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Abstract Recent studies of the Central Complex in the brain of the fruit fly have identified

neurons with activity that tracks the animal’s heading direction. These neurons are part of a

neuronal circuit with dynamics resembling those of a ring attractor. The homologous circuit in other

insects has similar topographic structure but with significant structural and connectivity differences.

We model the connectivity patterns of two insect species to investigate the effect of these

differences on the dynamics of the circuit. We illustrate that the circuit found in locusts can also

operate as a ring attractor but differences in the inhibition pattern enable the fruit fly circuit to

respond faster to heading changes while additional recurrent connections render the locust circuit

more tolerant to noise. Our findings demonstrate that subtle differences in neuronal projection

patterns can have a significant effect on circuit performance and illustrate the need for a

comparative approach in neuroscience.

Introduction
For a variety of behaviours that relocate an insect in its environment, it is important for the animal to

be able to keep track of its heading relative to salient external objects. This external reference object

could be a nearby target, a distant landmark or even a celestial beacon. In insects, the discovery of a

neuronal circuit with activity that tracks heading direction provides a potential basis for an internal

compass mechanism (Zhang, 1996; Homberg, 2004; Heinze and Reppert, 2012). Such an internal

compass can mediate a simple navigation competence such as maintaining a straight course

(Dacke et al., 2003; Mouritsen and Frost, 2002) or reorienting to a target after distractions

(Neuser et al., 2008), but is also essential for the more complex navigational process of path inte-

gration (or dead reckoning) which enables central-place foragers to return directly to their nest after

long and convoluted outward paths (Darwin, 1873; von Frisch, 1967; Mittelstaedt and Mittel-

staedt, 1980; Müller and Wehner, 1988). While the neural basis underlying these navigation strate-

gies is not known in detail, a brain region called the central complex (CX) is implicated in many

navigation-related processes.

The CX of the insect brain is an unpaired, midline-spanning set of neuropils that consist of the

protocerebral bridge (PB), the ellipsoid body (also called lower division of the central body), the fan-

shaped body (also called upper division of the central body) and the paired noduli. These neuropils

and their characteristic internal organisation in vertical slices combined with horizontal layers are

highly conserved across insect species. This regular neuroarchitecture is generated by sets of colum-

nar cells, innervating individual slices, as well as large tangential neurons, innervating entire layers.

The structured projection patterns of columnar cells result in the PB being organised in 16 or 18 con-

tiguous glomeruli and the ellipsoid body (EB) in eight adjoined tiles.

Crucially, the CX is of key importance for the computations required to derive a heading signal

(Pfeiffer and Homberg, 2014; Triphan et al., 2010; Neuser et al., 2008; Ofstad et al., 2011;

Homberg, 2004; Homberg et al., 2011). In locusts (Schistocerca gregaria), intracellular recordings

have revealed a neuronal layout that topographically maps the animal’s orientation relative to
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simulated skylight cues, including polarised light and point sources of light (Heinze and Homberg,

2007; el Jundi et al., 2014; Pegel et al., 2019). Calcium imaging of columnar neurons connecting

the EB and the PB (E-PG neurons) in the fruit fly Drosophila melanogaster revealed that the E-PG

neuronal ensemble maintains localised spiking activity — commonly called an activity ‘bump’ — that

moves from one group of neurons to the next as the animal rotates with respect to its surrounding

(Seelig and Jayaraman, 2015; Giraldo et al., 2018). This has been confirmed for restrained flies

walking on an air-supported rotating ball (Seelig and Jayaraman, 2015) as well as tethered flies fly-

ing in a virtual reality environment (Kim et al., 2017). Notably, the heading signal (the activity

‘bump’) is maintained even when the visual stimulus is removed, and it moves relative to the (no lon-

ger visible) cue as the animal walks in darkness (Seelig and Jayaraman, 2015). The underlying circuit

therefore combines idiothetic and allothetic information into a coherent heading signal. Overall, this

neuronal activity appears to constitute an internal encoding of heading in the insect’s CX, which

closely resembles the hypothetical ring attractor (Amari, 1977) proposed by Skaggs et al., 1995 to

account for the rat ‘head direction’ cells (Taube et al., 1990; Blair and Sharp, 1995; Redish et al.,

1996; Stackman and Taube, 1998; Goodridge et al., 1998; Goodridge and Touretzky, 2000;

Sharp et al., 2001; Taube and Bassett, 2003; Stratton et al., 2010). That is, the activity has the fol-

lowing key properties associated with ring attractors: input to the circuit results in a single localised

‘bump’ of activity — centred in one subset of the neurons — while other neuronal units are silenced;

the activity ‘bump’ can move around the attractor space, which forms a ring, in a manner that consis-

tently tracks some property of the input; and the ‘bump’ of activity is maintained for some time after

all input is removed. These properties can be obtained, in computational neural models, by utilising

opposing excitatory and inhibitory connections with excitatory lateral connections to neighbouring

neuronal units and inhibitory ones affecting neurons on the opposite side of the ring.

In recent years, several computational models of the fly’s CX heading tracking circuit have been

presented. Some of these models are abstract while others attempt to ascribe particular roles to

neurons (Cope et al., 2017; Kakaria and de Bivort, 2017; Su et al., 2017; Kim et al., 2017).

Cope et al., 2017 proposed a ring attractor model that is inspired by the rat ‘head direction’ cell

model of Skaggs et al., 1995. Kakaria and de Bivort, 2017 presented a spiking neuronal model

consisting of the four types of CX neurons shown to play a role in heading encoding: E-PG, P-EN,

P-EG, and Delta7 neurons. Their model demonstrated that this neuron set is sufficient for exhibiting

ring attractor behaviour. In contrast, Su et al., 2017 implemented a spiking neuronal model consist-

ing of the E-PG, P-EN, and P-EG neurons with inhibition provided by a group of R ring neurons. In

both neurobiological studies and computational models, the key neurons variously involved in the

hypothetical ring attractor circuit are the E-PG, P-EN, P-EG, Delta7 and R ring neurons (Wolff and

Rubin, 2018; Wolff et al., 2015; Kakaria and de Bivort, 2017; Su et al., 2017; Green et al., 2017;

Kim et al., 2017). The E-PG, P-EN and P-EG neurons have been postulated to be excitatory while

Delta7 or R ring neurons are conjectured to be mediating the inhibition (Kakaria and de Bivort,

2017; Su et al., 2017). The E-PG and P-EN neurons are postulated to form synapses in the PB and

in the EB forming a recurrent circuit. The ring attractor state is set by a mapping of the azimuthal

position of visual cues to E-PG neurons around the ring which are assumed to receive the positional

input to this circuit. Furthermore, P-EN neurons shift the heading signal around the ring attractor

when stimulated, in a fashion similar to the left-right rotation neurons proposed by Skaggs et al.,

1995 (Turner-Evans et al., 2017; Green et al., 2017). In principle, two main types of ring attractor

implementation exist: one with local excitation and global, uniform, inhibition and another one char-

acterised by sinusoidally modulated inhibition across the ring attractor. Kim et al., 2017 have exper-

imentally explored the type of ring attractor that could underlie the head direction circuit of the fruit

fly and concluded that the observed dynamics of E-PG neurons can best be modelled using a ring

attractor with local excitation and uniform global inhibition.

The above-outlined overall circuit depends critically on the detailed anatomical connections

between cell types of the CX, so that the implementation of a specific type of ring attractor imposes

additional constraints on the neuronal connection patterns and individual morphologies. Although

the CX is highly conserved on a broad level, details at the level of single neurons vary between insect

species. Yet, conclusions about the function of the circuit are usually drawn from Drosophila data

and applied to insects in general. Given numerous differences in the CX neuroarchitecture between

insects, we asked whether a ring attractor circuit is also plausible when taking into account anatomi-

cal data from another model species, the desert locust.
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Figure 1. Anatomical differences between two species. There are three apparent differences between the CX of

the fruit fly (Drosophila melanogaster) and the desert locust (Schistocerca gregaria). (A, B) The ellipsoid body in

the fruit fly has a toroidal shape while in the locust is crescent-shaped so its two ends are separate. (C, D) The

protocerebral bridge consists of 18 glomeruli and 18 corresponding E-PG and P-EG neurons in the fruit fly (see

Table 3) while in the locust there are 16 glomeruli and neurons innervating them. (E, F) The Delta7 neurons in the

fruit fly have postsynaptic domains along the whole length of their neurite while in the desert locust only in specific

sections with gaps in between.

Ó 2018 Wiley Periodicals, Inc. Panel A, C and E are reproduced and adapted from Wolff and Rubin, 2018 with

permission from Wiley Periodicals, Inc. They are not covered by the CC-BY 4.0 licence and further reproduction of

this panel would need permission from the copyright holder.

Ó 2009 Insect Brain Database. Panel B is an original image only available for non-commercial use from El Jundi

et al., 2009 with permission from Insect Brain Database, https://insectbraindb.org. They are not covered by the

CC-BY 4.0 licence and further reproduction of this panel would need permission from the copyright holder.

Ó 1998 Wiley-Liss, Inc. Panel D is reproduced from Vitzthum and Homberg, 1998 with permission from Wiley-

Liss, Inc. They are not covered by the CC-BY 4.0 licence and further reproduction of this panel would need permis-

sion from the copyright holder.

Ó 2015 Wiley Periodicals, Inc. Panel F is reproduced from Figure 1J of Beetz et al., 2015 with permission from

Wiley Periodicals, Inc. They are not covered by the CC-BY 4.0 licence and further reproduction of this panel would

need permission from the copyright holder.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Connectivity matrices of the two species.
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Three main differences are evident when comparing the CX of the fruit fly and the locust (Fig-

ure 1). First, as in most insects except Drosophila, the EB of the locust is not closed around the

edges, but is crescent-shaped, preventing the E-PG neurons from forming a physical ring. Second,

the Drosophila PB consists of nine glomeruli per hemisphere, and accordingly 18 groups of E-PG

neurons. In locusts, there are 8 glomeruli per hemisphere and 16 groups of neurons. Third, a key

part of the proposed ring attractor circuit, the Delta7 neurons (TB1 neurons in the locust) differ strik-

ingly in their arborization pattern across the width of the PB. Whereas these cells possess two colum-

nar output sites located eight glomeruli apart in all species, their dendrites have an approximately

uniform density across the PB glomeruli in Drosophila. This differs substantially from the dendritic

distribution in the desert locust, in which the postsynaptic domains of the eight Delta7 neurons are

restricted to particular glomeruli of the PB, avoiding the regions around the output branches. This

pattern is conserved in other species as well, such as in the Monarch butterfly (Danaus plexippus),

the sweat bee (Megalopta genalis), as well as in two species of dung beetles (Scarabaeus lamarcki

and Scarabaeus satyrus) (Heinze and Homberg, 2007; Heinze et al., 2013; Stone et al., 2017;

El Jundi et al., 2018). Given these three differences of the Drosophila CX from other insects, we

explored the functional consequences of each difference and how these might relate to the behav-

ioural characteristics of each insect.

