vectors âaJ~(âaJ
k), b̂b

J
~(b̂bJ

k) and rz~(rk), for

k~1, 2, � � �, where âaJ
k, b̂bJ

k and rk~E½EA
1 (t)EA

2 (t{k)� are the kth

component in the vectors. Similarly, if we multiply Eq. (4b) by the

residual EA
1 (t{l) or EA

2 (t{l), for l~1, 2, � � �, and take

expectations, then we can obtain the Yule-Walker equations with

respect to coefficients ĉcJ
k and d̂dJ

k

Var(EA
1 )̂ccJzRd̂d

J
~r{,

RTĉcJzVar(EA
2 )d̂d

J
~0,

ð8Þ

where the column vectors ĉcJ~(ĉcJ
k), d̂d

J
~(d̂dJ

k) and r{~(r{k), for

k~1, 2, � � �, where ĉcJ
k, d̂dJ

k and r{k~E½EA
1 (t)EA

2 (tzk)� are the kth

component in the vectors. Solving Eqs. (7) and (8), we obtain the

regression coefficients as

âaJ~{RKrz, b̂b
J
~Var(EA

1 )Krz,

ĉcJ~Var(EA
2 )Hr{, and d̂d

J
~{RTHr{,

ð9Þ

where the matrices K and H are defined as K~½Var(EA
1 )Var

(EA
2 )I{RTR�{1

and H~½Var(EA
1 )Var(EA

2 )I{RRT�{1
with I

being the identity matrix.

As mentioned previously, Eqs. (4) can also be obtained by using

the least-squares method. From this viewpoint, by multiplying Eq.

(4a) by EA
1 (t) and Eq. (5) by EA

2 (t), then taking expectations, we can

obtain

Var(EA
1 ) ~rT

zb̂b
J
zVar(EJ

1,2),

Var(EA
2 ) ~rT

{ĉcJzVar(EJ
2,1): ð10Þ

Substituting Eqs. (9) into Eqs. (10) and using the GC definition

[See Eqs. (19) in Methods], we arrive at

Reconstruction of Neuronal Networks

PLOS ONE | www.plosone.org 6 February 2014 | Volume 9 | Issue 2 | e87636



FV2?V1
~{ ln (1{rT

zKrz) and

FV1?V2
~{ ln (1{rT

{Hr{):
ð11Þ

For small residual cross-correlation between EA
1 and EA

2 , which is

consistent with our numerical simulation results for the I&F

networks, namely, rirj%Var(EA
1 )Var(EA

2 ) with i, j chosen as any

integers, the matrices K and H can both be approximated by

I=Var(EA
1 )Var(EA

2 ). Therefore, the regression coefficients b̂bJ
k and

ĉcJ
k in Eqs. (9) can be approximated by

b̂bJ
k&

rk

Var(EA
2 )

and ĉcJ
k&

r{k

Var(EA
1 )
: ð12Þ

As verified numerically in Fig. 2J–L, Eqs. (12) provide very good

approximations of the regression coefficients b̂bJ
k and ĉcJ

k for the I&F

networks. We observe that b̂bJ
k&0 and ĉcJ

k=0 as shown in Fig. 2J–L.

From the GC theory [43–45], a vanishing b̂bJ
k indicates there is no

causal influence from neuron 2 to neuron 1, whereas a

nonvanishing ĉcJ
k indicates there is a causal influence from neuron

1 to neuron 2. This causal connectivity is consistent with the

underlying synaptic connectivity. By definition, the residual cross-

correlation rk reflects the correlation between the future of neuron

1 [as embedded in EA
1 (t)] and the history of neuron 2 [as

embedded in EA
2 (t{k)], whereas r{k reflects the correlation

between the future of neuron 2 and the history of neuron 1.

Therefore, rk and r{k characterize the drive-response relationship

between two neurons, as also captured by the regression

coefficients b̂bJ
k and ĉcJ

k in JR models through Eqs. (12). Further-

more, the GC between two neurons [Eq. (11)] can be approxi-

mated by

FV2?V1
&

rT
zrz

Var(EA
1 )Var(EA

2 )
and FV1?V2

&
rT
{r{

Var(EA
1 )Var(EA

2 )
, ð13Þ

which provide a relation between the GC and the residual

cross-correlations.

Next, we establish the relationship between the STC on

residuals and their cross-correlations. Due to the firing-reset

dynamics of I&F neurons, the magnitude of EA
1 (EA

2 ) at each kth

spike time T1,k (T2,k) is much larger in absolute value than that at

other times as can be seen from Fig. 4. Therefore, the residuals

EA
1 (t) and EA

2 (t) can be approximated in the form of the Dirac delta

functions as EA
i (t)&{hi

P
k d(t{Ti,k), i~1,2, where h1 and h2

are normalizing factors. Under this approximation, the STC on

residuals [Eq. (2)] can be expressed as

EA
1 j2(t)&{

rt

h2n2
and EA

2 j1(t)&{
r{t

h1n1
, ð14Þ

where n1 and n2 are the firing rate of neuron 1 and neuron 2,

respectively. From Eqs. (13) and (14), it can be seen that the GC

FV1?V2
=0 is equivalent to the STC on residual EA

2 j1(t)=0, and

FV2?V1
~0 is equivalent to the STC on residual EA

1 j2(t)~0 for

tw0. Therefore, the causal connectivity can be well extracted by

the nonzero feature of STC on residuals. Note that, as discussed

previously, the nonzero feature of STC on residuals is related to

the pre-post synaptic connectivity between neurons as shown in

Fig. 2G–I. Therefore, we can conclude that the causal connectivity

captures well the synaptic connectivity for the I&F networks.

Finally, we discuss the relation between GC and the coupling

strength S when there exists a synaptic connection between two

neurons. Note that the STC EA
2 j1(t) corresponds to the spike-

induced change of EA
2 . From the I&F system [e.g., See Eq. (23) in

Methods], this change is asymptotically proportional to the coupling

strength S when t is small. Therefore, combined with Eqs. (13)

and (14), we can make a connection that GC is quadratically

related to the coupling strength as

FV1?V2
!S2: ð15Þ

Fig. 2M–O shows that, in three different dynamical regimes, there

is an approximately quadratic relation between GC and the

coupling strength, confirming the relationship in Eq. (15). Note

that the two-neuron network we discussed above is for the

unidirectional case. However, the above analytical derivations are

still valid for the case of bidirectional connections.

It is worthwhile to emphasize that it is the d-like noise structure

of residuals, induced by the firing-reset dynamics, that links STC

with the cross-correlation [Eq. (14)]. This is a crucial feature in the

I&F dynamics that underlies why the GC connectivity can be

captured by the STC on whitened signals. The approximate

quadratic relationship between GC and S [Fig. 2M-O] ultimately

underlies the coincidence between the causal and the structural

connectivity for the I&F networks.

Further investigation of GC
As discussed above, by applying the GC analysis to voltage time

series, we have obtained that the synaptic connectivity between

neurons can be identified by the GC connectivity for the I&F

networks. We now turn to the further investigation of the following

issues: (i) whether the synaptic connectivity between a single

neuron and a subnetwork or the connectivity between subnetworks

can also be revealed by the GC connectivity; (ii) whether the GC

connectivity constructed by merely using the spike train time series

is also coincident with the synaptic connectivity; (iii) for more

realistic neurons, e.g., the exponential I&F model, whether there is

also a direct connection between synaptic connectivity and GC

connectivity; (iv) for networks with both excitatory and inhibitory

neurons, whether the network topology can also be successfully

reconstructed by the GC analysis.

