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Abstract: The growing incidence of diabetes mellitus worldwide implies the increasing prevalence of
several related macro- (e.g., hypertension and atherosclerosis) and micro-vascular (e.g., nephropathy
and retinopathy) complications. Notably, diabetic retinopathy (DR) is the leading cause of blindness
in older diabetic patients and can occur with different degrees of severity. Chronic hyperglycemia is
the main determinant of the functional damage of retinal cells. The oxidative stress, inflammatory
factors and vascular endothelial growth factor signaling have been widely reported as contributors of
DR onset and progression, and an emerging role has been described for different classes of non-coding
RNA, including several long non-coding RNAs (lncRNAs). Here, we report the main results of all
research articles (i.e., 150) listed on PubMed database from 2014 to 2022 regarding the putative role of
lncRNAs in DR, including small nucleolar RNA host genes (SNHGs). Particularly, in this review we
describe all lncRNAs and SNHGs with altered expression in DR and related contexts, discussing their
association with DR outcomes, their mechanism of action related to DR, the molecular/functional
effects, as well as the biological and experimental contexts. Thus, herein we provide an overview of
the current state of knowledge regarding the putative involvement of 50 lncRNAs and SNHGs in the
pathogenesis of DR, highlighting their potential as therapeutic targets or biomarkers for improving
the clinical management of DR.

Keywords: diabetic retinopathy; diabetes; epigenetics; non-coding RNAs; long non-coding RNAs;
competitive endogenous RNAs; gene expression deregulation

1. Introduction

In the last decade, the global prevalence of diabetes has rapidly increased, affecting
to date 537 million of individuals and it is predicted to rise to approximately 783 mil-
lion by 2045 [1]. Chronic hyperglycemia can lead to vascular damage, compromising the
functionality of multiple tissues and organs (e.g., heart, eyes, kidneys, nerves) [2]. Accord-
ingly, diabetic complications can be distinguished as micro- (i.e., retinopathy, neuropathy,
nephropathy) and macro-vascular (i.e., coronary artery, cerebrovascular, peripheral arterial
diseases) [2,3].

Notably, diabetic retinopathy (DR) represents, among the different micro-vascular
complications, the most frequent with an estimated prevalence of about 35%, thus con-
stituting the main cause of blindness. [4]. The main risk factors reported for DR are the
duration of diabetes, poor metabolic control, puberty, pregnancy, hypertension, impaired
blood lipid control, and kidney disease [5]. DR progression is highly variable and the
non-proliferative and proliferative DR (NPDR and PDR, respectively) represent the two
main clinical forms. The microaneurysms of retinal capillaries (background retinopathy)
represent early clinical outcomes, whereas neovascularization (proliferative retinopathy)
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and macular edema arise subsequently, and they lead to vitreous or retinal detachment,
and partial or total blindness [5,6].

Among the molecular factors contributing to DR onset and progression, diverse
in vitro and in vivo studies have revealed that multiple factors triggering inflammation
and oxidative stress—such as inflammatory cytokines, advanced glycosylation end prod-
ucts (AGEs) and the vascular endothelial growth factor (VEGF)—play key roles in its
etiology [5,7]. Particularly, VEGF, an endothelial cell-specific mitogen, promotes angiogene-
sis regulating cell proliferation and retinal capillary permeability. A pivotal role of VEGF in
the vascular lesions of DR has been described and its higher expression levels have been
associated with increased neovascularization and vascular permeability [5]. Notably, intrav-
itreal anti-VEGF therapies are being explored as a primary approach for the management of
macular edema in DR [8]. Beyond VEGF deregulation, altered expression of several protein-
coding genes (e.g., SOD2, POLG1, NFE2L2 and those encoding Matrix Metallopeptides)
and non-coding RNAs (e.g., miR-195a) has been reported in DR patients and in diabetic
mouse models [9–13]. Particularly, increasing interest has been directed towards the role of
non-coding RNAs (ncRNAs) in the regulation of key molecular pathways related to DR
pathogenesis [14–16]. In this context, the number of studies focused on the identification
and elucidation of pathophysiological roles of ncRNAs has rapidly grown thanks to the
employment of NGS technologies, which have allowed for the identification, characteriza-
tion and quantification of several ncRNAs in multiple disease-related context/conditions.
Among them, long-non-coding RNAs (lncRNAs) turned out to be key protagonists in
the gene regulation networks, able to orchestrate multiple cellular processes, such as cell
proliferation, apoptosis, differentiation, cell cycle and migration [17–19]. LncRNAs have
been generally defined as transcripts >200 nucleotides not translating proteins; however,
several studies revealed that small peptides can be translated by lncRNA loci [20–23],
further adding complexity to the study of lncRNAs and the effects of their deregulation.
In the last decade, the key roles of lncRNAs in the regulation of gene expression have
been emerging, especially by post-transcriptional and epigenetic mechanisms, including
the modulation of mRNA splicing, mRNA decay, chromatin remodeling and genomic
imprinting [17,24,25]. Indeed, they can act as scaffolds of protein complexes, as host genes
or sponges for microRNAs, as masks of miRNA binding sites, and/or as regulators of
transcription and epigenetic factors [19,26–28].

Although the pathogenic role of lncRNAs has been mainly described in tumorige-
nesis [19], more recently their involvement has emerged in multiple human pathogenic
conditions, including DR. Hereafter, we report the main results obtained by reviewing all
research articles collected in the PubMed database (https://pubmed.ncbi.nlm.nih.gov/,
accessed on 8 October 2022) from 2014 to 2022 mentioning “diabetic retinopathy” and
“long non-coding RNA” in title, entire text body or keywords [29]. Thus, also includ-
ing small nucleolar RNA host genes (SNHGs), this review is focused on describing the
association between the deregulation of these classes of ncRNAs and DR, providing a
global overview of the main molecular/functional mechanisms and effects of deregulated
lncRNAs and SNHGs in the context of DR. For instance, the interactions with key factors
and signaling pathways related to DR are carefully discussed, as well as the epigenetic
regulation of crucial genes and their sponging activity towards microRNAs (miRNAs).
Thus, we discuss the research regarding the roles of lncRNAs described as deregulated in
different in vivo and in vitro models of diabetic retinopathy, as well as in human studies,
distinguishing lncRNAs whose expression has been reported as increased or reduced in
this pathogenic context.