To explore this question, we used the anatomical projection patterns of the main CX neuron

types in flies and locusts and derived the effective neuronal circuits by simplifying anatomical redun-

dancy. Both resulting circuits indeed have the structural topology of a ring attractor. Despite signifi-

cant anatomical differences the homologous circuits in the fruit fly and the locust are structurally

similar but not identical. Their differences have significant functional effect in the ability of the two

circuits to track fast rotational movements and to maintain a stable heading signal. Our results high-

light that even seemingly small differences in the distribution of dendritic fibres can affect the behav-

ioural repertoire of an animal. These differences, emerging from morphologically distinct single

neurons, highlight the importance of a comparative approach to neuroscience. Rather than assuming

results from model species are generalisable, we gain deeper insight into function by discovering

which elements are actually shared across species and what are the consequences of observed

variation.

Results

The effective circuit
The neuronal projection data of the fruit fly and the desert locust were encoded in connectivity

matrices and used for the simulations we report here (Wolff et al., 2015; Wolff and Rubin, 2018;

Heinze and Homberg, 2007; Heinze and Homberg, 2008; Heinze and Homberg, 2009;

Heinze et al., 2009). While some simplifications could not be avoided, we have exclusively used pro-

jection patterns grounded in anatomical data for each species to construct the connectivity matrices.

To facilitate conceptual understanding, we visualised the connectivity matrices as directed graphs

and analysed the effective connectivity of the neuronal components of the CX for both species.

Inhibitory circuit
First, we focus on the inhibitory portion of the circuit. Study of the actual neuronal anatomy of Delta7

neurons in the PB shows that, in both species, each Delta7 neuron has presynaptic terminal domains

in two or three glomeruli along the PB (Heinze and Homberg, 2007; Wolff and Rubin, 2018).

These presynaptic terminal domains are separated by seven glomeruli (Figure 2A and Figure 2D). In

Drosophila, the Delta7 neurons have postsynaptic terminals across all remaining glomeruli of the PB

(Wolff and Rubin, 2018; Franconville et al., 2018) while in locusts the Delta7 neurons have postsyn-

aptic terminal domains only in specific glomeruli (Heinze and Homberg, 2007; Beetz et al., 2015;

Hadeln et al., 2020).

There are eight types of Delta7 neurons in the PB, each having the same pattern of synaptic ter-

minals shifted by one glomerulus (Figure 2A and Figure 2D). Within each glomerulus, the Delta7

neuron with presynaptic terminals is assumed to form synapses with all other Delta7 neurons that

have postsynaptic terminals in the same glomerulus. Since each Delta7 neuron is presynaptic to the

same Delta7 neurons in two or three glomeruli along the PB, we reduce these two or three synaptic
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domains to one single equivalent synapse between each pair of Delta7 neurons in order to draw a

simplified equivalent circuit (Figure 2B and Figure 2E). In order to highlight the main functional dif-

ferences, we redrew these neuronal circuits in a network graph form which revealed an eight-fold

radial symmetry in both species, regardless of the different neuronal anatomies and the anatomical

presence of nine PB glomeruli in flies.

The network graph form of the circuit further makes evident a global, uniform, inhibition pattern

in the case of the fruit fly versus a local inhibition pattern in the case of the locust (Figure 2C and

Figure 2F). That is, in fruit flies each Delta7 neuron forms synapses and inhibits all other Delta7 neu-

rons. In contrast, in the locust each Delta7 neuron only inhibits a subset of Delta7 neurons with weak-

ening synaptic strengths towards its nearest neighbours (Heinze and Homberg, 2007). The effective

global inhibition pattern found in the fruit fly fits the observation of Kim et al., 2017 that calcium

dynamics better matched a ring attractor with global inhibition in this species.

Excitatory circuit
We next focused on the excitatory portion of the hypothetical ring attractor circuit. For deriving the

effective circuit of the excitatory portion of the network, it was necessary to employ an unconven-

tional numbering scheme for the PB glomeruli; that is, in both hemispheres, glomeruli are numbered

incrementally from left to right, 1–9 for the fruit fly (Figure 3) and 1–8 for the locust (Figure 4). EB

tiles were numbered 1 to 8 for both species. For brevity, throughout this text, we denote a tile num-

bered ‘1’ as T1 and a glomerulus numbered ‘1’ as G1. Neurons are numbered by the glomerulus

they innervate, using a numerical subscript, e.g. P-EN1 for the P-EN neurons innervating glomeruli

G1.

In accordance with calcium imaging (Turner-Evans et al., 2017; Green et al., 2017), simulating

the fruit fly and locust circuits confirmed that there are two activity ‘bumps’ along the PB. The choice

of unconventional numbering scheme for the PB glomeruli has as an effect that both activity ‘bumps’

are centred around neurons innervating identically numbered glomeruli (Figure 3—figure supple-

ment 1). We use this symmetry to simplify the circuit and derive the effective connectivity.

Figure 2. Effective connectivity of the inhibitory (Delta7) neurons. On the top row is the fruit fly circuit, on the

bottom row is the locust circuit. In A and D, four examples of how the eight types of Delta7 neurons innervate the

PB are illustrated. In both species, presynaptic domains are separated by seven glomeruli. (B and E) Effective

connectivity. Each horizontal blue line represents one Delta7 neuron. Vertical lines represent axons, with triangles

indicating outputs from Delta7 neurons and filled circles representing inhibitory synapses between axons and

other Delta7 neurons. (C and F) Alternative depiction of the circuit in graph form with blue circles representing

Delta7 neurons and lines representing inhibitory synapses between pairs of neurons. Each Delta7 neuron inhibits

all other Delta7s in the fruit fly (C), but only more distant Delta7s in the locust (F).
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Figure 3. Projection patterns of the excitatory portion of the fruit fly circuit. (Ai–Fi) Examples of E-PG (combined

E-PG and E-PGT, see Table 3), P-EN and P-EG neurons with their synaptic domains and projection patterns. (Aii–

Cii) Step by step derivation of the effective circuit as a directed graph network (see main text for a complete

description). Each coloured disc represents a group of neurons with arrows representing excitatory synaptic

connections. Pairs of E-PG and P-EG neurons can be considered to act as single units connecting the respective

tile to equally numbered PB glomeruli in both hemispheres, while P-EN neurons are shown overlapped because

each receives input only from its contralateral nodulus. (Dii–Eii) The connectivity also allows neurons innervating

glomeruli 1 and 9 to act as a single unit. (Fii) Depiction of the complete effective connectivity of the excitatory

circuit, which has an eight-fold radial symmetry.

The online version of this article includes the following video and figure supplement(s) for figure 3:

Figure supplement 1. Neuronal activity across PB glomeruli.

Figure supplement 2. Neuronal projections in the fruit fly.

Figure 3—video 1. Animation illustrating the operation of the excitatory portion of the fruit fly circuit.

https://elifesciences.org/articles/53985#fig3video1
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Figure 4. Projection patterns of the excitatory portion of the locust circuit. (Ai–Ei) Examples of E-PG, P-EN and

P-EG neurons with their synaptic domains and projection patterns. (Aii–Eii) Step by step derivation of the effective

circuit (see main text for a complete description). Each coloured disc represents a group of neurons with arrows

representing excitatory synaptic connections. Pairs of E-PG and P-EG neurons can be considered to act as single

units connecting the respective tile to equally numbered PB glomeruli in both hemispheres, while P-EN neurons

are shown overlapped because each receives input only from its contralateral nodulus. Note that the numbering of

the EB slices is conceptual and arbitrary, chosen to assist description of the circuit organisation; what matters for

the connectivity is the overlap of the synaptic domains in the EB and not the particular numbering choice. (Fi) The

complete effective connectivity of the locust excitatory circuit closely resembles that of the fruit fly. (Fii) Between

octants 1 and 8, the locust circuit obtains functional connectivity from P-EN8 to ‘neighbouring’ E-PG1 (red dashed

arrow) via three actual connections: P-EN8 to E-PG8 to P-EN1 to E-PG1 (black arrows); and equivalently for P-EN1 to

E-PG8.

The online version of this article includes the following video and figure supplement(s) for figure 4:

Figure supplement 1. Neuronal activity across PB glomeruli.

Figure supplement 2. Neuronal projections in the locust.

Figure 4—video 1. Animation illustrating the operation of the excitatory portion of the locust circuit.

https://elifesciences.org/articles/53985#fig4video1
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First, we analyse and derive the effective circuit of the fruit fly. Under our numbering scheme,

each E-PG neuron has synaptic domains in identically numbered EB tiles and PB glomeruli (e.g.

Figure 3Ai). That is, E-PG5 neurons have synaptic domains in tile T5 and glomeruli G5 in both hemi-

spheres of the PB. Since activity is symmetrical in both PB hemispheres, the pair of E-PG5 neurons

forms a single functional unit, as illustrated in the equivalent circuit (Figure 3Aii), with single synaptic

connections shown to the corresponding P-EN5 and P-EG5 neurons. P-EN neurons, however, con-

nect corresponding glomeruli from each PB hemisphere to two tiles, one shifted to the left and one

to the right, for example, P-EN5 would connect glomeruli G5 to tiles T4 and T6 (Figure 3Bi). P-EN

neurons are indicated as two overlapped discs in the equivalent circuit (Figure 3Bii) because even

though each pair receives common input in the glomeruli they also receive differential angular veloc-

ity input, depending on the hemisphere they innervate. The pair of P-EN5 neurons forms synapses

with E-PG4 neurons in T4 and E-PG6 neurons in T6, respectively. A third class of cells, P-EG neurons,

innervate equally numbered glomeruli and tiles, following the same pattern as the E-PG neurons but

with their presynaptic and postsynaptic terminals on opposite ends (Figure 3Ci), and are thus illus-

trated as single functional units in the equivalent circuit (Figure 3Cii). Following the synaptic connec-

tions forward around the circuit (Figure 3—figure supplement 2), E-PG4 and E-PG6 neurons

innervate glomeruli G4 and G6 respectively, forming synapses with P-EN and P-EG neurons in these

glomeruli; P-EG6 make reciprocal connections to E-PG6; and the paired P-EN6 neurons make con-

nections back to T5 and onward to T7, etc. Thus the connectivity pattern shown in Figure 3Cii is

repeated all the way around the circuit. Crucially, tile T1 is innervated by both E-PG1 and E-PG9

which also innervate glomeruli G1 and G9, respectively (Figure 3Di). These neurons can also be

treated as one unit, E-PG1&9, in the effective circuit (Figure 3Dii) because they receive common syn-

aptic input. Since there are no P-EN neurons innervating the innermost glomeruli (G9 in the left and

G1 in the right hemisphere), P-EN1 and P-EN9 consist a pair of neurons in the equivalent circuit, mak-

ing onward connections to tiles T2 and T8, and thus E-PG2 and E-PG8, respectively (Figure 3Ei and

Eii). Therefore, the effective circuit of the fruit fly has an eight-fold radial symmetry despite the nine

PB glomeruli (illustrated in Figure 3Fii).