GC connectivity for subnetworks. In extracellular record-

ing, the microelectrode is usually placed away from individual

neurons, allowing the activity of a large number of neurons to

contribute to the measured signal. We model the signal extracted

Figure 4. Trajectories of voltages and residuals. For the two-
excitatory-neuron network in Fig. 1A, illustrated here are the sample
trajectories of voltages in (A) V1(t) (black online) and V2(t) (red online),
and corresponding trajectories of residuals in (B) EA

1 (t) (black online) and

EA
2 (t) (red online).

doi:10.1371/journal.pone.0087636.g004
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from such extracellular microeletrodes, i.e., local field potential, by

using the voltage averaged over population of neurons and we will

term this as the voltage of subnetworks.

For a nine-neuron network [Figs. S1(A) and S2(A)], we can

divide it into one subnetwork and one single neuron, where the

single neuron corresponds to one neuron in the original network

and the subnetwork corresponds to the remaining eight neurons.

Through this division, we can construct an effective two-‘‘neuron’’

that consists of the subnetwork as an effective neuron and the

other neuron as another [Fig. S1(C) and S2(C)]. We compute

the GC of this effective two-‘‘neuron’’ network using the voltage of

the subnetwork and the voltage of the single neuron [as displayed

in Fig. S1(D) and S2(D)]. Our results show that the GC

connectivity can successfully capture the structural connectivity

between the subnetwork and the single neuron. This reconstruc-

tion holds for the case of a subnetwork presynaptic to a single

neuron and vice versa (Figs. S1 and S2).

We further examine whether the synaptic connectivity between

subnetworks can be revealed by the GC analysis. For a fifteen-

neuron network [Fig. S3(A)], we divide this fifteen-neuron network

into three subnetworks and construct an effective three-‘‘neuron’’

network [Fig. S3(C)]. For this effective network consisting of three

subnetworks, there are connections that are both ‘‘presynaptic’’

and ‘‘postsynaptic’’ between some subnetworks and there are also

‘‘presynaptic’’ connections only from one subnetwork to another

subnetwork. Using voltage time series of these three subnetworks,

we compute the GC connectivity [Fig. S3(D)]. Our results show

that the GC connectivity is the same as the structural connectivity

between subnetworks. From these results, we can conclude that the

synaptic connectivity between subnetworks can also be correctly

identified by the corresponding GC connectivity.

GC connectivity via spike trains. We have so far demon-

strated that the GC analysis is effective to reconstruct anatomical

connectivity within a network by using continuous-valued signals,

e.g., voltage time series. Compared with voltage signals, the recent

advent of multiple-electrode recording has made it comparatively

easy to simultaneously record spiking activity (action potential) of

multiple neurons [65–67]. The neuronal activity can often be

described by a train of spike events [57,68,69],

Si(t)~
X

k

d(t{Ti,k), ð16Þ

where Ti,k is the kth spike of the ith neuron. The spike train can

also be characterized as a binary vector with a component chosen

as 1 if a spike has occurred in the sample interval, and chosen as 0
otherwise [70]. Such time series present theoretical challenges

because most standard signal processing techniques are designed

primarily for continuous-time processes instead of point processes

[71].

There are some methods which have already been developed to

identify causal relationships between spike trains of simultaneously

recorded multiple neurons in experiment. For instance, under the

assumption of stationarity, a nonparametric frequency domain

approach was proposed to estimate GC directly from the Fourier

transforms of spike train data [72–74]. Some other statistical

methods based on information theory or likelihood function have

also been put forth and applied to the analysis of sensory and

motor data collected from experiments [75–78]. Here, we focus on

the time domain GC analysis and study whether the anatomical

connectivity of the I&F networks can also be directly mapped to

the GC connectivity obtained by using spike train data. Note that,

this GC analysis is different than using voltage time series. Unlike

voltage data which are continuous-valued data, the spike train

data are point-process data and it remains to be determined

whether these data can be well described by the multivariate

autoregressive models [78].

Following the algorithm of the GC analysis, we use spike train

time series (binary vector as described above) to construct the

causal connectivity network for the I&F neuronal systems and

compare with their structural connectivity. For the two-neuron

network as shown in Fig. 1A, we scan the parameters f and m in

Poisson input to cover different dynamical regimes and the range

of firing rates of realistic neurons. Our results [Fig. S4(A)] show

that the synaptic connectivity between two neurons can be well

captured by the causal connectivity. For the hundred-neuron

network as shown in Fig. 3A, we compute the causal adjacency

matrix G and compare it with the synaptic adjacency matrix A.

Our results [Fig. S4(B)] again demonstrate that A can be suc-

cessfully reconstructed by G with very high accuracy (§99:5%).

Similarly, as for the case of GC from voltage time series, there is

also a gap when we rank the GC by magnitude for all possible

directed connections between neurons. Using a horizontal line

[(blue online) in Fig. S4(C)] that divides the GC values into two

groups, we can obtain G~A with 100% accuracy by using this

horizontal line as the GC threshold FT.

To demonstrate that our previous analysis of the mechanism

underlying the successful reconstruction by using voltage time

series for the I&F networks can also be extended to that using

spike train time series, we examine the relation between the

regression coefficients b̂bJ
k, ĉcJ

k and the residual cross-correlation rk,

r{k as in Eqs. (12) for the two-neuron network in Fig. 1A. Our

results [Fig. S5(A) – (C)] show that the relation [Eqs. (12)] between

the regression coefficients and the residual cross-correlation holds

very well when the GC connectivity is obtained by using spike

train time series. Our results show that there is a vanishing

coefficient b̂bJ
k, i.e., no causal influence from neuron 2 to neuron 1,

and a nonvanishing ĉcJ
k, i.e., there is causal influence from neuron 1

to neuron 2. This is also consistent with the synaptic connectivity

of the two-neuron network as shown in Fig. 1A. Similarly, due to

the d-like structure of residuals, we can also obtain that the GC

constructed from spike train time series is quadratically related to

the coupling strength [as verified in Fig. S5(D) – (F)].

GC for exponential integrate-and-fire neuronal networks.

To present evidence that our results are not restricted to the

standard I&F model [See Eq. (23) in Methods], which does not

contain spike generation dynamics, we further carry out the GC

analysis for the exponential integrate-and-fire (EI&F) neuronal

model [See Eq. (24) in Methods]. The EI&F model captures the

action potential of real neurons in a biophysically motivated way

by fitting the spike-onset region to realistic neurons, such as the

conductance-based Wang-Buzsaki model [79–81]. Compared with

the standard I&F model which combines linear filtering of input

currents with a strict voltage threshold, the EI&F model allows a

replacement of the strict voltage threshold by a relatively realistic

smooth spike initiation zone [82,83]. The model can quite

faithfully reproduce response properties of the Hodgkin-Huxley

type neurons under rapidly fluctuating inputs [84,85].

Using the voltage time series obtained by numerically evolving

the system of EI&F neurons [See Eq. (24) in Methods], we construct

regression models for these simulated data and compute causal

connectivity of EI&F neuronal networks through the GC analysis.

We perform the reconstruction [Fig. S6(A)] for the two-neuron

network with the synaptic connectivity shown in Fig. 1A by

scanning the parameters f and m. Our results demonstrate that the

reconstruction is successful for almost all choices of parameters

over different dynamical regimes and with the range over the
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firing rate (5*150 Hz) of real neurons [35,57]. For the

reconstruction of the hundred-neuron network with its synaptic

connectivity shown in Fig. 3A, the difference between the

synaptic adjacency matrix A and the constructed causal ad-

jacency matrix G is small [Fig. S6(B)]. We can still obtain a very

high accurate reconstruction (§99%). Interestingly, if we rank all

GC values in order of magnitude for this hundred-neuron

network, as for the case of I&F models, there is also a gap [Fig.