2. Long Non Coding RNAs with Increased Expression in Diabetic Retinopathy

Among lncRNAs reported as upregulated in DR and related contexts, the Metastasis-
Associated Lung Adenocarcinoma Transcript 1 (MALAT1) was the earliest lncRNA re-
ported as being associated with DR [30]. It is located on chromosome 11q13.1 and is
transcribed as a long transcript, which undergoes to 3′ end cleavage by RNase P producing
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MALAT1 lncRNA and a small ncRNA known as MALAT1-associated small cytoplasmic
RNA (mascRNA) [31]. The processed MALAT1 lncRNA is retained in the nucleus, where it
affects gene and protein expression by modulating alternative splicing, epigenetic modifica-
tions or acting as a sponge, sequestering miRNAs [32–34]. The over-expression of MALAT1,
as well as genomic mutations, have been reported in different types of cancers and its role
in tumor progression and metastasis has been widely described [35–38]. Interestingly, in
2014, Yan and colleagues suggested for the first time the involvement of MALAT1 in DR [30].
Particularly, they observed a significant upregulation of MALAT1 both in mammalian retina
cells (i.e., monkey choroid-retinal endothelial cells, RF/6A) grown in high glucose (HG)
conditions, and in the fibrovascular membranes and aqueous humor of diabetic patients [30].
Furthermore, the upregulation of MALAT1 was also reported in the retina, Müller cells and
primary retinal ganglion cells (RGCs) of streptozotocin (STZ)-induced diabetic models of
rats [39,40], as well as in the retina of diabetic mice models [39,41]. In addition, diabetic
patients—compared to healthy individuals—also display MALAT1 overexpression, whereas
reduced plasma levels were observed in glycemic-controlled patients with DR [42]. More-
over, a role of MALAT1 in DR pathogenesis has been suggested by its knockdown in diabetic
rats, which induces an improvement of retinal functions, reducing neonatal retinal vascu-
larization and the pericytes loss, as well as capillary degeneration, microvascular leakage,
and retinal inflammation [39,43]. Besides, the inhibition of retinal MALAT1 in diabetic mice
determines a recovery of the thickness of the retinal photoreceptors, reducing the diabetic
neurodegeneration [41]. Notably, also in mammalian cell lines—i.e., RF/6A cells, human
umbilical vein endothelial cells (HUVEC) and human retinal microvascular endothelial cells
(HREC)—it reduces cell proliferation, migration, tube formation and vascular permeabil-
ity [39,43–45]. Particularly, it has been suggested that MALAT1 can modulate, in the retina,
the progression of neurodegeneration by activating the cyclic adenosine monophosphate
(cAMP)-response element binding protein (CREB) and p38 MAPK pathway. Particularly,
the MALAT1/CREB binding is responsible for CREB phosphorylation, which leads to the
inhibition of the protein phosphatase 2A (PP2A)-mediated dephosphorylation and results in
a continued activation of CREB signaling [40]. Thus, MALAT1 overexpression can regulate
pathological microvascular growth, even perturbing the function of a retinal endothelial
cell. Moreover, MALAT1 interacts with the nuclear factor erythroid 2-related factor 2 (NRF2;
encoded by NFEL2 gene)—a master transcription factor involved in antioxidant processes—
through the transcription regulation of kelch-like ECH-associated protein 1 (KEAP1), also
suggesting that it can regulate antioxidant defense in DR [46]. Additionally, different studies
reported an association of MALAT1 with increased inflammation in DR. Indeed, it has been
reported that the upregulation of MALAT1—in HUVECs upon hypoxic or HG conditions
and in HRECs cultured in HG—is paralleled by the increase of tumor necrosis factor
alpha (TNF-α), interleukin 6 (IL-6) and the serum amyloid antigen 3 (SAA3) [43,47,48].
Accordingly, the vitreous humors from diabetic patients revealed increased expression of
MALAT1 accompanied by increased levels of TNF-α and IL-6 [48]. Moreover, MALAT1
knockdown in human retinal vascular endothelial cells (RVECs) grown in HG—displaying
high levels of MALAT1, glucose-regulated protein 78 (GRP78) and C/EBP homologous
protein (CHOP)—reduces both capillary morphogenesis and the inflammation, suggesting
that this lncRNA can promote angiogenesis and inflammation by upregulating retinal
endoplasmic reticulum stress [49,50]. Another mechanism, possibly underlying the ef-
fects of MALAT1 on inflammatory genes expression, is the association with the master
catalytic subunit of the methyltransferase polycomb repressive complex 2 (PRC2) and the
consequent regulation of epigenetic mediators [48]. Moreover, MALAT1 can exert its role
in DR also acting as miRNAs’ sponge, participating in a competitive endogenous RNAs
(ceRNAs) network and in turn affecting the expression of different miRNA targets. For
instance, it can sponge miR-124, consequently modulating the monocyte chemoattractant
protein-1 (MCP-1), as demonstrated in retinal microglial cells of streptozotocin-induced
diabetic rats [51]. Furthermore, Shaker and colleagues [52] demonstrated an opposite
expression trend of MALAT1, miR-20b and miR-17-3p in the serum of PDR patients. In
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particular, MALAT1 levels are increased in PDR patients compared to NPDR or to healthy
individuals, whereas the expression levels of miR-20b, miR-17-3p are strongly downregu-
lated [52]. Moreover, MALAT1 can sponge miR-125b, modulating the vascular endothelial
(VE)-cadherin/β-catenin complex and the VE-cadherin 5 (CDH5) gene, possibly contribut-
ing to the neovascularization in DR [44]. Additionally, yes-associated protein 1 (YAP1)
modulates MALAT1 which act as a sponge of miR-200b-3p by directly binding vascular
endothelial growth factor A (VEGFA) gene, advancing DR onset and progression [53].
In line with this finding, Yu and colleagues [45] demonstrated that MALAT1, Vegfa, and
Hif-1α levels were increased in DR retinal tissues of an oxygen-induced retinopathy (OIR)
mouse model, whereas the expression of miR-203a-3p was decreased [45]. Interestingly,
both Müller cells and human retinal microvascular endothelial cells (HRMECs) cultured in
high-glucose conditions, also display the overexpression of MALAT1 and HIF-1α paralleled
to the reduced expression of miR-320a [54]. The overexpression of miR-320a downreg-
ulates Hif-1α and inhibits invasion, angiogenesis, and vascular permeability of mouse
retinal microvascular endothelial cells (MRMECs), suggesting that MALAT1 could inhibit
HIF-1α and angiogenesis by sponging miR-320a [54]. Accordingly, also HG-stimulated
HRMECs display high expression of MALAT1 and VEGFA, as well as a reduced expression
of both miR-203a-3p and miR-205-5p [45,55]. Interestingly, the overexpression of miR-203a-
3p or the knockdown of MALAT1—targeting miR-205-5p—suppresses the proliferation,
migration and tube forming of HG-induced HRMECs, further supporting a role of this
lncRNA in angiogenesis through the regulation of multiple miRNAs [45,55]. Moreover,
HG exposure induces the expression of MALAT1 and phosphodiesterase 6G (PDE6G)—
which is involved in the phototransduction signaling cascade—also downregulating the
miR-378a-3p in HRMECs [56]. MALAT1 is able to sponge miR-378a-3p, which targets
PDE6G, suggesting another possible mechanism underlying MALAT1 role in DR [56]. In
addition, microarray data from different rodent models of DR reveal that MALAT1 could
regulate the expression of visual perception-related genes (i.e., Sag, Guca1a, Rho, Prph2 and
PDE6G) by affecting miR-124-3p and miR-125b-5p [57]. Finally, MALAT1 could influence
oxidative stress, inflammation, and the capillaries’ degeneration, by affecting mitochon-
drial homeostasis. Indeed, MALAT1 levels are increased in mitochondria from HRECs
cultured under HG conditions, suggesting that it can also translocate from the nucleus to
the mitochondria [58]. Accordingly, siRNA-mediated knockdown of MALAT1 in HRECs
reduces the alterations of the mitochondrial membrane potential and of mtDNA induced
by HG concentrations [58]. Thus, in hyperglycemic conditions, the increased mitochondrial
translocation of MALAT1 can also contribute to the damage of mitochondrial structure
and genomic integrity. Therefore, the targeting of this lncRNA can ameliorate multiple
deleterious effects induced by hyperglycemia in retina cells.