We follow a similar procedure to derive the effective circuit in the locust (Figure 4). Here, E-PG

neurons from the two corresponding PB glomeruli, one in each hemisphere, have synaptic domains

in two neighbouring EB wedges (half tiles), for example E-PG5 innervates two wedges in tiles T5 and

T6 and glomeruli G5 of the PB (Figure 4Ai and Figure 4—figure supplement 2). Note that in the

equivalent circuit (Figure 4Aii) we label these neurons by the relevant glomeruli number ‘5’ and can

still treat them as a single unit connecting (as for the fruit fly) to the P-EN5 and P-EG5. P-EN neurons

connect PB glomeruli to tiles shifted by one wedge to the left and right, for example glomeruli G5

with tiles T5 and T6 (Figure 4Bi). This is a shift of half tile while in the fruit fly we see a whole tile

shift. As a consequence, P-EN5 neurons effectively make reciprocal connections back to E-PG5,

which does not occur in the fruit fly. However, similar to the fruit fly, the P-EN5 neurons also make

onward connections to E-PG6 and E-PG4 (note that following the same labelling system as above,

the E-PG4 innervates neighbouring wedges in T4 and T5) (Figure 4Bii). Finally, P-EG neurons follow

a similar pattern to E-PG neurons (Figure 4Ci), innervating equally numbered glomeruli and two

wedges in neighbouring tiles, e.g. P-EG5 connects G5 to T5 and T6, which can be shown as a single

unit making a reciprocal connection to E-PG neurons with the same number. Tracing this connectiv-

ity pattern forward as before, the connections are repeated around the circuit. The circuit forms a

closed ring because the pair of E-PG neurons innervating the medial glomeruli (glomerulus G8 in the

left and G1 in the right hemisphere) have arborizations that cross the borders of these two glomeruli

(Heinze and Homberg, 2009, Figure 1) hence forming synapses with both P-EN1 and P-EN8 neu-

rons in the two medial glomeruli (Figure 4Di,Ei). This evolutionary adaptation results in a closed ring

without the need for an extra pair of neurons connecting the two edges of the EB. The crossing of

glomeruli borders is characteristically evident in these two medial glomeruli resulting in a modified

connectivity pattern between octants 1 and 8 of the circuit (Figure 4Fi). Even though this pattern

might at first appear to break the structural radial symmetry in effect it provides a functional continu-

ity of left-right activity ‘bump’ shifting all around the ring as illustrated in Figure 4Fii. Figure 4Fii

shows in detail the specific portion of Figure 4Fi, illustrating how the connectivity we found in the

animal effectively functions equivalently to the other P-EN to E-PG connections around the ring. The

dashed red arrows show the effective connections closing the ring.
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In spite of the EB in the locust not being torus-shaped but rather having a crescent shape, the

effective circuit still forms a closed ring with an eight-fold structure almost identical to that of the

fruit fly (Figure 4Fi). This is a consequence of the combination of E-PG neurons selectively cross-

innervating the two medial glomeruli and the P-EN neurons forming reciprocal connections back to

the E-PG neurons in the same octant. Both of these features are missing in the fruit fly. We thus

observe the existence of two different solutions to the same problem, in the fruit fly the torus-

shaped EB anatomically facilitates closing the ring while in the locust, which has an EB with open

ends, adaptations in the neuronal projection patterns result again in a closed ring.

Overall circuit
The similarity between the effective circuits of the locust and the fruit fly is striking. Despite the fact

that locusts have eight PB glomeruli while fruit flies have nine, both circuits form closed rings organ-

ised in eight octants with the functional role of each neuron class appearing to be identical. The

E-PG neurons were presynaptic to both P-EG and P-EN neurons, with P-EG neurons forming recur-

rent synapses back to E-PG neurons. P-EN neurons were presynaptic to E-PG neurons with a shift of

one octant to the left or right. Overall, two of the main anatomical differences between the two spe-

cies (eight versus nine PB glomeruli and ring-shaped versus crescent-shaped EB) had no fundamental

effect on the principal structure of the CX heading direction circuit.

During our analysis of the anatomical data in locusts and flies, we observed that the order of

E-PG neuronal projections in the EB differs between the two species (Heinze and Homberg, 2008;

Williams, 1975; Wolff et al., 2015; Wolff and Rubin, 2018). Spanning the EB clockwise starting

from tile 1, the fruit fly wedges connect first to the right PB hemisphere, then to the left and so on,

while in the locust they connect first to the left, then to the right and so on. However, despite this

seemingly major difference in projection patterns the effective circuit is preserved between the two

species.

The excitatory portions of the circuits differed in that the locust P-EN neurons make synapses

back to E-PG neurons in the same octant while in the fruit fly they do not (Compare Figure 3F with

Figure 4F). This difference resulted from the P-EN synaptic domains being shifted by half-tile in the

locust instead of the whole tile shift seen in the fruit fly (Figure 3B and Figure 4B). Consequently,

the middle portion of neighbouring P-EN synaptic domains overlap in the EB and feed back to E-PG

neurons in the same octant of the ring. This specialisation of the locust together with the cross-inner-

vation of the two medial glomeruli by E-PG neurons enable the closing of the ring in the locust.

When we combined the inhibitory and the excitatory sub-circuits into a complete model (Fig-

ure 5), the E-PG neurons became presynaptically connected to the Delta7 neurons, in line with

(Franconville et al., 2018; Turner-Evans et al., 2019). Additionally, each Delta7 neuron inhibits the

P-EN and P-EG neurons in the same octant, as well as all other Delta7 neurons (for the fruit fly) or a

subset (for the locust), as described above. This difference results in two different types of ring

attractor topology; one with global inhibition in the fruit fly and another with local inhibition in the

locust.

Predicted synaptic strengths
We next focused on whether and how the two circuits could operate as ring attractors. To this end,

we implemented computational models of the two circuits using neuronal projection patterns

derived from the anatomical data and investigated what synaptic connectivity strengths would be

required for the circuits to produce ring attractor dynamics. The results constitute a prediction for

the synaptic efficacies we expect to be observed in insects when such measurements become

available.

We used spiking Leaky Integrate and Fire neuron models following the same approach as

Kakaria and de Bivort, 2017 and we ran an optimisation algorithm to find regularities in the synap-

tic efficacy patterns that resulted in functional ring attractors (see section Materials and methods). A

functional ring attractor should maintain a ‘bump’ of activity along the neurons of the ring, with char-

acteristics defined in section Materials and methods. A k-means algorithm was used to identify the

clusters around which solutions were found. These clusters were ordered by the number of instances

found by repetitive runs of the optimiser. Although the absolute synaptic strengths are arbitrary, as

they depend on unknown biophysical properties of the involved neurons, a pattern emerged in the
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relative synaptic strengths between the different synapses (Figure 6). The most frequent synaptic

strengths patterns were comparably consistent for the fruit fly and the locust. In both species,

among the excitatory synapses, the P-EN to E-PG and P-EG to E-PG synaptic strengths were the

weakest, while the synaptic strengths from E-PG to P-EG and P-EN neurons were the strongest. The

inhibitory synaptic strengths from Delta7 to P-EN and P-EG were stronger in the locust than in the

fruit fly, which was consistent with the fly neurons receiving input from more Delta7 neurons.

Predicted neuronal activity
Whereas our simulations confirmed that both the fruit fly and the locust circuit can operate as ring

attractors, there were clear differences in the spiking activity and dynamics of the two circuits (Fig-

ure 7). One major difference was that Delta7 neurons exhibited distinct firing patterns in the two

species. In the locust, there was a strong heading-dependent modulation in the firing of Delta7 neu-

rons, in line with the heading signal (activity ‘bump’) location. Those Delta7 neurons corresponding

to the current heading signal location remained silent. In contrast, in the fruit fly the firing of action

potentials was only minimally modulated across the Delta7 population (Figure 7A and Table 1). This

difference reflected the utilisation of local inhibition in the case of the locust versus the global inhibi-

tion in the fruit fly. Electrophysiologists have indeed reported this pronounced firing rate variation in

the locust (Heinze and Homberg, 2007; Heinze et al., 2009; Bockhorst and Homberg, 2015;

Pegel et al., 2018). It will be interesting to see if the fruit fly neurons indeed show a lower modula-

tion as predicted by our model.

2

Figure 5. Combined excitatory and inhibitory portion of the ring attractors. Explanatory drawings of the

connectivity of the inhibitory portion with the excitatory portion of the circuit for the fruit fly (A–C) and the locust

(D–F). Each coloured disc represents one or more neurons with lines representing synaptic connections. (A)

Conceptual depiction of effective global inhibition in the fruit fly. The connectivity of E-PG neurons is shown for

two neurons only (B,C and E,F). In this conceptual effective connectivity drawing, E-PG neurons appear to be

located on the one side of the ring making synapses around the ring. However, anatomically each E-PG neuron

innervates one glomerulus where it makes all its synapses with postsynaptic Delta7 neurons that run along the PB.
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When comparing the head-direction tuning widths between the two species, we noted that in

locusts all cell types are consistently tuned more narrowly (ca. 20%, Table 2). Within both species,

the activity ‘bump’ is wider for E-PG neurons than for the other excitatory neuron classes (Table 1),

a difference that is more pronounced in the fruit fly. The tuning of the Delta7 neurons is the widest

across cell types in both species (approx. 96˚ in the locust, Table 2). In the fruit fly, the activity is

approximately even across all Delta7 neurons (ca. 10% modulation).

In our models, we employed one neuron for each connection, whereas in the actual animals there

are multiple copies of each neuron. While definite numbers of neurons will have to await electron

microscopy data, there are likely at least two copies of E-PG, P-EG and P-EN neurons in each colum-

nar module, and three to four copies of Delta7 cells (Williams, 1975; Heinze and Homberg, 2008;

Beetz et al., 2015; Wolff et al., 2015; Wolff and Rubin, 2018). If we were to replace each mod-

elled neuron by a bundle of neurons, the action potential firing rates shown in Table 1 would be

divided among the neurons in each bundle. The peak firing rate of each neuron would be in the

range of 40–90 impulses/s which is similar to the range of the rates recorded electrophysiologically

in the locust (Heinze and Homberg, 2009). The objective function did not explicitly constrain the fir-

ing rates of the neurons but the synergy of biophysical parameters, circuit structure and performance

requirements produced working circuits that operate in firing rates similar to those recorded electro-

physiologically (see section Discussion).

The steady state peak spiking rate for each group of neurons differs between the fruit fly and the

locust circuits. On average, the locust neurons showed ca. 25% higher peak firing rates compared to

Figure 6. Relative synaptic strengths. Graphical depiction of the synaptic strengths between classes of neurons.