S6(C)]. Any horizontal line in the gap [e.g., the blue line in Fig.

S6(C)] can be naturally used as a GC threshold FT to divide the

GC values into two groups, yielding the result G~A with 100%
accuracy.

In comparison with the I&F model, the EI&F neuronal model

contains an extra spike-generating current term yi(V ) which takes

the form of an exponential function. Note that yi(V ) is almost

negligible when the voltage of the neuron is below the spike-

initiation threshold VT . If the neuron fires, yi(V ) will be dominant

and the membrane potential will grow exponentially fast to

infinity. After that, the voltage of the neuron will be reset to the

reset value. Therefore, the EI&F neuron also possesses the same

firing-reset dynamics as the I&F neuron and our previous analysis,

e.g., Eqs. (12) and (15), should also be valid for this more realistic

neuronal model. To confirm this, we have verified the relation

[Eqs. (12)] between regression coefficients and residual cross-

correlations for the two-neuron network in Fig. 1A [as shown in

Fig. S7(A) – (C)], and Eqs. (12) is indeed valid for the EI&F model.

Similarly, as for the case of I&F model, we have a vanishing

coefficient b̂bJ
k, i.e., there is no causal influence from neuron 2 to

neuron 1, and a nonvanishing ĉcJ
k, i.e., there is a causal influence

from neuron 1 to neuron 2. This is again consistent with the

underlying synaptic connectivity between the two neurons as

shown in Fig. 1A. By using the d-like structure of residuals for the

EI&F networks, we can also obtain that GC is quadratically

related to the coupling strength as in Eq. (15). This result has also

been numerically verified [Fig. S7(D) – (F)].

GC for excitatory and inhibitory neuronal networks.

Finally, we address the issue of whether the above reconstruction

can be extended to networks with both excitatory and inhibitory

neurons (See Eq. (25) in Methods). For a two-neuron network with

one excitatory and one inhibitory neurons as shown in Fig. 5A,

there is only a unidirectional inhibitory synaptic connection from

the inhibitory neuron 1 to the excitatory neuron 2. We scan the

parameters of Poisson input and compare the synaptic adjacency

matrix A and the constructed causal adjacency matrix G . As

shown in Fig. 5C, G is also highly coincident with A over a wide

range of dynamical regimes. For a three-neuron network with two

excitatory neurons and one inhibitory neuron as shown in Fig. 5B,

there are both excitatory and inhibitory synaptic connections

within this small network. By scanning the parameters of Poisson

input as shown in Fig. 5D, we also obtain successful reconstruction

of the synaptic connectivity A from the causal connectivity G over

a wide range of dynamical regimes.

In addition, we have also considered a hundred-neuron network

with 80 excitatory and 20 inhibitory neurons. The synaptic

connectivity for this hundred-neuron network is chosen to be the

same as that in Fig. 3A. The difference between the synaptic

adjacency matrix A and the constructed causal adjacency matrix

G is displayed in Fig. 5E. It can be seen that the accuracy of

reconstruction is still very high (§95%). Similarly, we also rank

the GC values in order of magnitude and find that, unlike the

network with only excitation, there is no clear gap which can

naturally divide the GC values into two groups (Fig. 5F). For the

GC reconstruction of the network with both excitatory and

inhibitory neurons, it is also important to infer the connection

type, i.e., excitatory or inhibitory, in addition to the inference of

the presence of the connection, and this issue warrants further

investigations in the future.

Figure 5. GC connectivity for networks with both excitation and
inhibition. Illustrated here are results related to two-neuron and three-
neuron I&F networks with both excitation and inhibition in (A) – (D), and
a large network in (E) and (F). The edge with ‘‘5’’ or ‘‘v’’ at the end
signifies the directed excitatory or inhibitory connections, respectively.
The input parameters are chosen as m~0:24 ms{1 (Poisson input rate)
and f ~0:02 ms{1 (Poisson input strength). (A) a two-neuron network
with one inhibitory neuron (labeled by neuron 1) and one excitatory
neuron (labeled by neuron 2). There is only a unidirectional inhibitory
synaptic connection from neuron 1 to neuron 2. (B) a three-neuron
network with two excitatory neurons (labeled by neuron 1 and 2) and
one inhibitory neuron (labeled by neuron 3). There are two excitatory
synaptic connections as from neuron 1 to neuron 2 and from neuron 2
to neuron 3. There is also one inhibitory synaptic connection from
neuron 3 to neuron 2. (C) The coincidence between A and G for the
two-neuron network in (A). (D) The coincidence between A and G for
the three-neuron network in (B). The white color indicates that A=G ,
whereas the black color for A~G . (E) The absolute difference between
A and G , i.e., jAij{Gij j for the large network with 80 excitatory and 20
inhibitory neurons with adjacency matrix shown in Fig. 3A. The white
color indicates that jAij{Gij j~1, namely, Aij=Gij and the black color
for Aij~Gij . The percentage of total connections (number of nonzero
Aij ) is *20% and the average neuronal firing rate is *10 Hz. By
significance test (p~0:001, See Text S1 for more details), the total
number of Aij=Gij is 412 out of *10,000 possible pairs of connections.
(F) Ranked GC in order of magnitude with the line (blue online)
indicating a threshold obtained from the above significance test. Here,
the coupling strength from excitatory to excitatory neuron SEE and
from excitatory to inhibitory neuron SIE are SEE~SIE~0:006 ms{1

(corresponding EPSP is 0:6 mV), whereas the coupling strength from
inhibitory to excitatory neuron SEI and from inhibitory to inhibitory
neuron SII are SEI~SII ~0:01 ms{1 (the corresponding IPSP is
*0:3 mV).
doi:10.1371/journal.pone.0087636.g005
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Discussion

We have shown that the linear GC framework with either

continuous voltage or discrete spike train time series, can be

successfully applied to the reconstruction of I&F-type neuronal

networks. For such nonlinear networks, the causal connectivity

obtained by the GC algorithm with sufficiently long time series

corresponds well to their synaptic connectivity. In our simulations,

we choose the data length of recording activity to be *20mins

[86–88] to ascertain that the statistical error is sufficiently small

over a wide range of dynamical regimes. However, in real

experiments, there may be many complications to maintain the

stationarity of neuronal activity with such a long duration of

recording [9]. Therefore, we investigate whether the GC recon-

struction can be achieved, with high accuracy, within a realistic

range of recording length in experiment. For the two-neuron

network as shown in Fig. 1, we have investigated how the minimal

data length required for GC reconstruction (See Text S1 for more

details) using either voltage or spike train time series depends on

neuronal firing rate. As shown in Fig. S8(A) and (C), the minimal

data length for a successful GC reconstruction by using voltage

time series can be as short as *1 min for both spontaneous firing

rate (less than 1 Hz) and the high firing rate range (above 20 Hz).