Another lncRNA having a widely investigated putative role in DR is Myocardial In-
farction Associated Transcript (MIAT), whose increased expression levels were observed
in diabetic patients [59–62]. MIAT is an intergenic lncRNA—also known as retina non-
coding RNA 2 (RNCR2)—mostly conserved through species and it is likely a part of the
nuclear matrix [63,64]. MIAT is located on 22q12.1 locus associated with myocardial infarc-
tion susceptibility [63]. Interestingly, the involvement of MIAT lncRNA has been described
in various human biological processes, such as neurogenic commitment, neuronal sur-
vival [65] and the formation of nuclear bodies [66], as well as in pathological conditions
including schizophrenia [67], microvascular dysfunctions [59] and ischemic stroke [68].
Notably, in mouse models, an association between Rncr2 expression and the retinal cell fate
determination has been reported, suggesting a putative role of this lncRNA in retinal cell
division regulation [64]. Interestingly, Li and colleagues [60] observed that plasma of DR
patients displays a significant upregulation of MIAT, compared to both patients without
DR and healthy individuals [60]. Similarly, further studies reported high MIAT levels in
plasma, peripheral blood mononuclear cells (PBMCs) and retina of diabetic patients vs.
healthy subjects, although MIAT upregulation has been also disclosed in diabetic patients
without DR [59,61,62]. Accordingly, the retina of diabetic rats and Müller cells isolated
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from streptozotocin-induced diabetic mice, display increased levels of MIAT [59,69,70].
The upregulation of this lncRNA in HG conditions has been also confirmed in different
mammalian primary retinal cells and cell lines, including: rat retinal Müller cells (rMC-1),
retinal ganglion cells (RGC-5), human retinal pigment epithelial cells (ARPE-19), human
endothelial cells (EA.hy 926), monkey chorioretinal endothelial cells (RF/6A), human
umbilical vein endothelial cells (HUVECs) and human microvascular endothelial cells
(HMVECs) [59,60,71]. Of note, high levels of MIAT in diabetic patients have been associ-
ated with coronary heart disease [42], insulin resistance, poor glycemic control, increased
inflammation, and cellular senescence [61]. Interestingly, MIAT knockdown inhibits tube
formation, migration, and proliferation in endothelial cells, and ameliorates diabetic retinal
microvascular dysfunctions in vivo, also reducing apoptosis through a partial modula-
tion of the caspase-3 expression and phosphorylation of Akt serine/threonine kinase 1
(Akt1) [59]. Moreover, increased expression of MIAT reduces cell viability by the activation
of transforming growth factor-β1 (TGF-β1) signaling [60]. Accordingly, in diabetic rat and
mouse models MIAT expression is positively correlated with pro-inflammatory cytokines
(i.e., IL-1β and IL-6), and it also directly interacts with the nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) and thioredoxin interacting protein (TXNIP) [69–71].
Accordingly, the injection of human umbilical-cord mesenchymal stem cells (HUMSCs) in
the retina of diabetic rats—which induces anti-inflammatory effects—also reduces the ex-
pression levels of MIAT, Il-1β and Il-6, improving microvascular permeability and vascular
leakage [70]. Moreover, a recent work from Yu and colleagues [72] revealed the involve-
ment of MIAT in the pro-inflammatory caspase-1 (CASP1)-dependent cell death program,
i.e., the pyroptosis, in human primary retinal pericytes (HRPCs). Particularly, both MIAT
and CASP1 are upregulated in HRPCs treated with advanced glycation end products of
modified bovine serum albumin (AGE-BSA), whereas miR-342–3p is downregulated [72].
Interestingly, both MIAT knockdown and miR-342–3p mimics are sufficient to inhibit the
AGE-BSA-induced pyroptosis in HRPCs, whereas miR-342–3p inhibition enhances this
process [72]. Since MIAT binds miR-342–3p that in turn interacts with CASP1, this lncRNA
can antagonize the inhibition of CASP1 induced by miR-342–3p, leading to pyroptosis in
HRPCs [72]. In HG-induced rat retinal Müller cells, it has been also referred that MIAT
regulates the apoptosis program by binding miR-29b [69]. Furthermore, in silico and
in vitro analyses indicated that MIAT affects the endothelial cell function by participating
in a feedback loop with VEGF and miR-150-5p [59]. Thus, MIAT lncRNA can contribute to
DR development by affecting multiple protein- and non-coding genes crucially involved in
various biological processes related to retina damage.

The Antisense Non coding RNA in the INK4 Locus (ANRIL), also known as CDKN2B
Antisense RNA 1 (CDKN2B-AS1) is located in the 9p21.3 genomic region, within CDKN2B-
CDKN2A gene cluster that has been reported as a susceptibility locus for cardiovascular
disease [73,74], cancer [75], intracranial aneurysm [76], periodontitis [77], Alzheimer’s
disease [78], endometriosis [79], glaucoma [80] and type 2 diabetes [81]. The upregulation
of ANRIL has been reported in patients with DR compared to healthy subjects [62]. Ac-
cordingly, retina from rats with DR or STZ-induced diabetic mice display high levels of
ANRIL [82,83] and the culture of HRECs in HG conditions is sufficient to increase ANRIL
expression [83]. Moreover, a recent analysis reported no differences in ANRIL expression in
serum of diabetic patients compared to healthy individuals, whereas higher levels have
been detected in serum, aqueous humor, and vitreous humor of patients with NPDR and
PDR, compared to both diabetic patients without DR and healthy individuals [84]. Notably,
serum levels of ANRIL do not significantly correlate with age, but positively with diabetic
duration and HbAc1 level, as well as with Ang II, p65 and VEGF expression in vitreous fluid
of PDR patients [84]. Accordingly, ANRIL-knockout diabetic mice and ANRIL-silenced
HRECs display reduced levels of VEGF expression [83]. Particularly, this lncRNA can
regulate VEGF expression by binding p300, the enhancer of Zeste homolog 2 (EZH2) of the
PRC2 complex and miR-200b [83]. Additionally, ANRIL-knockdown in retinal tissues of DR
rats reduces p65 expression/phosphorylation, Bax expression and inflammatory markers
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(i.e., IL-1, IL-10 and MCP-1), also inducing the Bcl-2 Apoptosis Regulator (Bcl-2) protein
levels and ameliorating DR pathological outcomes [82]. Thus, all these findings strongly
support ANRIL targeting as a putative approach counteracting DR onset and progression.

The lncRNA Nuclear Paraspeckle Assembly Transcript 1, alias Nuclear Enriched
Abundant Transcript 1 (NEAT1), is localized on the 11q13.1 chromosome and is implicated
in the formation of the nuclear paraspeckles, where it interacts with various proteins
forming an RNA-protein complex [85]. NEAT1 regulates gene transcription and translation
by recruiting/sequestering transcription factors or affecting mRNA splicing and protein
stabilization through the interaction with RNA-binding proteins (RBPs) or miRNAs [86].
Although the first analysis of NEAT1 in the retina of streptozotocin-induced diabetic rats
revealed its downregulation [87], increased levels of this lncRNA were then detected in the
retina of diabetic rats and mice, in human retinal cells (i.e., HRECs and ARPE-19) exposed
to HG concentrations [88,89] and in the serum of patients with DR in contrast to healthy
subjects [88]. Similarly, in vitro analyses reported contrasting results and the reduction
in NEAT1 levels was described in HG conditions both as able to induce cell apoptosis
of Müller cells—by reducing brain-derived neurotrophic factor (BDNF)—through the
upregulation of miR-497 [87] and to repress the apoptosis, increasing the proliferation
of HRECs through the induction of BCL2 apoptosis regulator (BCL2) and reduction of
BAX (BCL2 Associated X Protein) expression [88]. Moreover, NEAT1 knockdown was
also reported to inhibit the proliferation and epithelial-mesenchymal transition (EMT) of
ARPE-19 exposed to HG concentrations, as well as in diabetic mice retina, through the
regulation of miR-204/SOX4 pathway [89]. The repression of NEAT1 can exert a protective
role from the hyperglycemia-induced oxidative stress and inflammation by increasing
superoxide dismutase activity, reducing the levels of ROS and malondialdehyde [88], and
repressing inflammatory cytokines, such as the cyclooxygenase 2 (COX-2), IL-6 and TNF-
α [88]. Furthermore, the silencing of NEAT1 is also able to reduce the expression of VEGFA
and TGF-β1 induced by HG exposure in HRECs, suggesting that NEAT1 could contribute
to the development of DR modulating TGF-β1 and VEGFA [88]. Notably, the regulation of
both NEAT1 and MALAT1 has been recently suggested as a putative approach for protecting
the mitochondrial homeostasis, and counteracting the capillary degeneration, in DR [58].

Another well-characterized lncRNA potentially involved in DR is HOX Transcript
Antisense Intergenic RNA (HOTAIR), which is localized on the chromosome 12q13.13
within the HOXC gene cluster, precisely between HOXC11 and HOXC12 genes [90]. This
lncRNA is able to affect epigenetic mechanisms, modulating DNA methylation, histone
modifications and nucleosome localization [91]. Interestingly, a significant increase of
HOTAIR expression was observed in diabetic patients compared to healthy subjects [52], as
well as in the serum of patients with PDR and in the retinas of diabetic animal models [92].
Moreover, HRECs exposed to hyperglycemia display high levels of HOTAIR and increased
angiogenesis and oxidative damage, as well as mitochondrial alterations [92]. Moreover,
different knockdown studies further suggested the involvement of this lncRNA in DR.
Particularly, Hotair knockdown reduces the retinal acellular capillaries and vascular leakage
in vivo [93], also inhibiting in vitro the proliferation, invasion, migration, and permeability
in HG-stimulated retinal endothelial cells [93]. In addition, it has been proposed that HO-
TAIR prevents oxidative stress by the modulation of epigenetic processes and transcription
factors [92]. For instance, HOTAIR binds the lysine demethylase 1A (LSD1), inhibiting
VE-cadherin transcription and decreasing H3K4me3 levels on the promoter, also favoring
HIF1α-mediated transcription of VEGFA [92,93].