(A,C) For the fruit fly ring attractor circuit. (B,D) For the desert locust ring attractor circuit. Synaptic strengths are

denoted by colour in panels A and B. In panels C and D, synaptic strengths between neurons are indicated by

arrow colour and thickness in scale. Note that in the locust the synaptic strengths shown for Delta7 neurons are

the peak values of the Gaussian distributed strengths shown in Figure 1—figure supplement 1.
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Figure 7. Response to abrupt stimulus changes and tuning curves of neurons. (A and B) The raster plots of the stimuli used to drive the ring attractor

during the simulation are shown on top and the spiking rate activity of each neuron at the bottom. In the beginning of the simulation the stimulus

spiking activity sets the ring attractor to an initial attractor state. A ‘darkness’ period of no stimulus follows. Then a second stimulus corresponding to a

sudden change of heading by 120˚ is provided. In the lower parts of A and B, the spiking activity of each neuron, filtered along the time axis by a

Gaussian low-pass filter with window of 120ms and s ¼ 24ms, is shown colour coded. The order of recorded neurons is the same as shown in the

connectivity matrices (Figure 1—figure supplement 1). (A) Response of the fruit fly ring attractor to sudden change of heading. (B) Response of the

locust ring attractor to sudden change of heading. Even though the activity ‘bump’ in the locust model tends to start transitioning sooner, the fruit fly

model completes the transition faster. (C and D) Response of individual neuron types to different stimuli azimuths (n = 40 trials in each condition). The

mean and standard deviation are indicated by the error bars at the sampled azimuth points. Peak activity has been shifted to 0˚. (C) Tuning curves for

the fruit fly and (D) tuning curves for the locust.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Response of spiking and rate-based models to step change of heading.
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the fruit fly neurons while the Delta7 neurons have the highest spiking rate in both species. Electro-

physiology studies will clarify if this is the case.

The tuning curves of the P-EN and P-EG neurons have the same statistics because in our models

we assumed that all neurons have the same biophysical properties and since both these types of

neurons receive the same inputs their responses are identical.

Connectivity differences affect response dynamics
Despite the substantial similarity in functional structure of the two circuits, the subtle differences in

connectivity affected the dynamics of the circuit behaviour. This became apparent when we com-

pared the response of both circuits to sudden changes of heading (Figure 7). At a qualitative level,

the fruit fly heading signal (the ‘bump’) could jump abruptly from one state to another, whereas the

locust circuit exhibited a gradual transition. The results obtained with our spiking neuron models

were corroborated by rate-based implementations of the models (Figure 7—figure supplement 1),

confirming that the observed difference in response dynamics is not a consequence of neuron model

choice but rather due to the differences in connectivity.

To explore whether this difference in movement dynamics of the heading signal could be a result

of the different inhibition patterns produced by the Delta7 neurons, we replaced the global Delta7

connectivity pattern in the fruit fly model with the connectivity pattern of the locust Delta7 neurons,

effectively swapping the fruit fly version of these cells with the locust version. Both the Delta7 to

Delta7 and the E-PG to Delta7 connections were replaced with that of the locust. The data gener-

ated by this hybrid-species model revealed that changing the global inhibition to local inhibition was

sufficient to produce the gradual ‘bump’ transition we observed in the locust circuit (Figure 8).

Table 1. Characteristics of the activity ‘bump’.

The Full Width at Half Maximum (FWHM), the peak impulse rate of the activity ‘bump’ formed across each family of neurons and the

amplitude of the activity ‘bump’ measured as the range of firing rates are shown. Measurements were made 10 s after the stimulus

was removed. Numbers are given as median and standard deviation. The activity of Delta7 neurons in Drosophila is approximately

even, hence the corresponding FWHM measurement is not meaningful and marked as ‘N/A’.

Neuron class Drosophila Locust

FWHM Peak Amplitude FWHM Peak Amplitude

(˚) (imp./s) (imp./s) (˚) (imp./s) (imp./s)

E-PG 88.3 ± 0.3 161.0 ± 0.2 160.1 ± 0.3 68.3 ± 0.1 192.6 ± 0.1 192.0 ± 0.2

P-EN 80.4 ± 0.4 190.1 ± 0.2 190.1 ± 0.2 63.1 ± 0.3 153.5 ± 0.1 153.5 ± 0.1

P-EG 71.0 ± 0.2 190.1 ± 0.2 190.1 ± 0.2 63.1 ± 0.3 153.5 ± 0.1 153.5 ± 0.1

Delta7 N/A 274.7 ± 0.1 27.1 ± 0.2 101.1 ± 0.2 266.6 ± 0.2 266.6 ± 0.2

Table 2. Characteristics of the neuron tuning curves.

The Full Width at Half Maximum (FWHM), the peak impulse rate of each family of neurons and the activity amplitude measured as the

range of firing rates are shown. Numbers are given as median and standard deviation. The activity of Delta7 neurons in Drosophila is

approximately even, hence the corresponding FWHM measurement is not meaningful and marked as ‘N/A’.

Neuron class Drosophila Locust

FWHM Peak Amplitude FWHM Peak Amplitude

(˚) (imp./s) (imp./s) (˚) (imp./s) (imp./s)

E-PG 94.7 ± 4.0 208.4 ± 2.3 208.2 ± 2.2 73.4 ± 2.6 220.8 ± 1.4 220.8 ± 1.4

P-EN 74.6 ± 3.8 230.3 ± 2.3 230.3 ± 2.3 58.9 ± 3.1 163.6 ± 0.9 163.6 ± 0.9

P-EG 74.6 ± 3.8 230.3 ± 2.3 230.3 ± 2.3 58.9 ± 3.1 163.6 ± 0.9 163.6 ± 0.9

Delta7 N/A 289.9 ± 1.8 58.1 ± 4.2 96.0 ± 3.2 265.4 ± 2.9 265.4 ± 2.9
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Quantification of the ring attractor responsiveness
Having shown that small changes in the morphology of the Delta7 cells affect the dynamics of the

heading signal in a qualitative way, we next quantified the maximal rate of change each ring

attractor circuit could attain. To this end, we measured the time it took for the heading signal to

transition from one stable location to a new one, in response to different angular heading changes

of the stimulus. This was carried out for all three models: the fruit fly model, the locust model, and

the hybrid-species model. The fruit fly ring attractor circuit stabilised to the new heading in approxi-

mately half the time it takes for the locust circuit to stabilise, across different magnitudes of angular

heading change (Figure 8A). The hybrid-species circuit had a similar response time to the locust cir-

cuit. This confirmed that the pattern of inhibition in the network is the main contributor to the

observed effect.

To calculate the maximal rate of angular change each circuit can possibly track we divided the

angular heading change by the time required for the heading signal to transition. When moving

gradually, the heading signal transitions along the shortest path around the ring attractor. Therefore,

in the calculation of the angular change rate, the numerator was the shortest angular distance

between the two azimuths, calculated as

angle¼ angle; if angle � 180
�

360
� � angle; if angle > 180

�

�

(1)

The resulting angular rate of change values revealed that the circuit found in the fruit fly is signifi-

cantly faster than the locust circuit and the hybrid-species circuit with localised inhibition

(Figure 8B). The rate of change was maximal for angular displacement of 180˚, because this is the

maximum azimuth distance the bump has to travel, as for all other angular displacements there is a

shorter path.

Effects of varying the uniformity of inhibition
The above results strongly suggested that the different pattern of inhibition is instrumental to gener-

ating the different dynamics in the two circuits. Up to this point, we have examined two extreme

cases of inhibitory synaptic patterns, that of the global, uniform, inhibition found in Drosophila and

the localised inhibition found in the locust. However, in principle, there could be any degree of uni-

formity of the inhibition between these two extremes. So far, the locust inhibition has been modelled

as a summation of two Gaussian functions that approximates the synaptic density across the PB glo-

meruli, as derived from estimates of dendritic density along the PB in dye-filled Delta7 neurons

(Heinze and Homberg, 2007; Beetz et al., 2015; Hadeln et al., 2020). In the fruit fly, the synaptic

distribution of Delta7 neurons has been modelled as uniform across the PB glomeruli, although there

might be subtle synaptic density variation along their length. To account for this possibility, we

explored a range of synaptic terminal domains distributions. As no measurements of synaptic

strengths exist for either animal, we asked what effect varying the synaptic terminal distribution

would have on the ring attractor behaviour. We thus modelled the inhibitory synaptic strength across

the PB using two Gaussian functions, with peaks separated by 7 or 8 glomeruli, and varied their

width (standard deviation s, see also section Materials and methods). This would not only give us

the effect of different inhibitory synaptic domain widths but also predict the plausible range of

widths that the actual animals must have in order to exhibit the observed dynamics.

Modelling these variations showed that the transition mode of the heading signal depended on

both the extent of the inhibitory synaptic domain width and the angular heading change of the stim-

ulus. This sets limits on the plausible standard deviation (s) range that the synaptic strength distribu-

tion must obey in the actual animals (Figure 9). We observed that for both circuits there was a range

of low s values, corresponding to more localised inhibition, which produce gradual transitions

(‘locust-like’). As s was increased, the inhibitory pattern became more uniform or global, and both

circuits transitioned to abrupt jumps (‘fly-like’). Based on density estimates of dendrites in the PB,

we approximated the inhibitory synaptic distribution with a value of s ¼ 0:8 for the locust model,

yielding a gradual activity transition regime across the whole range of angular changes. These results

suggested that the pattern of inhibition is indeed key to the circuit dynamics in response to rapid

heading changes.
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However, the morphology of the Delta7 neurons is not the only difference between the ring

attractors in the two species, hence the recorded response patterns are not identical for the two

species (Figure 9). There is also anatomical difference in the presence of the P-EN to E-PG feedback

loops only in the locust and consequently the synaptic efficacies differ between the two models. We

investigate the effect of this anatomical difference in the subsequent section.

Attractor states distribution
We next investigated the attractor basin of each model. The finite size of the two circuits renders

them discrete approximations of ring attractors (Brody et al., 2003). As a consequence, in the

Figure 8. Transition time and rate of the heading signal. (A) Time required from the onset of the stimulus until the

heading signal settles to its new state. The abscissa (horizontal axis) displays the azimuthal difference between

initial and target azimuth. (B) The maximum rate of angular change each model can attain computed as the ratio

of shortest angular change of stimulus divided by transition duration. The values for different magnitudes of

heading change are depicted as medians. The boxes indicate the 25th and 75th percentiles while the whiskers

indicate the minimum and maximum value in the data after removal of the outliers (black dots). ‘Hybrid-species’ is

the combination of the fruit fly model with the locust inhibition pattern.
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absence of input, the activity ‘bump’ will tend to settle to one of a discrete set of states (note this

does not prevent a continuous encoding of heading while a heading stimulus is provided, which

could be decoded by downstream neuronal circuits). We tested this by stimulating the E-PG neurons

at varying azimuthal locations around the circuits, then removing the input stimulus and examining

the position of the activity ‘bump’ after 3 s. Both the fruit fly and locust circuits had discrete attractor

states where the heading signal eventually settled once the stimulus was removed. Typically, the

heading signal moved to the nearest attractor state. When a stimulus was applied equidistantly

between two attractor states then, once the stimulus was removed, the activity ‘bump’ moved to

one of the two attractor states stochastically due to the presence of noise in the system (Figure 10).