In contrast, the minimal data length for GC reconstruction by

using spike train time series appears to be monotonically

dependent on the neuronal firing rate as shown in Fig. S8(B)

and (D). When the firing rate is sufficiently high, e.g., above

20 Hz, the required minimal length can be as short as a few

seconds. However, if a spontaneous firing rate is sufficiently low,

e.g., less than 1 Hz, the minimal data length required for the GC

reconstruction can be as long as 20 mins. This is somewhat

expected because for the GC reconstruction using spike train time

series (digital signals), the correlation structure between neurons, as

captured by GC influence, can only be reflected by their spikes. If

the neuronal firing rate is low, it takes a long time to accumulate a

sufficient number of spikes to obtain statistical information of the

correlation structure between neurons. However, for the GC

reconstruction using voltage time series, the causal influence can

be reflected by both subthreshold and suprathreshold (spike)

dynamics. Therefore, it may not need that long time to obtain

statistical correlation information even if the firing rate is low.

Another phenomenon is that the required data length will be

shorter if the Poisson input strength becomes smaller. This

phenomenon can be clearly seen in Fig. S8 as indicated by the red

curve (lower f ), in general, being lower than the blue curve (higher

f ). This is also intuitively reasonable since the statistical

fluctuations may also decrease when the background input

becomes weaker while the coupling strength between neurons is

fixed.

The computational cost of GC algorithm can be estimated to be

O(mLN2)zO(m3N4), where L is the data length, N is the total

neuron number and m is the regression order in the regression

models (See Methods for more details). The first term describes the

computational cost of covariance matrices and the second term

corresponds to the computational cost arising from solving Yule-

Walker equations (There are some more efficient algorithms, such

as Levinson, Euclidean and Berlekamp-Massey algorithms, which

can solve the Yule-Walker equations with O(N2) arithmetic

operations). Furthermore, we have established a quantitative

relationship among the GC, the STC and the coupling strength.

Our theoretical analysis based on voltage time series can be

naturally extended to the case of spike trains time series and our

results show that the GC tool can be directly applied to point-

process data [74,78]. Therefore, the linear GC technique can be

potentially used to detect the underlying synaptic connections

within a neuronal network by measuring either the voltage

trajectories or the spike trains of neurons. We note in passing that

the GC reconstruction does not perform well in some cases as

shown by the white color region in Fig. 1E–F and Fig. 5C–D. It

appears that the statistical error is still not sufficiently small in these

cases. We have also examined the dependence of performance of

GC reconstruction on the density of the connection matrix. For

the case of low density connections (less than 20%) as shown in

Figs. 3,5, and 6, the GC reconstruction has a very high accuracy.

This indicates the GC reconstruction could potentially be applied

to the cortical network reconstruction since many studies have

indicated that the structural brain connectivity forms a sparse

graph [22,89]. It appears that for a network of high density

connections, e.g., greater than 50%, the GC reconstruction does

not perform as well, e.g., with approximately 70% accuracy of

reconstruction. We suspect that this could be related to the fact

that the signal-to-noise ratio for each pair of coupling to be out of

the dense coupling pool is much lower for a network with dense

connections than that with sparse connections. A further

systematic investigation is warranted to achieve a full understand-

ing of this issue in the future.

In addition, we have shown that the synaptic connection in

some coarse-grained sense, e.g., the connection between an

individual neuron and a subnetwork, or the connection between

subnetworks, can also be recovered through GC analysis. In our

work, the recorded time series of a subnetwork is the voltage

response averaged over neurons within the subnetwork, which can

be viewed as a model for the local field potential (LFP). Note that

the LFP in our case includes both the subthreshold dynamics and

the spike-reset dynamics, and it may be different from the LFP

normally measured in experiment, which contains only a low-pass

filtered component of population voltages [90]. As for the

Figure 6. GC reconstruction for a large network with low
density connections. Illustrated here are results for a large I&F
network (80 excitatory and 20 inhibitory neurons) with random
connectivity. The indices from 1 to 80 are for excitatory neurons and
the indices from 81 to 100 are for inhibitory neurons. The total number
of nonzero Aij is 531 (the percentage of connections is *5%) and the
average neuronal firing rate is *50 Hz. (A) The synaptic adjacency
matrix A~(Aij) with the white color indicating that Aij~0 and the
black color for Aij~1. (B) The absolute difference between A and the
causal adjacency matrix G , i.e., jAij{Gij j. The white color indicates that
jAij{Gij j~1, namely, Aij=Gij and the black color for Aij~Gij . By
significance test (p~0:0002, See Text S1 for more details), the total
number of Aij=Gij is 2 out of *10,000 possible pairs of connections.

Parameters are chosen as m~1:0 ms{1 (Poisson input rate),
f ~0:012 ms{1 (Poisson input strength), the coupling strength from
excitatory to excitatory neuron SEE and from excitatory to inhibitory
neuron SIE are SEE~SIE~0:005 ms{1 (the corresponding EPSP is
*0:5 mV), whereas the coupling strength from inhibitory to excitatory
neuron SEI and from inhibitory to inhibitory neuron SII are
SEI~SII ~0:007 ms{1 (corresponding to IPSP *0:2 mV).
doi:10.1371/journal.pone.0087636.g006
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averaged voltage response processed by a low-pass filter, our

conclusions can still be valid as long as the low-pass filter is chosen

to be a causal filter, namely, the filter output depends only on past

and present inputs. The reason can be explained as follows: if the

averaged voltage response (AVR) is processed by a causal low-pass

filter, then the transformation between the filtered AVR and the

original AVR is linear and invertible. The GC is invariant under

such filtering because of the invariance of GC under invertible

linear transformation [44,45]. In fact, the filtered AVR is different

from the original AVR. However, the residual of auto regression

for the filtered AVR is only different from that for the original

AVR by a factor if the filter is chosen to be a causal filter.

Therefore, the corresponding structure of both the residual cross-

correlation and the STC on residuals are the same as those of the

original AVR (although the amplitude may be different by a

factor). As a result, our conclusions about network reconstruction

and our theoretical analysis remain valid.

There are other important issues that remain to be fully

elucidated in the future. One of them is whether an accurate

reconstruction can still be obtained when the inputs to neurons are

correlated. For instance, it is quite common that a pair of neurons

may receive a common synaptic input from another neuron [91–

93]. Our study shows that an approximate reconstruction can be

achieved (with an accuracy greater than 70%) if the correlation

coefficient for two input spike trains is less than 10% [94]. As an

illustration of how the success of GC reconstruction depends on

the input correlation, we have studied the effects of input

correlation on the GC reconstruction by using either voltage or

spike train time series for the two-neuron network as shown in

Fig. 1A. In addition to its own Poisson input (independent of each

other) with the same rate m and the same strength f , each neuron

in the network receives a common Poisson input with rate m0 and

strength f . The percentage of common Poisson input Pcommon is

defined by m0=(mzm0). As discussed previously, a successful GC

reconstruction for the synaptic connectivity of this network

indicates that the GC from neuron 1 to neuron 2 (FV1?V2
or

FS1?S2
) is significantly nonzero, whereas the GC from neuron 2 to

neuron 1 (FV2?V1
or FS2?S1

) nearly vanishes. Therefore, the GC

ratios FV1?V2
=FV2?V1

and FS1?S2
=FS2?S1

can be used as a

measure of quantifying how successful GC reconstructions are. As

shown in Fig. S9, we plot such GC ratios as a function of Pcommon.

It can be seen from Fig. S9 that the magnitude of both GC ratios

drops rapidly as Pcommon increases, thus indicating that the GC

reconstruction eventually fails when Pcommon is large. However, as

shown in Fig. S9, the GC reconstruction can still be trusted if the

percentage of common Poisson input is less than 10% because

there is about one order of magnitude difference between FV1?V2

(FS1?S2
) and FV2?V1

(FS2?S1
).