Similarly, KCNQ1 Opposite Strand/Antisense Transcript 1 (KCNQ1OT1) is reported
as lncRNA modulating epigenetic modification and having a putative role in DR [94]. Also
known as KCNQ1 overlapping transcript 1 or LIT1, this un-spliced lncRNA is located on hu-
man chromosome 11p15.5 and is an imprinted gene at the KCNQ1 cluster [24]. KCNQ1OT1
displays ubiquitous expression and regulates genes crucially involved in development
and in postnatal behavior [95]. Its involvement was described in various cancer types [94],
as well as in eye-related diseases, including cataract development [96]. KCNQ1OT1 par-
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ticipates in the proliferation and EMT of lens epithelium [97]. Notably, KCNQ1OT1 is
upregulated in aqueous humor and serum samples of DR patients compared to normal
subjects, as well as in HRECs cultured in HG conditions [98]. It has been proposed that
KCNQ1OT1 could regulate DR progression, acting as a sponge of miR-1470 [98], which
targets the epidermal growth factor receptor (EGFR) and is involved in maintaining and
restoring the epithelium layer of the cornea [98,99]. In particular, KCNQ1OT1 levels are
inversely correlated to the ones of miR-1470 in individuals with DR and in HG-induced
HRECs [98]. In addition, it has been demonstrated that KCNQ1OT1 regulates HG-induced
pyroptosis by sponging miR-214 [100]. In particular, KCNQ1OT1 represses miR-214 ex-
pression with consequent upregulation of its target CASP1 in human corneal endothelial
cell line (i.e., HCEC-B4G12) [100]. The upregulation of CASP1 results in the secretion en-
hancement of pro-inflammatory cytokines (e.g., IL-1β), which prompts DNA breaking and
decreases in vitro migration and apoptosis, thus promoting the pathological progression of
diabetic corneal endothelial keratopathy [100].

The Hepatocellular Carcinoma Upregulated EZH2-Associated Long Non-Coding
RNA (HEIH) is a recently identified intergenic lncRNA localized on chromosomal region
5q35.3 [101]. Even though primarily identified in the cytoplasm, it localizes also in the
nucleus [101]. HEIH was initially characterized as an oncogenic lncRNA in HBV-related
hepatocellular carcinoma for its ability to inhibit cell differentiation [101]. Interestingly,
HEIH is highly expressed both in the serum of diabetic subjects with DR and in ARPE-19
cells treated with HG concentrations [102]. Particularly, HEIH overexpression exacerbates
cell damage, altering VEGF expression by the sponging of miR-939 and the activation of the
PI3K/AKT1 signaling pathway [102]. Moreover, HEIH lncRNA can significantly inhibit cell
viability, induce apoptosis, promote cytochrome C release from mitochondria to cytoplasm
and also to enhance caspase-3 activity [102].

Retinal Non-Coding RNA 3 (RNCR3), also known as MIR124-1HG (MIR124-1 Host
Gene), is located on the chromosome 8p23.1 and has been firstly studied in diabetes-
related microvascular abnormalities [103]. Interestingly, RNCR3 is more expressed in the
fibrovascular membranes of diabetic patients than in idiopathic patients [103]. Accordingly,
both diabetic mice and HG-exposed RF/6A cells display increased expression of Rncr3
lncRNA [104]. Moreover, Rncr3 inactivation induces a decrease of retinal vascular functions
in vivo, altering the Rncr3/Klf2/miR-185-5p interaction network [104]. Finally, Rncr3
knockdown in diabetic mouse models inhibits reactive gliosis and reduces the cytokines
release, ameliorating the viability of retinal and Müller glial cells [105]. Moreover, cell
apoptosis and retinal neurodegeneration are reduced with a parallel improvement of visual
function, suggesting that the targeting of this lncRNA is a promising strategy in DR [105].

HOXA transcript at the distal tip (HOTTIP) is located on chromosome 7p15.2 and
transcribed antisense to the HOXA gene cluster. This lncRNA has been proposed to regulate
the expression of the adjacent coding genes [106]. Hottip was found to be upregulated
in STZ-induced diabetic rats and its downregulation reduces the expression levels of
inflammatory factors ICAM-1 and VEGF in the retina [107]. Moreover, downregulation of
HOTTIP significantly reduces cell viability and apoptosis in HG/H2O2-treated RF/6A cells.
Finally, HOTTIP modulates retinal endothelial cells via the P38/MAPK signaling pathway
promoting the progression of DR [107].

The Brain-Derived Neurotrophic Factor Anti-Sense (BDNF-AS) is an antisense RNA
of brain-derived neurotrophic factor gene (BDNF), located on chromosome 11p14.1. It is
involved in the regulation of BDNF expression, and its target genes modulate neuronal
functions [108]. In the pathophysiology of DR, the formation of ischemic areas in the retina
has been observed, and BDNF-AS is known to contribute to retinal ischemic injury of
ganglion cells through the repression of BDNF [109]. Li and colleagues [110] observed that
BDNF-AS and apoptosis significantly increased in ARPE-19 cells exposed to HG conditions.
The downregulation of BDNF-AS reduces apoptosis in ARPE-19 cells under HG conditions
and increased the expression of BDNF [110].
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Blood samples from DR patients, as well as HRECs induced by HG, display in-
creased levels also of the FOXF1 adjacent Non-coding Developmental Regulatory RNA
(FENDRR), also known as FOXF1-AS1, paralleled with high expression of VEGF [111].
Interestingly, its knockdown has been described to reduce the expression of forkhead box
F1 (FOXF1), a transcription factor essential in the development of embryonic vascularity
through the regulation of the VEGF pathway in endothelial cells [112,113].

However, beyond the discussed lncRNAs with increased expression in different con-
texts related to the DR (Figure 1, Table 1), other upregulated lncRNAs—although less
characterized—have been revealed as potential contributors of DR. Particularly, in diabetic
patients with DR or in human retinal endothelial cells cultured with HG concentrations,
the upregulation of several different lncRNAs has been recently reported. Although further
analyses are needed, for most of the mentioned lncRNAs, preliminary evidence suggests a
putative role in DR. Of note, the in vitro knockdown of these lncRNAs ameliorates retinal
dysfunctions improving various related-biological processes, such as proliferation, apop-
tosis, migration, angiogenesis, inflammation, or redox state [62,114–126]. For instance,
ARPE-19 cells exposed to HG display increased expression of IGF2 Antisense RNA (IGF2-
AS) and enhanced apoptosis, and IGF2-AS silencing restrains apoptosis, inducing IGF2/Akt
signaling and reducing Casp-9 expression [114]. Similarly, AT-Rich Interaction Domain
2-IR (Arid2-IR) has been reported to modulate cell apoptosis, as well as the inflammatory
response and oxidative stress, by the interaction with Smad3 and the regulation of Bcl-2 and
Bax protein expression [115]. Furthermore, in vitro-knockdown of Testis Development
Related Gene 1 (TDRG1) lncRNA restores VEGF expression improving cell permeability
and tube formation ability of HRECs damaged by HG exposure [116]. Similarly, AQP4
Antisense RNA 1 (AQP4-AS1) in vivo-silencing reduces retinal neurodegeneration and vas-
cular dysfunctions, counteracting retinal capillary degeneration and the reduced reactive
gliosis [117]. Moreover, the silencing of the hypoxia-induced Long Intergenic Non-Coding
RNA 323 (LINC00323) and miR-503 host gene (MIR503HG; also known as lnc-PLAC1-1) in
endothelial cells reduces proliferation and angiogenesis by the regulation of the angiogenic
transcription factor GATA2 [118]. Finally, the increased expression of the antisense tran-
script of HIF1A Antisense RNA 2 (HIF1A-AS2) in the blood of DR has been correlated to
the high expression of HIFα, VEGF, MAPK, and Endogolin levels, suggesting the involve-
ment of this lncRNA in hypoxia, oxidative stress, and angiogenesis progression through the
regulation of MAPK/VEGF pathway [119]. Moreover, different over-expressed lncRNAs
have been described to act as ceRNAs by sponging several miRNAs in DR-related contexts.
Particularly, Long Intergenic Non-Coding RNA 174 (LINC00174) is able to bind miR-150-
5p, which targets the untranslated 3′ region of VEGFA [120], whereas Taurine-Upregulated
Gene 1 (TUG1) also prevents VEGFA suppression by the interaction with miR-145 [121].
Similarly, Urothelial Carcinoma-Associated 1 (UCA1) lncRNA could sponge miR-624-3p
regulating the expression of VEGF-C [122]. Moreover, the Long Intergenic Non-Coding
RNA 963 (LINC00963) may regulate the proliferation and apoptosis in HG-induced HERCs
by directly targeting miR-27b [123]. Additionally, a recent work reports that the knockdown
of TUG1 ameliorates diabetic retinal vascular dysfunction through regulating miR-524-
5p/FGFR2 axis [124]. Furthermore, independent studies in patients with DR showed the
negative correlations between Plasmacytoma Variant translocation 1 (PVT1) and miR-
128-3p, as well as between the lncRNA OGRU and miR-320, supporting that also these
lncRNAs may affect miRNA-mediated networks [62,125]. Particularly, in Müller cells
cultured in HG conditions, OGRU suppression significantly restores miR-320 expression,
and it represses the ubiquitin-specific peptidase 14 (USP14) expression whereas, on the
opposite, the upregulation of miR-320 reduces TGF-β1 signaling and impairs inflammation
and oxidative stress [126].
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Figure 1. Schematic representation of molecular mechanisms through which the described lncRNAs
exert their functions in different pathways/processes related to diabetic retinopathy.