These attractor states were more stable and clearly delineated in the locust while in the fruit fly there

was a wider distribution of ‘bump’ locations, indicating that the locust ring attractor is more robust

to drift and noise (Figure 10).

Stability characteristics of the ring attractors
The locust head direction circuit is more robust to noise
An important aspect of a ring attractor is its stability characteristics. The differences in the distribu-

tion of activity ‘bump’ locations reported in the previous section hinted that the locust ring attractor

is more robust to noise. To quantify this property of the two ring attractors, we measured the effect

of different levels of structural (synaptic) noise to the circuit stability. The ring attractor of the locust

was significantly more tolerant to structural noise than the fruit fly circuit (Figure 11A).

However, these two ring attractors differ in several respects. To identify the reason for the

reduced sensitivity of the locust model to synaptic noise we compared the locust with the hybrid-

species model. These two models differ in that reciprocal connections between P-EN and E-PG neu-

rons are present only in the locust model (Figure 3 and Figure 4). If these reciprocal connections

are responsible for the increased robustness of the circuit, we would expect the locust model to be

more robust to synaptic noise than the hybrid-species model. This is exactly what we found

(Figure 11A), thus we inferred that these reciprocal connections, between P-EN and E-PG neurons,

provide the increased robustness to the locust model. This circuit specialisation might have impor-

tant repercussions to the behavioural repertoire of the species, enabling locusts to maintain their

heading for longer stretches of time than fruit flies, an important competence for a migratory spe-

cies such as the locust.

P-EG neurons stabilise the head direction circuit
In our models, we included the P-EG neurons connecting the PB glomeruli with EB tiles. Unlike the

P-ENs, these neurons have the same connectivity pattern as the E-PG neurons but with presynaptic

and postsynaptic terminals on opposite ends. What is the effect of the P-EG neurons in the circuit?

Effectively, the P-EG neurons form secondary positive feedback loops within each octant of the

Figure 9. Transition regime as function of inhibitory uniformity. Heading signal transition regime for (A) the fruit

fly ring attractor circuit and (B) the desert locust ring attractor circuit. Blue denotes gradual transition of the

heading signal, orange denotes abrupt transition (jump), and yellow marks trials that were producing both gradual

and abrupt transitions (for definitions see section Materials and methods).
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circuit that, we hypothesised, help the heading signal to be maintained stably in the current position,

even when lacking external input. Therefore, we expected the circuit to function as a ring attractor

without these connections, but to be more vulnerable to drift if the neuronal connection weights are

not perfectly balanced. The recurrent P-EG to E-PG loops should counteract this tendency to drift.

We tested this hypothesis by measuring the effect of imposing imbalance in the connectivity

strengths of P-EN to E-PG neurons between the two hemispheres. We did this for both the full fruit

fly and locust circuits as well as two altered circuits with the P-EG neurons removed. The synaptic

strengths for the four circuits were optimised separately, since completely removing the P-EG neu-

rons without appropriate synaptic strength adjustment breaks the ring attractor. We measured the

percentage of simulation runs that resulted in a stable heading signal being maintained for at least 3

s. The presence of the P-EG neurons substantially increased the robustness of both species models

to the effects of synaptic strength imbalance in the P-EN to E-PG synapses, as a stable heading sig-

nal was observed over a far wider range of synaptic efficacy changes (Figure 11B&C). The P-EG neu-

rons therefore contribute significantly to the tolerance of the ring attractors to synaptic strength

asymmetries.

Effect of inhibition to stability
It is interesting to note that even though in the locust model the reciprocal connections between

E-PG and P-EG neurons were weaker than in the fruit fly model, the presence of the extra reciprocal

connections between P-EN and E-PG neurons in the locust resulted in a more stable ring attractor

than that in the fruit fly, which possesses only one but stronger recurrency loop. Finally, the hybrid-

species model was more robust than the fruit fly one (Figure 11A). The fruit fly and the hybrid-spe-

cies models differed in the width of their inhibitory synaptic domains and in their synaptic strengths.

Although their difference in robustness was smaller than the previously examined ones, we can see

an effect of the inhibitory pattern on the stability of the circuit.

Figure 10. Distribution of activity ‘bump’ locations. The distribution of azimuthal location of the heading signal 3 s

after stimulus removal is plotted. On the abscissa (horizontal axis), the azimuth where the stimulus is applied is

shown. On the ordinate (vertical axis), the mean location and standard deviation of the activity ‘bump’ azimuth, 3 s

after the stimulus is removed, are shown. (A) for the fruit fly and (B) for the locust. Inset images depict the

corresponding EB tiles in colour. Smaller standard deviation corresponds to the ‘bump’ settling more frequently to

the same azimuth. This is the case when the stimulus is applied near an attractor state. Applying the stimulus

equidistantly from two attractor states results in a movement of the ‘bump’ to either of them and hence the

increased standard deviation. In the locust when stimulating the ring attractor at one of the attractor states the

‘bump’ tends to settle at it, indicated by the reduced standard deviation at these locations. In the fruit fly, the

activity ‘bump’ is prone to noise and not as stable, thus the standard deviation is not as modulated. This means

that the locust attractor states are more stable resulting to the smaller dispersion of ‘bump’ location.
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Effect of neuronal heterogeneity
Until this point, we have assumed that all neurons have identical properties. We now relax this

assumption by making the membrane properties of the neurons heterogeneous. We tested the

effect of neuronal heterogeneity to the stability of the ring attractors. Overall, the stability of the

ring attractors deteriorated with increased deviation from the nominal values of membrane proper-

ties (Figure 12), but the locust model was more robust to these membrane property variations.

Importantly, the distinct heading signal transition regimes (gradual transition in the locust model ver-

sus jump in the fruit fly model) were preserved regardless of heterogeneous membrane properties

across the neuronal population (Figure 12—figure supplement 1).

Response to proprioceptive stimuli
Mechanistically, Turner-Evans et al. showed that the activity of P-EN neurons in one hemisphere of

the brain increases when the animal turns contralaterally, both with and without visual input (Turner-

Evans et al., 2017). The increase in activity is related to the angular velocity the fly experiences

(Turner-Evans et al., 2017). Whereas the origin of the angular velocity information in darkness is not

known, efference copies of motor commands or proprioceptive inputs are the most likely sources of

information about the fly’s rotational velocity. To test whether our models reproduce this behaviour,

we artificially stimulated the P-EN neurons in one hemisphere of the PB, mimicking an angular veloc-

ity signal caused by turning of the animal, and observed the effect on the heading signal

(Figure 13).

Both the locust and the fruit fly model reproduced the response dynamics reported by Turner-

Evans et al., 2017. Exploration of the response of the circuit to different stimulation strengths

showed that the rate by which the heading signal shifts around the ring attractor increases exponen-

tially with increase of uni-hemispheric stimulation strength (Figure 14). While this general relation-

ship was consistent between the two species, the increase was much steeper in the fly. Additionally,

the required stimulus for initiating ‘bump’ shifting was lower in the fruit fly. Both of these aspects

concur with the faster response rate of the fruit fly model to positional stimuli and support their abil-

ity to track fast body saccades even when only angular velocity input is available.

Continuous application of angular velocity input caused the heading signal to reach an edge of

the PB and then wrap around and continue on the other edge. This behaviour is present in both

models and is thus independent of the physical shape of the EB, that is, whether it forms a closed

ring or possesses open ends. The wrapping around of the heading signal is required for the animals
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Figure 11. Effect of synaptic efficacy heterogeneity on ring attractor stability. (A) Stability of the ring attractor heading signal for the fruit fly, locust and

hybrid-species (fruit fly with localised inhibition) model as a function of heterogeneity in the synaptic efficacies across all synapse types (modelled as

additive white Gaussian noise). (B, C) Stability of the ring attractor heading signal as a function of structural asymmetry introduced by deviating synaptic

efficacies between P-EN and E-PG neurons when the circuit includes the P-EG neurons versus when they are removed. In all three plots, the percentage

of trials that result in a stable activity ‘bump’ is shown. On the horizontal axis the absolute value of percentile synaptic strength change is shown.

Number of trials n = 100 for each level of noise. With P-EG neurons both ring attractors are more tolerant to such structural asymmetries. The locust

ring attractor is more robust to both types of structural noise.
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to track movements that involve turning around its body axis for more that 360˚ and is supported by

the effective closed ring structure we found in both species.

Discussion
The availability of tools for the study of insect brains at the single neuron level has opened the way

to deciphering the neuronal organisation and principles of the underlying circuit’s behaviour.
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Figure 12. Effect of membrane parameter heterogeneity on ring attractor stability. (A) Stability of the ring attractor heading signal for the fruit fly and

the locust model when the membrane properties are heterogeneous across the neuronal population. (B, C) Stability of the ring attractor heading signal

when the level of noise on conductance and capacitance is varied independently. In all three plots, the percentage of trials that result in a stable activity

‘bump’ as a function of heterogeneity in cell membrane properties is shown (number of trials n = 50 for each condition). The locust ring attractor is

more robust to white Gaussian noise in both conductance and capacitance. In both cases, the activity ‘bump’ is more tolerant to conductance variation

than capacitance.

The online version of this article includes the following figure supplement(s) for figure 12:

Figure supplement 1. Effect of cell membrane parameter heterogeneity to transition regime.

Figure 13. Response to uni-hemispheric stimulation. Upper plots show the P-EN stimulation protocol and

corresponding induced P-EN activity; lower plots show the response of the ring attractor for (A) the fruit fly circuit

and (B) the locust circuit. The initial bilateral stimulation initialises a persistent activity ‘bump’, which moves around

the circuit in response to stimulation of P-ENs in all the columns in one hemisphere only.
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However, even where there is progress towards a

complete connectome, the lack of data on synap-

tic strengths, neurotransmitter identity, neuronal

conductances, etc. leave many parameters of the

circuit unspecified. Exploring these parameters

via computational modelling can help to illumi-

nate the functional significance of identified neu-

ral elements. We have applied this approach to

gain greater insight into the nature of the head-

ing encoding circuit in the insect central complex

(CX), including the consequences of differences

in circuit connectivity across two insect species.