Another issue is related to the synchronization among neurons

[95]. We have found that, for a nearly (not fully spike-to-spike)

synchronized regime, the reconstruction can be achieved by

refining sampling. It is obvious that the drive-response scenario,

which the GC theory addresses, would be difficult to disentangle

when the neuronal network falls into the spike-to-spike synchro-

nized dynamical regime [95–98]. In such cases, the causal

influences between neurons would decrease, whereas the instan-

taneous causality would increase [14]. As for the sampling rate

used in our simulations, we choose *2kHz for our sampling rate

(the time scale of refractory period in our neuronal models is

*2ms, therefore, the sampling rate should be chosen larger than

500Hz to capture this time scale). In addition, we have also

examined different sampling rates between 1kHz and 2kHz and

found that the structural connectivity can always be revealed by

GC connectivity with similar high accuracy.

Finally, we point out that there are some other methods that

have been developed to reconstruct the network topology, e.g.,

phase resetting or chaotic synchronization [99–107]. These

techniques were applied to either coupled oscillators or current-

based networks [108], which can be regarded as the reduced form

of the general conductance-based I&F networks. For instance, in

the limit s?0, m?? and mf ~const, the conductance-based I&F

network reduces to Mirollo-Strogatz oscillators which are widely

used in the study of synchronization phenomena [109]. Therefore,

our work provides a general methodology to reconstruct the

network topology for conductance-based I&F networks. In terms

of the GC theory, there are also some extensions to investigate

causal relationship for nonlinear and non-Gaussian time series,

e.g., the kernel-Granger causality method [110,111]. The concept

of such nonlinear GC is formulated by using the theory of

reproducing kernel Hilbert spaces that are spanned by choosing

proper kernel functions. The form of kernel functions relies on the

nonlinearity of the original dynamical systems, which is usually

unknown. In our work, if we choose the kernel function for I&F

networks to be a bilinear function, then the nonlinear GC

framework reduces to the linear GC framework. Our results have

shown that such reduced nonlinear GC analysis is able to capture

well the underlying topology of I&F networks.

Methods

Granger Causality (GC) Analysis
We first recall theoretical definitions of GC for time series in

the bivariate case and the conditional GC for time series in the

multivariate case (In the discussion of GC, we will always assume

that the mean of time series has been subtracted and the

expectations of time series for both bivariate and multivariate cases

are zero). The idea of GC was formalized in the context of linear

regression models [43,112]. Specifically, if the variance of the

prediction error of the first time series in the auto regressive model

is reduced by incorporating the knowledge of the second one, then

the second time series is said to have a causal influence on the first

one [44,45]. The roles of the two time series can be reversed to

address the question of causal influence in the opposite direction.

The GC theory has been widely applied to many research fields as

mentioned in Introduction [14,46].

Bivariate case. For two time series x1(t) and x2(t), their auto

regression (AR) models can be represented by

x1(t) ~
P

kw0

aA
k x1(t{k)zEA

1 (t),

x2(t) ~
P

kw0

dA
k x2(t{k)zEA

2 (t), ð17Þ

where EA
1 and EA

2 are residuals (prediction errors) of AR processes

for x1 and x2, respectively. To illustrate GC relations between

fx1(t)g and fx2(t)g, we further consider their joint regression (JR)

models as

x1(t) ~
P

kw0

aJ
kx1(t{k)z

P
kw0

bJ
kx2(t{k)zEJ

1,2(t),

x2(t) ~
P

kw0

cJ
kx1(t{k)z

P
kw0

dJ
kx2(t{k)zEJ

2,1(t), ð18Þ

where EJ
1,2 is the residual of JR process for x1 by further

incorporating the history of x2, and EJ
2,1 is the residual of JR

process for x2 by further incorporating the history of x1 [14,113].

By assuming that x1 and x2 are wide-sense stationary, i.e., their
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means and variances are constants, the GC from x2 to x1, denoted

by Fx2?x1
, and that from x1 to x2, denoted by Fx1?x2

are defined

as

Fx2?x1
~ ln

Var(EA
1 )

Var(EJ
1,2)

and Fx1?x2
~ ln

Var(EA
2 )

Var(EJ
2,1)

, ð19Þ

where Var(EA
1 ) and Var(EA

2 ) are the variances of the residuals EA
1

and EA
2 in AR models, respectively. These variances quantify the

accuracy of the autoregressive prediction of x1 and x2 at the

present moment based on their own past. The quantities Var(EJ
1,2)

and Var(EJ
2,1) are the variances of the residuals EJ

1,2 and EJ
2,1 in JR

models, respectively. They represent the accuracy of predicting the

present value of x1 or x2 based on the previous values of both x1

and x2 [44,45]. For instance, if Var(EJ
1,2) is less than Var(EA

1 ), then

there is an improvement in the prediction of x1 by incorporating

the history of x2, thus x2 is said to have a causal influence on x1.

Note that, both Fx2?x1
and Fx1?x2

cannot be negative by

definition. In particular, Fx2?x1
~0 [Fx1?x2

~0] corresponds to

the situation where there is no causal influence from x2 [x1] to x1

[x2] [14,44].

Multivariate case. In the case of multivariate time series

fxi(t)gN
i~1 (Nw2), the causal relation between two time series, say,

x1(t) and x2(t), can be directly mediated or it can be indirectly

mediated by a third one, say x3(t). However, the above pairwise

analysis for the bivariate case cannot distinguish whether the

causal influence between x1 and x2 is direct or indirect [14]. The

framework of conditional Granger causality was developed to

address such situations [45]. The procedure can be carried out as

follows: for any two time series xi(t) and xj(t) among the set

fxi(t)gN
i~1, the conditional AR processes are represented by

xi(t) ~
P
lw0

aA
i,lxi(t{l)z

PN

k=i,j

P
lw0

aA
k,lxk(t{l)zEA

i (t),

xj(t) ~
P
lw0

dA
j,lxj(t{l)z

PN

k=i,j

P
lw0

dA
k,lxk(t{l)zEA

j (t),
ð20Þ

where ‘‘conditional’’ means the auto regressions of xi(t) and xj(t)

are performed when the history of all other time series fxk(t)g
(k=i,j) is given. Furthermore, we consider the conditional JR

processes for xi(t) and xj(t) as

xi(t)~
P
lw0

aJ
i,lxi(t{l)z

P
lw0

bJ
j,lxj(t{l)z

PN

k=i,j

P
lw0

aJ
k,lxk(t{l)zEJ

i,j(t),

xj(t)~
P
lw0

cJ
i,lxi(t{l)z

P
lw0

dJ
j,lxj(t{l)z

PN

k=i,j

P
lw0

dJ
k,lxk(t{l)zEJ

j,i(t):
ð21Þ

From Eqs. (20) and (21), the conditional GC from xj to xi, denoted

by Fxj?xi jfxkgk=i,j
, and that from xi to xj , denoted by

Fxi?xj jfxkgk=i,j
, are defined as

Fxj?xi jfxkgk=i,j
~ ln

Var(EA
i )

Var(EJ
i,j)

and

Fxi?xj jfxkgk=i,j
~ ln

Var(EA
j )

Var(EJ
j,i)
:

ð22Þ

Note that, in Eqs. (20) and (21), both the auto and joint regressions

of xi(t) and xj(t) are performed by including the history of other

time series xk(t) (k=i,j). Therefore, if the causal influence

between xi and xj is entirely mediated by some other time series

in the set fxk(t)gN
k=i,j , the variance of residuals in conditional AR

models will be equal to the variance of residuals in conditional JR

models, i.e., Var(EA
i )~Var(EJ

i,j) and Var(EA
j )~Var(EJ

j,i). There-

fore, we have Fxj?xi jfxkgk=i,j
~0 and Fxi?xj jfxkgk=i,j

~0, that is,

no further improvement in the prediction of xi(t) ½xj(t)� in JR

models can be expected by including past measurements of xj(t)

½xi(t)�. On the other hand, if the causal relation between xi(t)
and xj(t), say from xj to xi, is direct, the inclusion of past

measurements of xj(t) in addition to that of xi(t) and fxk(t)gN
k=i,j

will result in a better prediction of xi(t), thus leading to

Var(EJ
i,j)vVar(EA

i ) and Fxj?xi jfxkgk=i,j
w0.