All lncRNAs reported as upregulated in DR and the main results herein described
are summarized in Figure 1 and Table 1. Overall, these studies strongly encourage further
analyses aimed to assess the clinical relevance of these upregulated lncRNAs, as well as
to design appropriate targeting approaches able to repress them, possibly paving the way
towards the adoption of new therapeutic strategies in DR.
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Table 1. Long non-coding RNAs reported as upregulated in diabetic retinopathy.

LncRNA Chr DR-Related Processes Sponged miRNAs Related Genes/Proteins Ref.

MALAT1 11q13.1

Cell proliferation, migration, tube formation,
vascular permeability, retinal vascularization,

pericytes loss, capillary degeneration,
microvascular leakage, oxidative

stress, inflammation

miR-124, miR-20b, miR-17-3p, miR-124-3p,
miR-125b-5p, miR-200b-3p, miR-203a-3p,

miR-205-5p, miR-378a-3p, miR-320a

CREB, p38 MAPK, PP2A, NRF2, KEAP1,
TNF-α, IL-6, SAA3, GRP78, CHOP, PRC2
complex, VE-cadherin/β-catenin, CDH5,

YAP1, VEGFA, HIF-1α, Pde6g, Guca1a, Rho,
Sag, Prph2, MCP-1

[30,32–58]

MIAT 22q12.1

Cell proliferation, migration, tube formation,
cell viability, apoptosis,

microvascular permeability,
vascular leakage, inflammation, pyroptosis

miR-150-5p, miR-29b, miR-342–3p Casp3, AKT1, VEGF, NF-κB, IL-6, IL1B,
TXNIP, CASP1, TGFB1 [59–72]

ANRIL 9p21.3 Regulates VEGF expression,
inflammation, apoptosis miR-200b VEGF, Bax, P65, Bcl-2, IL-1, IL-10, MCP-1,

p300, EZH2 (PRC2 complex) [62,82–84]

NEAT1 11q13.1

Cell proliferation, cell apoptosis,
epithelial-mesenchymal transition,

oxidative stress,
inflammation

miR-497, miR-204 BCL2, BAX, SOX4, COX2, IL-6, TNF-α,
VEGFA, TGF-β1, BDNF [58,87–89]

HOTAIR 12q13.13

Angiogenesis, oxidative damage,
mitochondrial alterations, retinal acellular
capillaries, vascular leakage, proliferation,

invasion, migration, permeability

miR-20b, miR-17-3p LSD1, VE-cadherin, H3K4me3,
HIF1α, VEGFA [52,92,93]

KCNQ1OT1 11p15.5 Proliferation, apotosis,
epithelial-mesenchymal transition miR-214, miR-1470 CASP1, EGFR, IL-1β [98–100]

HEIH 5q35.3 Apoptosis and cell damage miR-939 VEGF, PI3K/AKT1, CASP3, CYPC [101,102]
RNCR3 8p23.1 Retinal vascular functions, cytokines release miR-185-5p Klf2 [103–105]
HOTTIP 7p15.2 Cell viability, apoptosis VEGF, ICAM-1, P38/MAPK [107]

BDNF-AS 11p14.1 Apoptosis BDNF [108–110]
FENDRR 16q24.1 Proliferation, angiogenesis FOX1, VEGF [111–113]
IGF2AS 11p15.5 Apoptosis IGF2/AKT, CASP-9 [114]
Arid2-IR 12q12 inflammation, oxidative stress, apoptosis Smad-3, Bax, Bcl2 [115]

TDRG1 6p21.2 Proliferation, permeability, migration,
tube formation VEGF [116]

AQP4-AS1 18q11.2 Retinal neurodegeneration,
capillary degeneration AQP4 [117]

LINC00323 21q22.2 Proliferation, angiogenesis GATA2 [118]
MIR503HG Xq26.3 Proliferation, angiogenesis. GATA2 [118]
HIF1A-AS2 14q23.2 Hypoxia, oxidative stress, angiogenesis HIFα, VEGF, MAPK [119]
LINC00174 7q11.21 Proliferation, migration, angiogenesis miR-150-5p VEGFA [120]

TUG1 22q12.2 Proliferation, migration, tube formation miR-145, miR-524-5p VEGFA, FGFR2 [121,124]
UCA1 19p13.12 Epithelial-mesenchymal transition miR-624-3p VEGFC [122]

LINC00963 9q34.11 Proliferation, invasion, migration miR-27b [123]
PVT1 8q24.21 Proliferation, migration miR-128-3p [62,125]

OGRU chr9qA4 Inflammation, oxidative stress miR-320 TGF-β1, USP14 [126]



Antioxidants 2022, 11, 2021 11 of 26

3. Long Non-Coding RNAs with Reduced Expression in Diabetic Retinopathy

Among lncRNA showing a reduced expression in DR and related contexts, the Ma-
ternally Expressed Gene 3 (MEG3) is located on chromosome 14q32.2, expressed in many
human tissues and initially characterized as a tumor suppressor lncRNA [127,128]. MEG3
localizes both in the cytoplasm and nucleus [129], and multiple factors can regulate its ex-
pression, including cAMP, DNA methyltransferase family and NF-κB [127]. Recent studies
highlighted a crucial role of MEG3 in the proliferation, migration, angiogenesis, and mainte-
nance of normal vascular endothelial cell function [130]. Interestingly, MEG3 expression is
significantly lower in the serum of diabetic patients with retinopathy compared to healthy
individuals [131–133]. Likewise, retina and microvascular endothelial cells—exposed to
HG—from DR rat models display reduced levels of Meg3 [133–135]. Moreover, low levels
of this lncRNA were also observed in mammalian retinal endothelial and epithelial cells
(i.e., hRMECs, RF/6A and ARPE-19) cultured in HG conditions or treated with hydrogen
peroxide (H2O2) mimicking diabetic stress [131–134,136]. Interestingly, in DR rats, it has
been demonstrated that DNA methyltransferase 1 (Dnmt1) could promote the methylation
of Meg3 promoter, in turn reducing its expression [135]. Of note, different experiments
have been carried out to evaluate the importance of MEG3 downregulation in progression
of DR. In particular, it has been observed that in vivo knockdown of Meg3 increases retinal
vessel dysfunctions, resulting in severe capillary degeneration, increased microvascular
loss and inflammation [134]. Moreover, in vitro knockdown of this lncRNA promotes reti-
nal endothelial cell proliferation, migration and neovascularization [133,134]. Conversely,
overexpression of Meg3 in STZ-induced rats reduces IL-1β expression and suppresses
the endothelial mesenchymal transition, through the inhibition of the phosphatidylinos-
itol 3-kinase (PI3K)/Akt/mTOR pathway [135,137]. Furthermore, the overexpression of
MEG3—in ARPE-19 cells grown in HG conditions—inhibits apoptosis and inflammation,
also indirectly reducing VEGF expression [131,132]. Particularly, MEG3 can counteract
HG-induced apoptosis and inflammation through different mechanisms, including the
interaction with different miRNAs. For instance, MEG3 can regulate NRF2, suppressor of
cytokine signaling 6 (SOCS6), NF-κB, sirtuin 1 (SIRT1) and Notch1 signaling, by the modula-
tion of miR-93, miR-34a, miR-19b, miR-204 and miR-223-3p, respectively [132,136,138–140].
Notably, the regulation of these signaling pathways can crucially affect DR-related pro-
cesses, including the proliferation, angiogenesis and apoptosis of retinal cells [138]. For
instance, it has been reported that MEG3 downregulation negatively affects the expression
of cytochrome B5 reductase 2 (CYB5R2) by acting as sponge for miR-6720-5p in HRMECs
under HG-induced conditions [133]. Of note, CYB5R2 is involved in different oxidative
reactions as well as in the regulation of angiogenesis-related genes [141,142], and its down-
regulation promotes angiogenesis, proliferation and migration, as well as inhibits apoptosis
of HG-induced HRMECs [133]. Finally, a recent work reported that MEG3 overexpression
inhibits retinal neovascularization through the inhibition of VEGF/PI3K/AKT1 signaling
pathway, further supporting the involvement of MEG3 in angiogenesis processes [143].