Overall conservation of structure
and function
We have focused on a subset of neurons in the

PB and EB which have been hypothesised to

operate as a ring attractor, with a ‘bump’ of neu-

ronal activity moving across columns consistently

with the changing heading direction of the ani-

mal. The neuronal projection patterns and columnar organisation differ between the two insect spe-

cies we have analysed, the fruit fly and the locust. There are additional morphological columns in the

PB of flies (9 vs. 8), resulting in a different number of functional units that could influence the symme-

try of the underlying neural circuits. Also, the EB in the fruit fly forms a physical ring, while the

homologous region in the locust is an open structure. Our analysis of the connectivity as a directed

graph has revealed, surprisingly, that the circuits are nevertheless equivalent in their effective struc-

ture, forming a closed ring attractor in both species with an identical functional role for each neuron

class. The preservation of this circuit across 400 million years of evolutionary divergence suggests

that it is an essential, potentially fundamental, part of the insect brain.

It is worth noting that an essential part of the circuit, namely the functionally closed ring that we

found in both species, is achieved with two different solutions. In the fruit fly, the torus-shaped EB

provides an anatomical solution to the closure of the ring via overlapping projections from E-PG neu-

rons innervating the innermost and outermost PB glomeruli. In contrast, in the locust the midline

spanning output fibers of the E-PG neurons in the medial PB glomeruli serve this function in combi-

nation with a slightly different projection pattern that results in the P-EN neurons forming reciprocal

connections back to E-PG neurons in the same octant. In this context, it is interesting to note that

neither solution to this problem is possible for insects of a different order, the lepidoptera (moths

and butterflies). These insects have an almost straight EB, their PB is split along the midline, and

right-left connections between the two halves are realised by a neuropil-free fiber bundle

(Heinze and Reppert, 2012; Adden et al., 2020). Neither midline crossing E-PG fibers within the

PB, nor local connections around the ring of the EB are therefore morphologically possible, suggest-

ing that a functional closure of the heading direction circuit is either not required or achieved via

other means in these species. The notion that there are many solutions to the same problem is fur-

ther highlighted by data from bumblebees showing the existence of a ninth E-PG neuron that con-

nects the medialmost PB glomerulus to the outermost ipsilateral EB wedge, closing the ring in yet

another way (personal observations, S.H.). Exploring these different solutions across many species

could provide key insights into the evolution of this circuit under a multitude of evolutionary history

constraints.

In combination, these findings underline that the large-scale anatomical differences at the level of

neuropils and projection patterns do not necessarily affect the core functions of the circuit. Rather,

the functional constraints appear significant enough that even in those parts of the circuit that clearly

differ between species convergent solutions have evolved that solve similar problems, albeit in

slightly different ways.

Figure 14. Response to uni-hemispheric stimulation.

Response rate of change of the heading signal with

uni-hemispheric stimulation of P-EN neurons. The

angular rate of change increases exponentially with

stimulation strength and does so most rapidly for the

fruit fly circuit. The data points have been fit with the

function y ¼ aebx and the parameters of the fitted

curves are shown on the plot.
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Differences in dynamical response
Surprisingly, more subtle differences in the morphology between the two species have significant

effects on the dynamical response of the heading direction circuit. First, the shape of the dendritic

arborizations of one type of CX neuron determines how quickly the model circuit tracks rotational

movements. Second, a difference in the overlap of neuronal projections in the EB results in an extra

feedback loop between the P-EN and E-PG neurons in the locust circuit that makes it more robust

to synaptic noise.

We suggest that the effects of these differences are consistent with the behavioural ecology of

the two species. On the one hand, the faster response of the ring attractor circuit in the fruit fly

accommodates the fast body saccades that fruit flies are known to perform (Tammero and Dickin-

son, 2002; Fry et al., 2003). On the other hand, the locust is a migratory species, so its behaviour

demands maintenance of a defined heading for a long period of time (Homberg, 2015; de Vries

et al., 2017). This requirement for heading stability might have provided the selective pressure

needed to drive the evolution of a more noise resilient head direction circuit.

Assumptions and simplifications
As any model, our circuits are necessarily condensed and simplified versions of the real circuits in the

insect brain. In comparison to previous models, the work we present has been more precisely con-

strained by the latest anatomical evidence. We additionally constrained our models to use plausible

values for the biophysical properties of neurons (membrane conductance and capacitance) as well as

spiking rates (background activity) supported by electrophysiological evidence. Furthermore, in

building our models we did not assume that the underlying circuits must be ring attractors, but

rather asked and investigated whether, given the available connectivity data, they can be. This was

especially the case for the locust model since our work represents the first model of this circuit to

date. Nevertheless, it is important to outline those areas where our assumptions cannot be fully justi-

fied from the existing data and identify the potential consequences for the modelling results.

Morphological assumptions
In our model of the fruit fly heading tracking circuit, we assumed a uniform distribution of dendrites

across the Delta7 neurons. Imaging of these neurons suggests that there might be a subtle variation

of the dendritic density along their length. However, it is unclear how this subtle variation might be

related to synaptic density and efficacy. We, therefore, initially made the simplifying assumption that

these neurons have uniform synaptic efficacy across the PB. However, we also explored the effect of

varying the degree of synaptic uniformity, showing that there is a range of synaptic efficacy distribu-

tions that still can produce the fly-like rapidity in the circuit response.

In general, arborization trees of neurons in the CX can be very complex, as they are not only con-

fined to specific slices, but also to one or several layers, especially within the EB. In Drosophila, the

spiny terminal arbors of E-PG neurons extend to the width of single wedges in the EB, occupying

both the posterior and medial layers. In contrast, P-EG and P-EN neurons arborize in tiles, hence

innervating only the posterior surface volume of the EB (Wolff and Rubin, 2018). Therefore, we

assume that presynaptic terminals of P-EG and P-EN neurons form synapses with E-PG postsynaptic

terminals in the posterior layer of the EB. In locusts, the E-PG arborizations are more complex, as

these cells innervate a single wedge of the anterior and medial EB layers, but extend at least twice

this width to either side in the posterior layer that provides overlap with the P-EN neurons

(Heinze and Homberg, 2008). Additionally, the wider fibres have a different morphological appear-

ance. P-EG neurons in this species innervate all layers evenly. Although these detailed differences

likely have consequences for connectivity, we simplified these arborizations to their most essential

components, aiding the extraction of the core features. With the advance of comparative connec-

tomics, these aspects will become accessible for investigation.

Connectivity assumptions
Several assumptions were made while deriving the neuronal connectivity in our models. We assumed

well delineated borders of synaptic domains, which is clearly not always the case. Especially in the

EB, some overlapping of neighbouring synaptic domains due to stray terminals is to be expected

(Wolff et al., 2015). The circumferential extent of arbors in wedges and tiles may affect the integrity
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of the resulting circuit and its properties. However, due to lack of adequate data about the extent of

such overlap we cannot currently model this aspect in a sensible way.

Furthermore, neuronal connectivity was mostly inferred by co-location of neuronal arbors, that is,

projection patterns. A functional connectivity study has reported that stimulation of E-PG neurons

triggered significant responses to Delta7 neurons but no columnar neurons (Franconville et al.,

2018). However, as those authors note, the lack of response might be due to the limitations of the

method used. Alternatively, such connections might be mediated by interneurons instead of being

monosynaptic. Future work using electron microscopy data will elucidate which of the overlapping

arborizations correspond to functional connections and allow us to augment our models.

Functional assumptions
Further assumptions were made about neuronal polarity, type of synapses and synaptic efficacies.

Lin et al., 2013 characterise the EB arbor of E-PG neurons in Drosophila as having both presynaptic

and postsynaptic domains; however, Wolff et al., 2015 report that using anti-synaptotagamin is

inconclusive for presynaptic terminals. In our models for both the fruit fly and the locust we thus

assumed that E-PG neurons are purely postsynaptic in the EB, following the most parsimonious

polarity estimate. Connectomics data from a recent preprint demonstrate that in Drosophila synap-

ses exist that directly link Delta7 to E-PG neurons in the PB (Turner-Evans et al., 2019). These syn-

apses are most likely inhibitory and would thus inhibit the distal portion of the ring and thus would

not alter the location of the activity ‘bump’. For simplicity and because they do not affect the func-

tional layout of the circuit, these synapses were not included in our model.

Furthermore, the Delta7 neurons are assumed to have inhibitory effect on their postsynaptic neu-

rons, as Kakaria and de Bivort, 2017 proposed. However, there is evidence that Delta7 neurons

make both inhibitory and excitatory synapses to other neurons (Franconville et al., 2018). Indeed,

these cells were recently shown to be glutamatergic, enabling both inhibitory and excitatory effects

on postsynaptic cells via different glutamate receptors (Turner-Evans et al., 2019). As the down-

stream neurons with demonstrated excitatory responses (P-FN neurons) are not part of our current

model, we made the simplifying assumption that Delta7 neurons have exclusively inhibitory effect on

their postsynaptic neurons, both in flies and locusts. It is also possible that there are other sources of

inhibition in the circuit, for example mediated by the GABAergic ring neurons originating in the

bulbs, as suggested by Green and Maimon, 2018, or via GABAergic Gall-EB ring neurons (Turner-

Evans et al., 2019). We do not explore this possibility in our current work.

We additionally assumed that the synaptic strengths of all synapses of each class are identical.

This might not be the case in the actual animals, especially considering that one of the EB tiles (T1)

is innervated by twice as many neurons as other tiles in fruit flies (Figure 3). Neurons innervating this

tile might have reduced synaptic efficacy in order to maintain the radial symmetry of the circuit

intact. Similarly, the synaptic strengths of the neurons closing the ring in locusts would be expected

to be different than those of other synapses if the ring does not have a functional ‘seam’. Such a syn-

aptic efficacy variation is suggested by the fact that the arborization density of E-PG neurons inner-

vating the two medial PB glomeruli (G9 and G1) is not the same in both of them. There is certainly

space for further exploration of the effect of synaptic efficacy in those segments of the ring in both

species. Finally, synaptic strength variation might exist for the two Delta7 neurons that have presyn-

aptic terminals in three glomeruli instead of two (Table 3).

Biophysical assumptions
All types of neurons in our models were assumed to have the same nominal biophysical properties

even though anatomical evidence has shown that their morphology, somata size and main neurite

thickness differ (Heinze and Homberg, 2008). To relax this assumption, we explored the effect of

heterogeneity in the biophysical properties of the neuronal population. We corroborated our conclu-

sions using both rate-based and Leaky Integrate and Fire neurons with refractory period. This

allowed us to highlight the significance of the neuronal connectivity on the circuit dynamics. The

point spiking neuron model was sufficient for investigating the performance characteristics, spike

timing dynamics and potential spike synchronisation effects in the ring attractors when exposed to

neuronal noise, but clearly is highly abstracted in comparison to real neurons. However, we lack

most of the necessary detail to constrain more complex neural models. One caveat is that intrinsic
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properties of neurons could provide short-term memory that would radically alter the circuit

response. It is not possible to explore this possibility with the models we have used, but we can con-

clude that such properties do not appear to be necessary for generating basic ring attractor dynam-

ics. Furthermore, it will be interesting to study how differences in the biophysical properties of

neurons between the two species might be affecting performance. We are not exploring this possi-

bility here.