GC algorithm for I&F networks
Here, for an I&F network with N neurons, we propose the

following numerical algorithm of computing GC through the

voltage time series of neurons (similarly for the case of using spike

train time series). We denote the voltage trajectory of the ith

neuron by Vi(t), and the GC from the jth neuron to the ith

neuron, obtained from these voltage time series, by FVj?Vi
.

According to the above definition of GC, we compute both

regression residuals EA
i and EJ

i,j as in Eqs. (20) and (21) to obtain

FVj?Vi
in Eq. (22). Note that the GC from the jth neuron to itself

is always zero by definition (For neuronal systems discussed in our

work, we do not consider autapses in the network). The flow of the

algorithm to compute each FVj?Vi
for every pair of neurons,

where i,j~1,2, � � � ,N and i=j, can be described as follows (See

Text S1 for more details):

Step 1: Evolve the I&F network dynamics [e.g., Eq. (23) in

Methods] numerically and record the voltage signal averaged over

each small time window (*0:5ms, i.e., sampling rate is 2 kHz) to

form voltage time series of N neurons as fVi(t)gN
i~1, t~1,2, � � � ,L.

In most of our simulations, L is chosen to be 2:0|106, which

corresponds to the length of time series *20 mins. Then,

construct an N dimensional vector X t~ ½V̂V1(t), V̂V2(t), � � �,
V̂VN (t)�T and N{1 dimensional vectors X (j)

t ~ ½V̂V1(t), V̂V2(t), � � �,
V̂Vj{1(t), V̂Vjz1(t), � � �, V̂VN (t)�T for j~1,2, � � � ,N, where V̂Vi(t)~

Vi(t){E½Vi(t)� has zero mean and the superscript (j) in X (j)
t

denotes the fact that the jth component V̂Vj(t) in X t is removed.

Step 2: For any given regression order m̂m§1, compute the

covariance matrix functions Ck~SXtX
T
tzkTt~

1
L{m̂m

PL{m̂m
t~1

X tX
T
tzk for k~0,1, � � �, m̂m{1 to construct the Yule-Walker

equations. We denote the coefficient matrix and the right hand

side of the Yule-Walker equations by Vm̂m|m̂m and Bm̂m, respectively

[Eqs. (4) – (7) in Text S1]. Solve the Yule-Walker equations to

obtain the regression coefficients, which are denoted by Lm̂m [Eq.

(6) in Text S1]. Then, substitute Lm̂m into the regressive equations

[Eq. (1) in Text S1] to obtain the residual vector E(m̂m)(t)~½E(m̂m)
1 (t),

E(m̂m)
2 (t), � � �, E(m̂m)

N (t)�T and calculate its covariance matrix, which is

denoted by Sm̂m [Eq. (2) in Text S1].

Step 3: Now, for each m̂m§1, we have Sm̂m, therefore, we can

obtain the BIC function [Eq. (10) in Text S1] as a function of m̂m.

Use the BIC criterion to find the correct regression order m[fm̂mg
which corresponds to the situation where the BIC function reaches

its minimum.
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Step 4: Then, choose m̂m~m and return to Step 2 to obtain the

residual vector E(m)(t) and also the covariance matrix Sm. The ith

diagonal element of Sm, denoted by Sm(i,i), corresponds to

Var(EJ
i,j), which is the variance of the residual EJ

i,j in the joint

regression model of the ith neuron by incorporating the

information of the jth neuron (j~1,2, � � � ,N ) in addition to all

other kth neurons (k~1,2, � � � ,N and k=i,j). Set Var(EJ
i,j)~

Sm(i,i), for different i,j~1,2, � � � ,N.

Step 5: Let m̂m~m and use X (j)
t for each j (j~1,2, � � � ,N) to

follow the procedure of Step 2 to obtain the residual vector E(j)
(m)(t)

and the covariance matrix S(j)
m . If the neuron index iƒj, the ith

diagonal element S(j)
m (i,i) corresponds to Var(EA

i ), which is the

variance of the residual EA
i in the AR model of the ith neuron by

incorporating the information of all other neurons except the jth

neuron, set Var(EA
i )~ S(j)

m (i,i). Otherwise, for iwj, the (i{1)th

diagonal element S(j)
m (i{1,i{1) corresponds to Var(EA

i ) and set

Var(EA
i )~ S(j)

m (i{1,i{1).

Step 6: Compute all the GC values FVj?Vi
~

Var(EA
i )

Var(EJ
i,j

)
for all pairs

of neurons, i.e., i,j~1,2, � � � ,N.

Integrate-and-fire (I&F) neuronal network
We consider an I&F network with N conductance-based, pulse-

coupled, excitatory point neurons. Under a Poisson drive, its

dynamics is governed by

dVi
dt

~{GL(Vi{EL){Gi(Vi{EE),

dGi
dt

~{
Gi
s zS

PN

j=i

P
k

Aijd(t{Tj,k)zIi,ext,
ð23Þ

where the index i labels the ith neuron in the network. Vi is the

membrane potential and Gi is the excitatory synaptic conduc-

tance. EE is the excitatory reversal potential. GL and EL are the

leaky conductance and the leaky reversal potential, respectively.

The excitatory synaptic dynamics are described by Gi, which rises

instantaneously upon receiving a spike and has a decay time scale

s. The voltage of the jth neuron Vj evolves continuously according

to Eq. (23) until it reaches the firing threshold Vth, at which point

the jth neuron is referred to as producing an action potential or

emitting a spike (the time of the kth spike is recorded as Tj,k).

Then, this spike triggers postsynaptic events in all the neurons that

the jth neuron is presynaptically connected to and changes their

conductances with the coupling strength S [the corresponding

physiological excitatory postsynaptic potential (EPSP) is *(100|
S ms)mV]. Here, the synaptic connectivity of the network is

characterized by an adjacency matrix A~(Aij), where Aij~1

(Aij~0) means the presynaptic jth neuron is connected (uncon-

nected) to the postsynaptic ith neuron. Meanwhile, Vj after the jth

neuron’s spike is reset to the reset voltage VR and is held at VR for

an absolute refractory period of tref ms. Each neuron (say, the ith
neuron) in the system is also driven by a stochastic feedforward

input Ii,ext~f
P

l d(t{TF
i,l), a spike train sampled from a Poisson

process with rate m. We denote TF
i,l as the lth spike from the

feedforward input to the ith neuron and the delta function

associated with this spike instantaneously increases the ith neuron’s

conductance by magnitude f .

In comparison with the classical Hodgkin-Huxley (HH)

neuronal model with detailed ionic currents to resolve the

stereotypical spike dynamics [114], the model (23), as a reduced

neuronal model, is much more efficient in terms of computation

while capturing sufficiently rich network dynamics of HH models

[58,59,96,115,116]. Therefore, it has been widely used in large-

scale simulations to address information processing issues arising

from neuronal systems [36–42]. In the reduced-dimensional units,

in which only time retains dimensional, with units of conductance

being [ms{1], the parameters in the model (23) are chosen as

[117]: GL~0:05 ms{1, EL~0, EE~14=3, Vth~1, VR~0,

s~2 ms, tref~2 ms, which correspond to typical physiological

values: GL~50|10{6V{1cm{2, EL~{70 mV, EE~0 mV,

Vth~{55 mV.