Another widely studied lncRNA associated with DR is the X Inactive Specific Tran-
script (XIST). XIST was the first lncRNA identified and studied for its genomic imprinting
function. It is located on the X chromosome in the q13.2 region and is able to inactivate the
X chromosome in female mammal cells [144,145]. However, in recent years, it has emerged
that one of the main mechanisms through which it exerts its functions is by sponging
miRNAs [25]. Interestingly, two recent works reported the downregulation of XIST in
HG-treated Müller retinal cells isolated from a diabetic mouse model, human Müller retinal
cell line and ARPE-19 [146,147]. Furthermore, it has been demonstrated that the over-
expression of XIST has a protective effect on apoptosis and migration in ARPE-19 treated
with HG conditions [146], also reducing the production of pro-inflammatory cytokines in
HG-treated mice and from human Müller cells [147]. However, although further analyses
are still needed. This lncRNA may counteract the hyperglycemia-induced inflammation
by the interaction with SIRT1 and the induction of its expression [147]. Moreover, XIST
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over-expression produces miR-21-5p downregulation, which could in cascade determine
the modulation of VEGF signaling [146].

H19 Imprinted Maternally Expressed Transcript is transcribed by the chromosome
11 (11p15.5) within an imprinted region close to the insulin-like growth factor 2 gene
(IGF2) locus. Its localization has been reported to be mainly cytoplasmic, even though
this lncRNA can localize both in cytoplasm and nucleus [148]. Interestingly, H19 has
been described to be a bi-functional RNA. Indeed, it functions either as a lncRNA or
as a precursor of two conserved miRNAs encoded by exon 1 (i.e., miR-675-3p and miR-
675-5p) [149]. H19 regulates the gene expression either by the recruitment of epigenetic
regulation factors to the chromatin surface or by sponging miRNAs [150]. In particular, H19
lncRNA promotes multiple physiological processes such as inflammation, angiogenesis,
apoptosis, cell death and also neurogenesis [149,151], playing a pathogenic role in different
diseases, such as Beckwith-Wiedemann Syndrome and Familial Wilms Tumor [152,153]
as well as many cancer types [154]. In the context of diabetes and its complications, Zhuo
and colleagues [155] observed that H19 was downregulated in STZ-induced diabetic rat
models with cardiomyopathy. Later, the downregulation of H19 was also observed in
vitreous humor samples from individuals with DR, in retina of diabetic mouse models and
in HG-induced HREC and ARPE-19 [17,156,157]. Conversely, Fawzy and colleagues [158]
observed H19 upregulation in the plasma of diabetic patients compared to healthy subjects,
and no significant differences between patients with and without DR. However, it has been
demonstrated that the over-expression of H19 can prevent glucose-induced endothelial-
mesenchymal transition (EndMT) in HRECs [17] by modulating TGF-β1 through a Smad-
independent mechanism [17]. Accordingly, retinal tissue from H19 knockout diabetic
mice display the reduction of endothelial and an increase of mesenchymal markers, as
well as enhanced vascular leakage [17]. Moreover, in HG-treated ARPE-19, it has been
demonstrated that H19 directly binds miR-19b that in turn increases SIRT1 expression,
which favors the reduction of the inflammatory response [157]. In a similar study, in ARPE-
19 grown under HG conditions, it was observed that H19 regulates inflammatory processes
by modulation of X-box-binding protein (XBP1) expression through miR-93 inhibition [156].

The downregulation of Long Intergenic Non-Coding RNA P53 Induced Transcript
(LINC-PINT) in type 2 diabetes (T2D) subjects with cardiomyopathy and/or retinopathy—
but not in subjects without complications—was reported in a recent follow-up study [159].
LINC-PINT is located on chromosomal region 7q32.3, ubiquitously expressed and under
the transcriptional regulation of p53 [160]. Interestingly, LINC-PINT acts as a positive
regulator of cell proliferation and survival, influencing the expression of hundreds of
genes, including some genes involved in p53 transcriptional network [160]. Moreover, it
has been demonstrated that LINC-PINT interacts with PRC2 complex and is required for
H3K27 trimethylation and repression [160]. Notably, the exposure of ARPE-19 and AC16
cells to HG conditions determines the downregulation of LINC-PINT [159]. Moreover,
the overexpression and the silencing of LINC-PINT results in an increase or reduction,
respectively, of the viability of HG-treated ARPE-19 and AC16 cells [159], suggesting that
the reduction of LINC-PINT may favor the progression of cardiomyopathy and retinopathy
in subjects with T2D [159].

Another lncRNA downregulated in T2D patients (vs. euglycemic individuals) is
Vimentin Antisense RNA 1 (VIM-AS1); [161]. VIM-AS1 is located on chromosomal region
10p13 and transcribed from the opposite strand of the VIM gene, which is a positive
regulator [162]. Interestingly, VIM-AS1 is strongly downregulated in T2D patients with
DR compared to T2D patients without complications [161]. Zeng and colleagues [161]
suggested that, in the human retinal pigment epithelial cell line (i.e., H1RPE7), VIM-AS1
interacts with miR-29, that plays a key role in HG-induced apoptosis [13,162]. Notably,
miR-29 and VIM-AS1 expression levels did not correlate in the plasma of DR patients and
the over-expression of VIM-AS1 in H1RPE7 cells did not alter miR-29 levels [161]. However,
the effects of miR-29 on HG-induced apoptosis were reduced by VIM-AS1 over-expression
in h1RPE7 cells [161].
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The Lung Adenocarcinoma Associated Transcript 1 (LUADT1) is a known lncRNA
exerting oncogenic properties in colorectal cancer and melanoma, located on 6q24.3
locus [163,164]. Indeed, LUADT1 silencing induces cell cycle arrest and significantly in-
hibits tumor growth both in vivo and in vitro in lung adenocarcinoma [165]. Interestingly,
LUADT1 is specifically downregulated only in T2D patients with DR, suggesting that the
reduced expression of this lncRNA in DR may be associated with retina lesions rather
than with the hyperglycemia [166]. Moreover, prediction analysis showed that LUADT1
lncRNA can bind miR-383 [166]. Interestingly, although LUADT1 and miR-383 display
opposite expression levels in the plasma of DR patients, no significant correlation has
been demonstrated [166]. Accordingly, over-expression of LUADT1 and miR-383 in retinal
pigment epithelial cells (i.e., RPEpiC, H1RPE7) do not affect each other the expression [166].
Nevertheless, the over-expression of LUADT1 increases the level of peroxiredoxin 3 (PRX3)
expression, also decreasing cell apoptosis [166]. The over-expression of miR-383 exerts
the opposite role on PRX3 expression and apoptosis, suggesting that LUADT1 may act as
ceRNA of miR-383 regulating PRX3, and in turn improving cell apoptosis in the context of
DR [166].