Comparison to ‘canonical’ ring attractor models
In our work, we compared the hypothetical heading tracking circuit of two evolutionary distant spe-

cies. We went beyond mere simulation of neuronal projection data by analysing and deriving the

effective underlying circuit structure of the two ring attractors. Our analysis and derivation of the

complete effective neuronal circuits revealed not only differences in dynamics but also the construc-

tion principles of these circuits. This approach allowed us to identify elements that differ in several

ways from the ‘canonical’ ring attractor described in earlier theoretical models (e.g. Amari, 1977;

Skaggs et al., 1995; Zhang, 1996).

For example, the circuit found in the two insect species combines two functionalities in the P-EN

neurons that are typically assigned to separate neural populations in computational models of ring

attractors. Such computational models use one set of neurons to provide the lateral excitation to

nearest neighbours and a different set of neurons that receive angular velocity input to drive the

left-right rotation of the heading signal. In the insect circuit, the P-EN cells are part of the lateral

excitation circuit, providing excitation to their two nearest neighbours, but they also receive angular

velocity input. This difference is suggestive of a more efficient use of neuronal resources than the

typical computational models of ring attractors. Another novel element we found in the insect ring

attractors is the presence of local feedback loops within each octant of the circuit structure (P-EG to

E-PG and P-EN to E-PG). Both of these feedback loops increase the tolerance of the ring attractors

to noise.

Hypotheses regarding circuit differences
Another unique aspect of our modelling work is the comparison of related, but not identical, circuits

found in two species. Indeed, using computational modelling allows us to investigate ’hybrid’ cir-

cuits, combining features of each, in order to try to understand the functional significance of each

observed difference independently. Nevertheless, some differences between these circuits are not

explained by the current model, and may require additional work to fully explicate.

One question is what is the role, if any, of the ninth PB glomeruli found so far only in Drosophila?

In particular, the existence of the innermost glomeruli that are not innervated by the P-EN neurons

seems perplexing. The same signals from tile 1 of the EB are sent to both ends of each hemisphere

of the PB (glomeruli 1 and 9) and from there action potentials propagate along the Delta7 neurons

along the PB length. Our speculation is that this may be a mechanism to reduce the distance and

time these signals have to travel to cover the full PB, that is, the maximum distance any signal must

travel is only half of the distance it would need to propagate from one end of the PB to the other as

in other species, such as the locust. If this is the case, it would constitute one more specialisation in

Drosophila that reduces the response time of the ring attractor. It therefore seems that several spe-

cialisations have been orchestrated in minimising the response delays in fruit flies. Testing this idea

would require multi-compartmental models to capture the action potential transmission time along

neurites; as argued above, this may be contingent upon first obtaining detailed biophysical charac-

terisation of the Delta7 neurons.

Another remaining question is what is the role of the closed ring-shaped EB in D. melanogaster.

One possibility is that such a closed ring topology would allow local reciprocal connections between

P-EN and E-PG neurons all around the EB ring, as reported in Turner-Evans et al., 2019. This would

allow direct propagation of signals between these neurons within the EB instead of requiring them

to travel via the PB, as in the current model, again increasing the speed with which the heading

direction can be tracked and allowing smoother transition between neighbouring tiles. Note that

such direct reciprocal connections within the EB can only span the full ring with a closed ring anat-

omy and would not be possible between the two ends of the EB in the locust. To investigate the

potential effect of such hypothetical reciprocal connections within the EB, further studies are
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required. Possibly blocking signal transmission via the PB to isolate functional connectivity within the

EB would allow comparison of signal transmission time measurements within the EB versus via the

PB. Such measurements would determine how different and hence significant those two pathways

might be in the ring attractor performance.

A further hypothesis relates to the evolutionary lineage of these two features in the Drosophila

CX. It will be of interest to study whether the ring shaped EB appeared before or after the appear-

ance of the ninth glomeruli. One possibility is that the EB evolved into a ring shape after the appear-

ance of the ninth glomeruli in the PB, allowing connections from one common tile to both glomeruli

1 and 9 and hence providing such a common driving signal. Alternatively, a pre-existing ring-shaped

EB might have allowed the evolution of usable ninth glomeruli that resulted in faster propagation.

Similarly, the P-EN to E-PG recurrency found only in the locust might be an acquired adaptation of

the locust that increases robustness to noise, or an ancestral feature that has been lost in fruit flies.

Comparison of different species could potentially elucidate such questions. We would expect

individual species to have a selective subset of the specialisations we found, endowing them with

brain circuits supporting the behavioural repertoire suiting their ecological niche. It will, therefore,

be informative to analyse the effective heading direction circuit of other species, spanning evolution-

ary history, in order to get insights into how such adaptations relate to and accommodate behaviour.

Our results emphasise the importance of comparative studies if we are to derive general principles

about neuronal processing, even in systems that appear highly conserved such as the CX head direc-

tion circuit in insects. Many of the circuit properties observed in Drosophila appear to reflect specific

evolutionary adaptations related to tracking rapid flight manoeuvres. Despite the many strengths of

Drosophila as an experimental model, it therefore remains important to ground conclusions about

the insect brain in comparison with other species.

Materials and methods

Neuron model
Our models used the source code of Kakaria and de Bivort, 2017 as a starting point. We used

Leaky Integrate and Fire neuron models with refractory period (Stein, 1967). The membrane poten-

tial of each neuron was modelled by the differential equation

dVi

dt
¼ 1

Cm

V0 �Vi

Rm

þ Iiþ
X

N

j¼1

Mj;iIj

 !

(2)

where Vi is the membrane potential of neuron i, V0 the resting potential, Rm the membrane resis-

tance, Cm the membrane capacitance, Ii the external input current of neuron i, Mj;i the network con-

nectivity matrix, Ij the output current of each neuron in the circuit and N is the number of neurons.

The model parameter values including membrane resistance, capacitance, resting potential,

undershoot potential and postsynaptic current magnitude (IPSC) were set to the same values as used

by Kakaria and de Bivort, 2017. These values are consistent with evidence from measurements in

D. melanogaster and other species. The membrane capacitance Cm is set to 2nF and the membrane

resistance Rm to 10MW for all neurons, assuming a surface area of 10�3cm2 (Gouwens and Wilson,

Table 3. Neuronal nomenclature.

The names used for the homologous neurons differ between Drosophila and other species. The first column shows the name used in

this paper to refer to each group of neurons. The other three columns provide the names used in the literature.

Model Drosophila Locust

Neuron name Consensus name Systematic name (Wolff and Rubin, 2018) Name

E-PG E-PG and E-PGT PBG1-8.b-EBw.s-D/V GA.b and PBG9.b-EB.P.s-GA-t.b CL1a

P-EN P-EN PBG2-9.s-EBt.b-NO1.b CL2

P-EG P-EG PBG1-9.s-EBt.b-D/V GA.b CL1b

Delta7 Delta7 or D7 PB18.s-GxD7Gy.b and PB18.s-9i1i8c.b TB1
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2009). The resting potential V0 is set to �52mV for all neurons (Rohrbough and Broadie, 2002;

Sheeba et al., 2008). The action potential threshold is �45mV (Gouwens and Wilson, 2009). When

the membrane potential reaches the threshold voltage an action potential template is inserted in the

recorded time series. No other impulses occur during this period operating in effect as a refractory

period. The action potential template is defined as Kakaria and de Bivort, 2017:

VðtÞ ¼
Vthr þðVmax �VthrÞ

N ttp

2
;

tAP
2ð Þ2

� �

�a1

b1

; if 0� t< tAP
2

VminþðVmax �VminÞ
sin t�tAP

2ð Þ 2p
tAP

þp
2

� �

þg1

d1
; if tAP

2
� t� tAP

8

>

>

<

>

>

:

(3)

where Vmax is the peak voltage set to 20mV (Rohrbough and Broadie, 2002). Vmin is the action poten-

tial undershoot voltage, set to �72mV (Nagel et al., 2015). tAP is the duration of the action potential

set to 2 ms (Gouwens and Wilson, 2009; Gaudry et al., 2013). Nð�;s2Þ is a Gaussian function with

a mean m and standard deviation s. a1, b1, g1, and d1 are normalisation parameters for scaling the

range of the Gaussian and the sinusoidal to 0 to 1.

The firing of an action potential also adds a postsynaptic current template to the current time

series. The postsynaptic current template is defined as

IðtÞ ¼
IPSC

sin tp
2
�p

2ð Þþa2

b2

; if 0 � t<2ms

IPSC
2
�ðt�2Þ=tPSCþg2

d2
; if 2ms� t � 2ms þ 7tPSC

8

<

:

(4)

where IPSC ¼ 5nA (Gaudry et al., 2013). Excitatory and inhibitory postsynaptic currents are assumed

to have the same magnitude but opposite signs. tPSC ¼ 5ms is the half-life of the postsynaptic current

decay (Gaudry et al., 2013). a2, b2, g2, and d2 are normalisation constants so that the range of the

sinusoidal and exponential terms is 0 to 1. The postsynaptic current traces have duration 2msþ 7tPSC,

that is 2ms of rise time plus 7tPSC of decay time. The simulation was implemented using Euler’s

method with a simulation time step of 10�4s. Our simulation code is derived from the source code

published by Kakaria and de Bivort, 2017. All simulations were performed using MATLAB (The

MathWorks Inc, Natick, MA) and all source codes are available at https://github.com/johnpi/eLife_

Pisokas_Heinze_Webb_2019 (copy archived at https://github.com/elifesciences-publications/eLife_

Pisokas_Heinze_Webb_2019; Pisokas, 2020). For data analysis we used MATLAB, python, and R

scripts.

Neuronal projections and connectivity
We modelled and compared the hypothetical ring attractor circuits of the fruit fly D. melanogaster

and the desert locust S. gregaria. The connectivity of the circuits has been inferred mostly from ana-

tomical data derived using light microscopy, with overlapping neuronal terminals assumed to form

synapses between them (Wolff and Rubin, 2018; Wolff et al., 2015; Heinze and Homberg, 2007;

Heinze and Homberg, 2008; Pfeiffer and Homberg, 2014).

Our models include the E-PG, P-EG, P-EN and Delta7 neurons. Note that, in fruit flies, P-EG

refers to the updated set of neurons innervating all PB glomeruli as reported in Wolff and Rubin,

2018 (PBG1-9.s-EBt.b-D/V GA.b). In this paper, E-PG refers to the E-PG (PBG1-8.b-EBw.s-D/V GA.

b) and the complimentary E-PGT (PBG9.b-EB.P.s-GA-t.b) combined (Wolff et al., 2015; Wolff and

Rubin, 2018). Therefore, E-PG neurons are innervating all PB glomeruli in both species. Delta7 refers

to PB18.s-GxD7Gy.b and PB18.s-9i1i8c.b neurons combined (Wolff et al., 2015; Wolff and Rubin,

2018). Table 3 shows the nomenclature correspondence in detail.