Exponential integrate-and-fire (EI&F) neuronal network
The dynamics of an excitatory EI&F neuronal network with N

neurons is governed by

dVi
dt

~{GL(Vi{EL){Gi(Vi{EE)zyi(V ),

dGi
dt

~{
Gi
s zS

PN

j=i

P
k

Aijd(t{Tj,k)zIi,ext,
ð24Þ

where the function yi(V )~GLDT exp (
Vi{VT

DT
) characterizes the

spike-generating current of the ith neuron [80]. Here, DT is the

slope factor and VT is the spike-initiation threshold potential. Each

neuron (say, the ith neuron) in the system is driven by an external

stochastic feedforward input as Ii,ext~f
P

l d(t{TF
i,l). If the input

current exceeds some threshold Vth, the membrane potential of

the ith neuron Vi will diverge to infinity in finite time since yi(V )
is supralinear. This divergence is identified as the emission of a

spike of the ith neuron. And at the same time Vi is reset to the

reset voltage VR and is held at VR for an absolute refractory period

of tref ms. Note that, with Vth~VT , the EI&F model reduces to

the standard I&F model under the limit DT goes to zero. Some

parameters are chosen to be the same as those in I&F models and

others in the reduced-dimensional units in the model (24) are

chosen as [80,84]: VT~0:625, Vth~4:375, VR~{0:375,

DT~0:4375.

I&F networks with both excitation and inhibition
For a conductance-based I&F network with NE excitatory

neurons and NI inhibitory neurons, its dynamics under Poisson

drives is governed by

dVi,Q
dt

~{GL(Vi,Q{EL){GE
i,Q(Vi,Q{EE){GI

i,Q(Vi,Q{EI ),

dGE
i,Q

dt
~{

GE
i,Q

sE zSQE

PNE

jE=i

P
k

AijE
d(t{TjE ,k)zIE

i,ext,

dGI
i,Q

dt
~{

GI
i,Q

sI zSQI

PNI

jI=i

P
k

AijI
d(t{TjI ,k)zII

i,ext,

ð25Þ

where the ith neuron with type Q~E orI , has both excitatory

conductance GE
i,Q and inhibitory conductance GI

i,Q, and the EE and

EI are the excitatory and inhibitory reversal potentials, respective-

ly. If an excitatory neuron (say, the jE th neuron) fires and is

presynaptic to the ith neuron (i.e., AijE
= 1), the ith neuron’s

excitatory conductance GE
i,Q will be increased by the coupling

strength SQE . If an inhibitory neuron (say, the jI th neuron) fires

and is presynaptic to the ith neuron (i.e., AijI
= 1), the ith neuron’s

inhibitory conductance GI
i,Q will be increased by the coupling
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strength SQI . [the corresponding physiological inhibitory postsyn-

aptic potential (IPSP) is *(30|SQI ms)mV]. The IE
i,ext~fE

P
l

d(t{TF ,E
i,l ) and II

i,ext~fI

P
l d(t{TF ,I

i,l ) are external Poisson

drives for the ith neuron arising from background excitation and

inhibition, respectively. For simplicity, we only consider the

excitatory background input, i.e., II
i,ext~0, and choose the input

rate mE~m and input strength fE~f . In the reduced-dimensional

units, the parameters of inhibition in the model (25) are chosen as

[117] EI~{2=3, sI~5 ms, which correspond to typical physi-

ological values, EI~{80 mV. Other parameters are chosen to be

the same as those in excitatory I&F models [Eq. (23)].

Supporting Information

Figure S1 GC from a subnetwork to a single neuron. For

this nine-neuron network, we can divide it into one subnetwork

and one single neuron, where the single neuron corresponds to

neuron 7 and the subnetwork corresponds to the remaining eight

neurons. Here, the subnetwork is presynaptic to the single neuron.

Parameters are chosen as m~1 ms{1 (Poisson input rate),

f ~0:007 ms{1 (Poisson input strength), and the coupling strength

S~0:01 ms{1 (the corresponding EPSP is *1 mV). (A) A nine-

neuron network with its synaptic connectivity. (B) The constructed

causal adjacency matrix G~(Gij) which captures the synaptic

connectivity in (A). The white color in Gij means there is no causal

connection from neuron j to neuron i, i.e., Gij~0, and the black

color represents the existence of a causal connection from neuron j
to neuron i, i.e., Gij~1. (C) An effective two-neuron network

constructed from (A), where the ‘‘neuron 1’’ represents the

subnetwork that consists of all neurons in (A) except for neuron 7
as indicated by gray boxes (red online) in (B). The neuron 2
represents neuron 7 in (A). The voltage of ‘‘neuron 1’’ is the mean

voltage averaged over all neurons in the subnetwork. (D) The

computed causal adjacency matrix for (C), which successfully

captures the unidirectional connection from the subnetwork

‘‘neuron 1’’ to the single neuron labeled by 2 [neuron 7 in (A)].

(EPS)

Figure S2 GC from a single neuron to a subnetwork. For

this nine-neuron network, we can divide it into one subnetwork

and one single neuron, where the single neuron corresponds to

neuron 4 and the subnetwork corresponds to the remaining eight

neurons. Here, the subnetwork is postsynaptic to the single

neuron. Parameters are chosen as m~1 ms{1 (Poisson input rate),

f ~0:007 ms{1 (Poisson input strength), and the coupling strength

S~0:01 ms{1 (corresponding to EPSP *1 mV). (A) A nine-

neuron network with its synaptic connectivity. (B) The constructed

causal adjacency matrix G~(Gij) which captures the synaptic

connectivity in (A). The white color in Gij means there is no causal

connection from neuron j to neuron i, i.e., Gij~0, and the black

color represents the existence of causal connection from neuron j
to neuron i, i.e., Gij~1. (C) An effective two-neuron network

constructed from (A), where neuron 1 represents neuron 4 in (A),

‘‘neuron 2’’ represents the entire network (A) except for neuron 4.

The voltage of ‘‘neuron 2’’ is the voltage averaged over all neurons

in the subnetwork, as indicated by gray boxes (red online). (D) The

computed causal adjacency matrix for (C), which captures the

unidirectional causal influence from the single neuron, labeled by

1 [neuron 4 in (A)], to the subnetwork ‘‘neuron 2’’.

(EPS)

Figure S3 GC between subnetworks. To construct subnet-

works, we divide this fifteen-neuron network into three subnet-

works and construct an effective three-‘‘neuron’’ network.

Parameters are chosen as m~1 ms{1 (Poisson input rate),

f ~0:007 ms{1 (Poisson input strength), and the coupling strength

S~0:01 ms{1 (corresponding to EPSP *1 mV). (A) The synaptic

adjacency matrix A~(Aij) for a fifteen-neuron network. The

white color in Aij indicates that there is no synaptic connection

from neuron j to neuron i, i.e., Aij~0 and the black color

represents that the neuron j is presynaptic to the neuron i, i.e.,

Aij~1. (B) The causal adjacency matrix G~(Gij) constructed by

GC, which is identical to A. (C) An effective three-neuron network

constructed from (A), where the voltage of neuron ‘‘1’’,‘‘2’’ and

‘‘3’’ are the averaged response over each group of neurons,

respectively. ‘‘Neuron 1’’ [indicated by the red box in (A)]

represents a subnetwork from neuron 1 to neuron 5, ‘‘neuron 2’’

[indicated by the blue box in (A)] represents a subnetwork from

neuron 6 to neuron 10, and ‘‘neuron 3’’ [indicated by the green

box in (A)] represents a subnetwork from neuron 11 to neuron 15.