Furthermore, other lncRNAs have been shown to be downregulated in different con-
texts related to the DR (Table 2), but more investigations are still needed. In particular, low
expression of AK077216, Ribosomal Protein SA Pseudogene 52 (RPSAP52) and ATP2B1
Antisense RNA 1 (ATP2B1-AS1) has been observed in patients with DR [167–169]. Inter-
estingly, the over-expression of AK077216 and RPSAP52 in HG-induced ARPE-19 and RPE
cells, respectively, inhibits cellular apoptosis [167,168]. The former was reported as able to
downregulate miR-383 [167], the latter as able to interact with miR-365, that in turn reduces
the expression of Tissue Inhibitor of MetalloProteinases-3 (TIMP3) gene [168]. Moreover,
it has been reported that ATP2B1-AS1 over-expression in HRECs significantly reduces
cell proliferation, migration, permeability, and angiogenesis induced by HG conditions,
possibly by sponging miR-4729 and regulating the IQ motif-containing GTPase-activating
protein 2 (IQGAP2) [169]. Furthermore, diabetic (vs. non-diabetic) mice display reduced
expression of SOX2 Overlapping Transcript (SOX2OT) [170]. Accordingly, primary reti-
nal ganglion cells isolated from newborn mice and exposed to high-glucose or hydrogen
peroxide display a marked reduction of SOX2OT levels in a time-dependent manner [170].
Notably, a transcriptomic analysis conducted on HRECs cultured in low glucose (LG), HG
or HG plus transthyretin (HG + TTR) identified three new lncRNAs possibly associated
with DR [171]. In particular, a strong upregulation of MSTRG.15047.3 and AC008403.3
has been observed, whereas a significant downregulation of FRMD6 Antisense RNA 2
(FRMD6-AS2) has been observed in LG and HG + TTR conditions compared to the cells
treated with HG [171]. In line with these findings, humor aqueous and serum from DR
patients display a significant downregulation of FRMD6-AS2 [171]. Interestingly, the analy-
sis of lncRNA-mRNA networks also suggested that FRMD6-AS2 is likely to interact with
PBRM1 (Polybromo 1), PPP2R5C (Protein phosphatase 2 regulatory subunit B’gamma)
and ASB (Arylsulfatase B), regulating cell proliferation and neovascularization [171]. Re-
cently, the downregulation of two other lncRNAs has been observed in vitro in pathological
contexts related to DR. Specifically, miR-497 host gene (MIR497HG) and Transmembrane
Phosphatase with Tensin homology Pseudogene 1 (TPTEP1) are strongly downregulated
in HRECs and human retinal vascular endothelial cells (HRVECs) cultured in HG, re-
spectively [172,173]. Notably, the overexpression of MIR497HG in HRECs and of TPTEP1
in HRVECs significantly reduces cell proliferation and migration induced by HG treat-
ment [172,173]. The phenotypic effects induced by MIR497HG are partially mediated by the
binding of miRNA-128-3p that regulates SIRT1 expression [172]. Moreover, it has been also
demonstrated that TPTEP1 reduces VEGFA levels by suppressing STAT3 phosphorylation
and its nuclear translocation [173]. Additionally, in a recent paper it has been observed that
Mini-chromosome Maintenance Complex Component 3 Associated Protein Antisense
(MCM3AP-AS1) was downregulated in DR patients comparing to T2D subjects and pro-
motes cell apoptosis by regulating miR-211/SIRT1 axis [174]. Moreover, the downregulation
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of the Long Intergenic Non-Coding RNA 673 (LINC00673) has been reported in plasma
samples of DR patients [175]. Interestingly, LINC00673 induces apoptosis in retinal pigment
epithelial cells (RPECs) under HG conditions by negatively regulating p53. [175]. Interest-
ingly, in a recent work from Sehgal and colleagues, the Vascular Endothelial-Associated
LncRNA 2 (VEAL2) has been identified as a novel lncRNA implicated in human vascular
disease [176]. In particular, although an increase of VEAL2 expression has been observed in
the blood of DR patients, retinal choroid tissue of DR patients and HG-treated HUVECs
display a reduced level of VEAL2 [176]. Of note, VEAL2 overexpression in HUVECs—
cultured and not in HG—improves the excessive permeability phenotype by retaining
the Protein kinase C beta (PRKCB2) in the cytoplasm, thus preventing translocation of
junctional complexes from membrane to cytoplasm [176]. Furthermore, contrasting results
have been observed for BRAF-Activated Non-Protein Coding RNA (BANCR). Particularly,
follow-up studies reported both a decrease [177] and an increase [178] of BANCR expression
in the plasma of patients with DR, compared both to patients without DR and healthy
subjects [177]. Moreover, Zhang and colleagues also reported that BANCR overexpression
inhibits the HG-induced apoptosis of ARPE-19 cells [177], while an opposite effect was
shown by Yin and colleagues [178], indicating that further analyses are needed to clarify
these controversies and to assess BANCR deregulation in hyperglycemia and DR-related
contexts. Finally, a putative association between DR susceptibility and the deregulation
of lncRNAs was suggested by genome-wide association studies (GWAS) in Japanese pa-
tients with T2D for the intergenic RP1-90L14.1. This lncRNA, also called Long Intergenic
Non-Coding RNA 1611 (LINC01611) is located on the chromosome 6q14.3, adjacent to the
centrosomal protein 162 (CE162) gene which is involved in ciliogenesis [179]. Due to its
proximity to CE162 gene, the hypothesis is that this lncRNA could induce dysregulation in
ciliary function by playing a role in susceptibility to DR [179].

All lncRNAs whose expression is decreased in DR and related contexts (Figure 1)—or
for which contrasting results have been reported—are listed in Table 2, also including the
main results discussed here.
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Table 2. Long non-coding RNAs reported as s downregulated in diabetic retinopathy.

LncRNA Chr DR-Related Processes Sponged miRNAs Related Genes/Proteins Ref.

MEG3 14q32.2
Proliferation, migration,

angiogenesis, oxidative stress,
inflammation, neovascolarization

miR-34a, miR-223-3p, miR-204,
miR-93, miR-19b, miR-6720-5p

NF-kB, DNMT1, PI3K, Akt, mTOR,
IL-1β, VEGF, NRF2, SOCS6,

CYB5R2, Sirt1, Notch1
[129–140]

XIST Xq13.2 Apoptosis, migration,
inflammation miR-21-5p VEGF, SIRT1 [146,147]

H19 11p15.5
Endothelial–mesenchymal

transition,
vascular leakage, inflammation

miR-675-3p, miR-675-5p, miR-200b,
miR-93, miR-19b XBP1, SIRT1, TGF-β1, Smad [17,149–158]

LINC-PINT 7q32.3 Cell viability P53 [159,160]
VIM-AS1 10p13 Apoptosis miR-29 [161]
LUADT1 6q24.3 Apoptosis miR-383 PRX3 [166]
AK077216 8p23.2 Apoptosis miR-383 [167]
RPSAP52 12q14.3 Apoptosis miR-365 TIMP3 [168]

ATP2B1-AS1 12q21.33 Proliferation, migration,
angiogenesis, permeability miR-4729 IQGAP2 [167,169]

SOX2OT 3q26.33 Retinal neurodegeneration [170]
FRMD6-AS2 14q22.1 Proliferation, neovascularization PBRM1, PPP2R5C, ASB [171]
MIR497HG 17p13.1 Proliferation, migration miR-128-3p SIRT1 [172,173]

TPTEP1 22q.11.1 Proliferation, migration STAT3, VEGFA [173]
MCM3AP-AS1 21q22.3 Apoptosis miR-211 SIRT1 [174]

LINC00673 17q24.3 Regulation of P53, apoptosis P53 [175]
VEAL2 16p12.2 Endothelial permeability PRKCB [176]
BANCR 9q21.11-q21.12 Apoptosis [177,178]

RP1-90L14.1 6q14.3 Ciliary function CE162 [179]



Antioxidants 2022, 11, 2021 16 of 26

4. The Deregulation of Small Nucleolar RNA Host Genes in Diabetic Retinopathy

An emerging class of lncRNA consists of the small nucleolar RNA host genes (SNHGs)
that “host” small nucleolar RNAs (snoRNAs) in their introns. SnoRNAs are small RNAs of
60 to 300 bp located mainly in the nucleolus and primarily functioning as guide RNAs for
post-transcriptional modifications of ribosomal and spliceosome RNAs [180] or involved
in the post-transcriptional processing and maturation of ribosomal RNAs [181]. To date,
22 members of the SNHG family have been identified and involved in different cancer
types, where they regulate cell proliferation, apoptosis, invasion, and migration [182].
Notably, five SNHGs have been reported as deregulated in DR, of which two have been
described as upregulated and three as downregulated (Figure 1, Table 3).