These neurons innervate two of the central complex neuropils, the protocerebral bridge (PB) and

the ellipsoid body (EB). Ellipsoid body is the name used for this structure in the fruit fly D. mela-

nogaster, while in the locust S. gregaria the equivalent structure is referred to as lower division of

the central body (CBL). To aid comparisons with previous models and for general simplification, we

use the term EB for both species. The PB is a moustache shaped structure consisting of 16 or 18 glo-

meruli, depending on the species. In the fruit fly D. melanogaster, the EB has a torus shape consist-

ing of eight tiles. Each tile is further broken down in two wedges. In the locust S. gregaria, the EB

(CBL) is a linear structure, open at the edges, consisting of eight columns. Each column has two sub-

sections similar to the wedges found in D. melanogaster.
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For both D. melanogaster and S. gregaria, the synaptic domains of each of the E-PG, P-EN and

P-EG neurons are confined to one glomerulus of the PB, with the exception of the locust E-PG neu-

rons that cross-innervate the two medial glomeruli (Figure 3 and Figure 4). In the EB, the synaptic

domains of E-PG neurons are constrained in single wedges (half tiles) while the synaptic domains of

P-EN and P-EG neurons extend to whole tiles (Wolff et al., 2015). Furthermore, E-PG neurons inner-

vate wedges filling the posterior and medial shells of the EB while P-EG neurons innervate whole

tiles filling only the posterior shell of the EB (Wolff et al., 2015). Our model assumes that their over-

lap in the posterior shell implies functional connectivity.

In our models, the E-PG, P-EG and P-EN neurons are assumed to produce excitatory effect on

their postsynaptic neurons while Delta7 neurons are assumed to provide the inhibition, as

Kakaria and de Bivort, 2017 proposed. The projection patterns of the aforementioned neurons

were mapped to one connectivity matrix for each species (Figure 1—figure supplement 1). Fig-

ure 1—figure supplement 1A shows the connectivity matrix of the Drosophila melanogaster fruit fly

model, Figure 1—figure supplement 1B the connectivity matrix of the S. gregaria desert locust

model.

The most salient difference between the two matrices is the connectivity pattern of the Delta7

neurons (lower right part of Figure 1—figure supplement 1A and Figure 1—figure supplement

1B). In D. melanogaster, the Delta7 neurons receive synapses uniformly across the PB glomeruli,

while in the locust S. gregaria the Delta7 neurons have synaptic domains focused in specific glomer-

uli. We analysed the effect of this difference in detail in the Results section. Another major difference

apparent in the connectivity matrices is the existence of 18 glomeruli in the PB of D. melanogaster

but 16 in S. gregaria.

We modelled each PB glomerulus, as being innervated by one neuron of each class (E-PG, P-EG,

P-EN) even though in reality there are several instances of each one. This was done in order to sim-

plify the computational demands of the simulations.

The locust inhibition pattern has been modelled as the summation of two Gaussian functions that

approximate the synaptic density across the PB glomeruli, as derived from estimates of dendritic

density along the PB in dye-filled Delta7 neurons. The standard deviation (s) of the Gaussian func-

tions was set to the value 0.8 as the nearest approximation to the visually determined synaptic

domain width. To calculate the synaptic strength of each synapse we used the expression

wðiÞ ¼W
1

s
ffiffiffiffiffiffi

2p
p e

�1

2

i�1
n 2p��

s

� �2

(5)

where W is a scaling factor specifying the maximum synaptic strength across the PB, i is the glomeru-

lus number as shown in Figure 15, n is the number of glomeruli in each hemisphere, �¼p, and s is

the standard deviation parameter specifying the width of the Gaussian function used. s is the param-

eter estimated by visual inspection of light microscopy data. W is the parameter selected by the

optimisation process.

It is worth noting that in all our simulations we use the full connectivity matrices derived from neu-

ronal projection data and not the effective circuits described in the section Results.

Stimuli
Two types of input stimuli were used for the experiments: heading and angular velocity. The heading

stimulus was provided as incoming spiking activity directly to the E-PG neurons, corresponding to

input from Ring neurons (Young and Armstrong, 2010) (called TL neurons in locusts

[Vitzthum et al., 2002]). The position of a visual cue, angle of light polarisation (Heinze and Hom-

berg, 2007) or retinotopic landmark position (Seelig and Jayaraman, 2015) around the animal, was

mapped to higher firing rates supplied to E-PG neurons at the corresponding location of the EB.

The stimulus followed spatially a von Mises distribution with mean the azimuth of the stimulus and

full width at half maximum (FWHM) of approximately 90˚ (Figure 16). The spatial distribution of the

stimulus strength was derived using Equation 6.
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ðx� 1Þ

(6)

where � 2 ½0;2p� is the stimulus centre location

parameter, x¼ f1;2; . . . ;8g is the EB tile numerical

index and k¼ 3

4
p is the shape parameter. The val-

ues returned by f ð�;xÞ are converted to corre-

sponding spiking activity levels. To do this, we

sampled from a Poisson distribution. The mini-

mum value is mapped to the background activity

level and the maximum to the peak level of activ-

ity. We assumed that the background activity fol-

lows a Poisson distribution with a mean

background action potential rate of 5 impulses/s.

The peak impulse firing rate of the stimulus signal was equal to the peak spiking rate of the activity

‘bump’ across the E-PG neuron population under steady state conditions, in order to obtain compa-

rable measurements across species.

The second type of stimulus, angular velocity stimulus, consisted of spikes which were directly

supplied to all P-EN neurons in one hemisphere of the PB, corresponding to the direction of rotation

(clockwise versus counter-clockwise). The peak impulse rate of the injected spike trains was equal to

the peak rate of the steady state activity ‘bump’ across the P-EN neurons. This was done in order to

allow for direct comparisons between species.

Free parameters
The free parameters of our models are the synaptic efficacies. The efficacies of synapses connecting

each class of neurons are assumed to be identical, e.g., all P-EN to E-PG synapses have the same

strength. Therefore, we have one free parameter for each synaptic class. Furthermore, we reduced

the computational complexity of optimising the synaptic strengths by making the synaptic strength

between some classes of neurons identical. The synaptic strengths of E-PG to P-EN and P-EG are

identical as are the synaptic strengths of Delta7 to P-EN and P-EG. This is the minimum set of synap-

tic strengths that results in working ring attractors. We assumed that all synapses are excitatory

apart from the synapses with Delta7 neurons on the presynaptic side, which were assumed to be

inhibitory, as Kakaria and de Bivort, 2017 proposed. The synaptic strength was modelled as the

number of IPSC unit equivalents flowing to the postsynaptic neuron per action potential.

Although our models are constrained by ana-

tomical evidence, existing biological studies do

not specify synaptic weights or connectivity.

Based on the goal that each of the circuits should

yield a functional ring attractor, an optimisation

algorithm was used to search for synaptic

strength combinations that resulted in working

ring attractors. Both simulated annealing and par-

ticle swarm optimisation algorithms were used

(Matlab Optimization Toolbox ‘simulannealbnd’

and ‘particleswarm’ functions); the first one con-

verges quicker while the second one covers the

search space more thoroughly. We constrained

the acceptable solutions to those that produced

an activity ‘bump’ with full width at half maximum

(FWHM) of approximately 90˚ since this is the
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Figure 15. Illustration of Gaussian distribution of

synaptic strengths. The Gaussian distribution of

synaptic strengths along synapses located in the PB

glomeruli. The synaptic strengths along the PB are

illustrated for one Delta7 neuron. The example

illustrates the distribution for eight glomeruli, the same

method is used for the hybrid-species model using

nine glomeruli instead.
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Figure 16. Illustration of von Mises distributed stimulus.

The curve demonstrates the relative intensity of the

stimulus supplied to neurons innervating each EB tile.

In this illustration the stimulus is centred at tile 5.
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width that has been observed in fruit flies (Kim et al., 2017).

The objective function used to optimise the synaptic strengths wi was:

w

argmin 4ð�H1ðwÞ þ�H2ðwÞÞþ �W1ðwÞþ �W2ðwÞþNp0ðwÞ

s:t �H1ðwÞ ¼ jHdðt1Þ�Haðw;t1Þj
360�

�H2ðwÞ ¼ jHdðt2Þ�Haðw;t2Þj
360�

�W1ðwÞ ¼ j90��Waðw;t1Þj
360�

�W2ðwÞ ¼ j90��Waðw;t2Þj
360�

p0ðwÞ ¼ 1

N

PN
i¼1

ðe�jwijÞ2

0 �w1 � 100

0 �w2 � 100

0 �w3 � 100

�100 �w4 � 0

�100 �w5 � 0

(7)

where �H1, �H2, �W1 and �W2 are the error factors measured as deviations from the desired values. p0
is used to penalise synaptic strengths being too close to 0. N is the number of synaptic strengths wi.

HdðtÞ is the desired activity ‘bump’ heading at time t, while Haðw; tÞ is the actual measured activity

‘bump’ heading at time t given a model with synaptic strengths w. Waðw; tÞ is the actual measured

width of the activity ‘bump’ at time t (measured as the full width at half maximum). The constraints

in Equation 7 specify that the synapses with Delta7 neurons at their presynaptic side are inhibitory

(negative) and all others are excitatory (positive). Synaptic weights were initialised with values �0.01

or 0.01 depending on whether the negative only or positive only constraint was applied. During opti-

misation the spiking models were used to run the simulations and search the space of synaptic

strengths. The synaptic strength sets that resulted from multiple runs were manually tested to verify

the results. The objective function was used to optimise the synaptic strengths separately for each of

the models: the fruit fly, the locust, and the hybrid-species model.

Sensitivity analysis and parameter noise
For the sensitivity analysis, white Gaussian noise was added to the membrane parameters of neurons

(conductance and capacitance) as well as to the synaptic efficacies, using the formula

vi ¼ vnominal þ
x

100
vnominal�;

� ~Nð�;s2Þ
(8)

where vi is the resulting noisy value of the parameter with i¼ f1;2; . . . ;Mg and M being the number

of parameters. vnominal is the nominal value of the parameter, x2 ½0;100� is the percentage of noise to

be added to the nominal value, e is a random variable sampled from the Gaussian distribution with

�¼ 0 and s2 ¼ 1. When noise was added to the conductance and capacitance of neurons the result-

ing values were clipped to a minimum of 0 because conductance and capacitance values cannot be

negative. For measuring the tolerance to inter-hemispheric synaptic asymmetry we altered the P-EN

to E-PG synapses in one hemisphere by different amounts in the range �100% to 100%.

The number of successful trials was counted in each condition. The criterion for a successful trial

was that the activity ‘bump’ transitioned from an initial stimulus-driven heading to a second stimu-

lus-driven heading with an error of less that ±45˚ and subsequently the second heading was main-

tained for at least 3 s. The criterion used for judging jump versus gradual transition of the heading

signal was that for the transition to be considered a jump the intervening neurons between the ori-

gin and end location must not become maximally active during the transition.
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