(D) The computed causal adjacency matrix for (C), which captures

the effective synaptic connections between the subnetworks.

(EPS)

Figure S4 GC connectivity using spike train. Network

reconstruction by GC using the spike train time series of the I&F

model. (A) The coincidence between the synaptic adjacency

matrix A~(Aij) and the causal adjacency matrix G~(Gij) for the

two-neuron network in Fig. 1A. The white color indicates that

A=G , and the black color for A~G . (B) The absolute difference

between A and G , i.e., jAij{Gij j, for the hundred-neuron network

in Fig. 3A. The white color indicates that jAij{Gij j~1, namely,

Aij=Gij and the black color for Aij~Gij . The total number of

Aij=Gij is 34 out of *10,000 possible pairs of connections (with

p~0:001 in the significance test). (C) Ranked GC in order of

magnitude for the hundred-neuron network in Fig. 3A. The gray

line (blue online) indicates a threshold in the gap of the ranked

GC. Parameters are chosen as m~0:24 ms{1 (Poisson input rate),

f ~0:02 ms{1 (Poisson input strength), and the coupling strength

S~0:005 ms{1 (corresponding to EPSP *0:5 mV).

(EPS)

Figure S5 GC analysis using spike train. Illustrated here is

the validity of the relations used in the mechanism analysis

computed by using the spike trains of the two excitatory neurons of

the I&F network in Fig. 1A with different Poisson input rate m for

the highly fluctuating regime [(A) and (D)] with m*0:3ms{1,

intermediate regime [(B) and (E)] with m*0:8ms{1 and mean-

driven regime [(C) and (F)] with m*2:0ms{1. The fixed input

strength f*0:02 ms{1. (A), (B), and (C) are regression coefficients

b̂bJ
k (blue ‘‘plus’’ online), ĉcJ

k (red ‘‘cross’’ online) and their approx-

imations Yk~rk=Var(EA
2 ) (‘‘square’’ symbol), Zk~r{k=Var(EA

1 )

(‘‘circle’’ symbol) for three different dynamical regimes. (D), (E),

and (F) are the GC FS1?S2
(red ‘‘star’’ online) as a function of

coupling strength S for three different dynamical regimes. The line

(black online) is a quadratic fit.

(EPS)

Figure S6 GC connectivity for EI&F networks. Network

reconstruction by GC using the voltage time series of the EI&F

model. (A) The coincidence between the synaptic adjacency

matrix A~(Aij) and the causal adjacency matrix G~(Gij) for the

two-neuron network in Fig. 1A. The white color indicates that

A=G , and the black color for A~G . (B) The absolute difference

between A and G , i.e., jAij{Gij j, for the hundred-neuron network

in Fig. 3A. The white color indicates that jAij{Gij j~1, namely,

Aij=Gij and the black color for Aij~Gij . The total number of

Aij=Gij is 68 out of *10,000 possible pairs of connections (with

Reconstruction of Neuronal Networks

PLOS ONE | www.plosone.org 14 February 2014 | Volume 9 | Issue 2 | e87636



p~0:001 in the significance test). The average neuronal firing rate

is *30 Hz. (C) Ranked GC in order of magnitude for the

hundred-neuron network in Fig. 3A. The gray line (blue online)

indicates a threshold in the gap of the ranked GC. Parameters are

chosen as m~0:24 ms{1 (Poisson input rate), f ~0:02 ms{1

(Poisson input strength), and the coupling strength

S~0:005 ms{1 (corresponding to EPSP *0:5 mV).

(EPS)

Figure S7 GC analysis for EI&F networks. Illustrated here

is the validity of the relations in the mechanism analysis of GC

computed by using the voltage time series of the two excitatory

neurons of the EI&F network in Fig. 1A with different Poisson

input rate m for the highly fluctuating regime [(A) and (D)] with

m*0:3ms{1, intermediate regime [(B) and (E)] with m*0:8ms{1

and low fluctuating regime [(C) and (F)] with m*2:0ms{1. The

fixed input strength f*0:02 ms{1. (A), (B), and (C) are regression

coefficients b̂bJ
k (blue ‘‘plus’’ online), ĉcJ

k (red ‘‘cross’’ online) and

their approximations Yk~rk=Var(EA
2 ) (‘‘square’’ symbol), Zk~

r{k=Var(EA
1 ) (‘‘circle’’ symbol) for three different dynamical

regimes. (D), (E), and (F) are the GC FV1?V2
(red ‘‘star’’ online)

for three different dynamical regimes. The line (black online) is a

quadratic fit.

(EPS)

Figure S8 Minimal data length vs. neuronal firing rate.
Illustrated here is the minimum data length required for GC

reconstruction of the I&F network in Fig. 1A as a function of

neuronal firing rate. (A) GC reconstruction using voltage time

series with firing rate between 1Hz and 120Hz. (B) the same as (A)

but using spike train time series. (C) the same as (A) but with firing

rate between 0:08Hz and 1Hz. (D) the same as (B) but with firing

rate between 0:08Hz and 1Hz. The Poisson input strength f is

chosen as f ~0:005 ms{1 [red ‘‘star’’, the line is for guiding the

eye only.], f ~0:01 ms{1 [blue ‘‘circle’’, the line is for guiding the

eye only.] and the coupling strength S~0:01 ms{1 (correspond-

ing to EPSP *1 mV). The Poisson input rate m is chosen to satisfy

the corresponding neuronal firing rate.

(EPS)

Figure S9 GC ratio vs. the percentage of common
Poisson input. Illustrated here are the GC ratios FV1?
V2=FV2?V1

and FS1?S2
=FS2?S1

for the I&F network in Fig. 1A.

Neuron 1 and neuron 2 are driven by two independent

background Poisson inputs with same rate m and same strength

f . In addition, both neurons are also driven by another common

Poisson input (independent of their background Poisson input)

with rate m0 and strength f . The percentage of common Poisson

input Pcommon is defined by m0=(mzm0). (A) The ratio of

computed GC by using voltage time series: FV1?V2
=FV2?V1

as a

function of Pcommon. (B) The ratio of computed GC by using spike

train time series: FS1?S2
=FS2?S1

as a function of Pcommon. In (A)

and (B), the red ‘‘star’’ symbol linked by solid line corresponds to

the highly fluctuating regime with m*0:3ms{1 as shown in

Fig. 2A, the blue ‘‘circle’’ symbol linked by solid line corresponds

to the intermediate regime with m*0:8ms{1 as shown in Fig. 2B

and the black ‘‘square’’ symbol linked by solid line corresponds to

the mean-driven regime with m*2:0ms{1 as shown in Fig. 2C.

Parameters in (A) and (B) are chosen as f ~0:02 ms{1 [red ‘‘star’’,

the line is for guiding the eye only.], f ~0:01 ms{1 [blue ‘‘circle’’,

the line is for guiding the eye only.], f ~0:005 ms{1 [black

‘‘square’’, the line is for guiding the eye only.] and the coupling

strength S~0:01 ms{1 (corresponding to EPSP *1 mV).

(EPS)

Text S1 Computational issues of GC.
(PDF)
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