Particularly, the Small Nucleolar RNA Host Gene 1 (SNHG1) is located on chromo-
some 11q12.3 region and hosts SNORD31, SNORD28, SNORD29, SNORD26, SNORD27,
SNORD30, SNORD22 and SNORD25 [183]. SNHG1 is upregulated in ARPE-19 exposed
to HG conditions and its knockdown induces the reduction of vimentin, smooth muscle
alpha-actin (α-SMA), IL-6 and IL-1β [184]. Moreover, SNHG1 can induce the expression
of E-cadherin and zonula occludens-1 (ZO-1), inhibiting migration and proliferation, and
promoting cell apoptosis [184].

Moreover, the Small Nucleolar RNA Host Gene 16 (SNHG16)—located on 17q.25.1 re-
gion and hosting SNORD1A, SNORD1B and SNORD1C [183]—could facilitate proliferation,
migration, and angiogenesis in HRMECs cultured in HG and interact with miR-146a-5p
and miR-7-5p, thus acting as ceRNA and affecting interleukin-1 receptor-associated ki-
nase 1 (IRAK1) expression, as well as the substrate of the insulin receptor 1 (IRS1) [185].
Moreover, SNHG16 overexpression has been associated with enhanced transactivation
levels of NF-κB and forkhead box O (FOXO). Also, SNHG16 overexpression positively
regulates the PI3K/AKT pathway [185]. Notably, SNHG16 was reported to be increased in
proliferative DR compared to non-proliferative DR and healthy individuals [186], whereas
an opposite trend was observed for miR-20a-5p, which is able to interact with SNHG16 and
E2F transcription factor 1 (E2F1). In line with these observations, SNHG16 overexpression
increases apoptosis and vessel-like formation, whereas miR-20a-5p partially reverses these
effects [186]. Contrastingly, SNHG16 was also reported as downregulated in HMRECs
exposed to HG, AGEs, or hydrogen peroxide [187]. In addition, Zhang and colleagues
demonstrated that over-expression of SNHG16 in HMRECs improves H2O2-induced an-
giogenesis by regulating miR-195/mitofusin 2 (mfn2) axis [187].

Additionally, the Small Nucleolar RNA Host Gene 2 (SNHG2)—also known as
Growth Arrest Specific 5 (GAS5)—is located within 1q25.1 region and contains 11 in-
trons hosting different snoRNAs (SNORD44, SNORD47, SNORD76, SNORD78, SNORD79,
SNORD80, SNORD81, SNORD74, SNORD75 and SNORD77) [183]. GAS5 encoded for a
mRNA containing a small open reading frame (ORF) followed by some stop codons and
multiple binding sites for nuclear hormone receptors, such as the glucocorticoid recep-
tors [183]. The expression of GAS5 is reduced in T2D patients with endometrial cancer [188]
and its over-expression induces BCL2, also reducing the expression of the pro-apoptotic
proteins BCL2 associated agonist of cell death (BAD) and BAX [189]. Moreover, it has been
shown that in ARPE-19 cells exposed to HG, GAS5 inhibits apoptosis and stress-induced
inflammation of the endoplasmic reticulum by regulating sarcoplasmic/endoplasmic retic-
ulum Ca2+ ATPase 2 (SERCA2b) [189].

Similarly, also the Small Nucleolar RNA Host Gene 4 (SNHG4)—located in chromo-
somal 5q31.2 region and hosting SNORD74A and SNORD74 [183]—is downregulated in
DR patients and, in ARPE-19 cells grown in HG conditions, it suppresses cell apoptosis
and regulates oxidation resistance protein 1 (OXR1) by sponging miR-200b [190].
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Table 3. Small nucleolar RNA host genes deregulated in diabetic retinopathy.

LncRNA Chr DR-Related Processes Sponged miRNAs Related Genes/Proteins Ref.

SNHG1 11q12.3 Inflammation and apoptosis. Vimentin, α-SMA, IL-6, IL-1β,
E-cadherin, ZO-1 [184]

SNHG16 17q.25.1
Proliferation, migration, angiogenesis,

apoptosis, oxidative stressand
vessel-like formation.

miR-195, miR-146a-5p, miR-7-5p,
miR-20a-5p

IRAK1, IRS1, NF-kB, PI3K/AKT,
E2F1, mfn2 [185–187]

GAS5 (SNHG2) 1q25.1 Apoptosis, oxidative stress
and inflammation. BCL2, BAD, BACX, SERCA2b [188,189]

SNHG4 5q31.2 Apoptosis. miR-200b OXR1 [190]
SNHG5 6q14.3 Cell proliferation and angiogenesis. VEGFA [191]

SNHG7 9q34.3 Proliferation, migration
and angiogenesis. miR-543, miR-34a-5p SIRT1 [192,193]
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Notably, the Small Nucleolar RNA Host Gene 5 (SNHG5) has been correlated to
the development of diabetic macular edema (DME). This SNHG is located on chromo-
some 6q14.3 and hosts SNORD50A and SNORD50B [183]. The levels of SNHG5 are im-
paired in the atrial fluid and blood of DME subjects, as well as in patients with refractory
DME vs. those with idiopathic macular hole [191]. Moreover, SNHG5 expression in plasma
and aqueous humor negatively correlates with the duration of disease and body mass in-
dex [191]. Moreover, HRMECs exposed to HG display reduced expression of SNHG5 [191].
Notably, SNHG5 overexpression directly induce the downregulation of VEGF-a protein
levels, decreasing cell proliferation and angiogenesis [191].

Finally, the Small Nucleolar RNA Host Gene 7 (SNHG7)—located on chromosome
9q34.3 region and hosting SNORD17 and SNORD43 [183]—is also related to DR. Indeed,
SNHG7 negatively regulates miR-543 under HG conditions and is able to induce SIRT1.
Notably, the activation of SIRT1/mir-543 pathway inhibit HG-induced cell proliferation,
migration, and angiogenesis [192]. Moreover, SNHG7 acts as ceRNA sponging miR-34a-
5p [193]. Notably, SNHG7 over-expression in HG-induced HRMECs represses EMT and
tube formation through miR-34a-5p/X-box binding protein 1 (XBP1) pathway and the
overexpression of miR-34a-5p is likely to revert this effect [193].

The list and main related results of small nucleolar RNA host genes SNHG deregulated
in DR and related contexts are reported in Figure 1 and Table 3.

5. Conclusions and Perspective

Diabetic retinopathy is one of the most devastating complications of diabetes, both
in terms of progression and permanent effects on patients. The molecular mechanisms
underlying this microvascular dysfunction are yet to be fully elucidated. In recent years,
increasing evidence shows that, in addition to well-known pathogenic mechanisms, epi-
genetic mechanisms could be at the basis of gene deregulation, which can underlie the
alteration of key processes related to DR onset and progression. Notably, the permanent
epigenetic modifications triggered by chronic hyperglycemia could be one of the key mech-
anisms underlying metabolic memory and the involvement of epigenetic factors, including
the contribution of non-coding RNA, and need to be further addressed. For instance, among
different classes of ncRNAs, the emerging role of lncRNAs in several cellular processes
widely justify the research focus in multiple fields. Although many lncRNAs were initially
studied in different types of cancer, accumulating evidence has also been indicating the
pathogenic role of this class of ncRNAs in multifactorial diseases, including diabetes and
its complications.

In this review, we systematically discussed the literature concerning the involvement
of 50 lncRNAs in DR-related contexts. Some studies have been performed in patients with
proliferative and non-proliferative DR, whereas several analyses have been performed
using in vivo cell models or primary cells or cell lines, such as retinal epithelial cells, en-
dothelial and Müller cells, usually exposed to HG concentrations or treated with different
stimuli inducing oxidative stress. Although these models can only partially recapitulate the
epigenetic and transcriptional deregulation underlying pathogenic mechanisms of DR, their
use has been instrumental in revealing the putative role and the mechanism of action of
several lncRNAs in DR, with particular attention to the aetiology related to oxidative stress
development. Notably, a role as endogenous competitors for miRNA has been reported for
various lncRNAs in DR and related contexts, indicating that complex interaction networks
between lncRNA, miRNA and mRNA can play key roles in sustaining retinal homeostasis.
However, further analyses are needed to better address the molecular mechanisms underly-
ing the role of several lncRNAs in DR. Notably, since biomarkers for the early detection of
DR have not been yet reported, the study of lncRNAs acquires additional relevance in light
of their diagnostic and prognostic potential, as already assessed for different cancer types.
Thus, a plausible future scenario could depict lncRNAs both as biomarkers and therapeutic
targets in diabetic retinopathy, as well as in other diabetes complications.
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