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Objective: To investigate the link between genetic variants associated with

plasma homocysteine levels and risk of intracranial aneurysm (IA) using two-

sample Mendelian randomization.

Methods: We used single-nucleotide polymorphisms associated with human

plasma homocysteine levels as instrumental variables for the primary analysis

in a genome-wide association study of 44,147 subjects of European ancestry.

Summary-level statistics were obtained for 79,429 individuals, including 7,495

IA cases and 71,934 controls. To enhance validity, five di�erent Mendelian

randomization methods (MR-Egger, weighted median, inverse variance

weighted, simple mode, and weighted mode) were used for the analyses.

Results: The inverse variance weighted analysis method produced P-values

of 0.398 for aneurysmal subarachnoid hemorrhage [odds ratio (OR): 1.104;

95% confidence interval (CI): 0.878–1.387], 0.246 for IA (OR: 1.124; 95% CI:

0.923–1.368), and 0.644 for unruptured IA (OR: 1.126; 95% CI: 0.682–1.858).

TheMR-Egger analysis showed no association between IAs and homocysteine,

with all P > 0.05.

Conclusion: Using gene-related instrumental variables, the Mendelian

randomization analyses demonstrated a lack of an association between plasma

homocysteine levels and IAs or aneurysmal subarachnoid hemorrhage.

KEYWORDS

Mendelian randomization, intracranial aneurysm, hyperhomocysteinemia, causality,

cerebrovascular disease

Introduction

Intracranial aneurysm (IA) is confined, pathological dilatations of the walls of
intracranial arteries that are at risk of rupture. About 85% of spontaneous subarachnoid
hemorrhage (SAH) is due to ruptured IA (1). The incidence of IA was reported to be
about 3.2% in a worldwide study with a mean age of 50 years (2). Aneurysmal SAH
(aSAH) often has a poor prognosis, with high disability and mortality rates (3, 4).
However, the etiopathology of IAs remains unclear.
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Hyperhomocysteinemia has been widely reported to be
associated with the development of cerebrovascular disease (5–
8). Excessive homocysteine levels lead to inflammation of the
vessel wall, atherosclerotic plaque formation, endothelial cell
damage, smooth muscle cell proliferation, and altered oxidative
stress response (9–11). These pathological changes play a critical
role in the formation and rupture of IAs (12, 13). We, therefore,
speculated that the formation and rupture of IAs may be
associated with homocysteine.

Recent studies have shown an association between IAs and
hyperhomocysteinemia in the Chinese Han population (14,
15). In 2011, a study reported that hyperhomocysteinemia in
a rat model accelerated IA formation (16). However, it has
been reported that homocysteine is not associated with the
IAs in other races (17). Therefore, the association between IA
formation and homocysteine remains unresolved.

Mendelian randomization (MR) is the use of genetic
variation in non-experimental data to estimate the causal link
between exposure and outcome, and it can reduce the impact of
behavioral, social, psychological, and other factors (18). And in
recent years, many MR studies have emerged to provide clinical
evidence (19–21). This proves that MR is a reliable research
method to solve some problems. Using recently published
summary data for plasma homocysteine levels and summary
data for IA in a genome-wide association study (GWAS), we
aimed to analyze the causal connection between homocysteine
and IA using two-sample MR.

Materials and methods

Genetic instruments and data sources

We used single-nucleotide polymorphisms (SNPs)
associated with human plasma homocysteine levels as
instrumental variables (IVs) for the primary analysis in a GWAS
of 44,147 subjects of European ancestry (22).

We extracted SNPs associated with IA from a large GWAS
involving 7,495 IA cases and 71,934 controls (23). The MR
analysis was performed on three summary datasets from this
GWAS. The three pooled datasets were GWAS of IA (ruptured,
unruptured, and unknown rupture status) (n= 7,495), UIA-only
(n= 2,070), and aSAH-only (n= 5,140) vs. controls (n= 71,934)
in individuals of European ancestry.

The following steps were applied to select the best IVs
to guarantee the accuracy and validity of the inferences on
the causal relationship between the risk of IA and plasma
homocysteine. The first step was to select SNPs with thresholds
of significant association with the plasma homocysteine levels
as IVs. A set of genome-wide statistically significant (P < 5 ×

10−8) SNPs were used as IVs. Second, linkage disequilibrium
(LD) must not exist between the selected IVs, because it can lead
to interpretation bias. Among the selected SNPs, we performed

a clumping step (clumping distance= 10,000 kb, R2 < 0.001) to
reduce the LD during our MR analysis. Third, guaranteeing that
the impact of SNPs on outcome and exposure is related to only
one allele during MR analysis is an important condition, and in
accordance, SNPs with a palindromic structure were removed.

Standard protocol approval, registration,
and patient consent

All the data used in thisMR analysis were based on summary
data publicly available from the GWASs. Ethical approval and
participant consent were not needed as they were previously
obtained for each of the original GWASs.

The assumptions of MR

To investigate the causal impact of the plasma homocysteine
on IA, genetic variation was used as an IV in MR. To serve as
an IV, the following criteria must be met: the variation must
be related to the plasma homocysteine; it must not be related
to any confounding factor related to the plasma homocysteine
or IA; it must not affect the outcome, except possibly through
association with exposure (24). The F-statistic, whose formula is

F =
R2 (n−k−1)
k (1−R2)

, is commonly used to evaluate the strength of
the correlation between exposure and IVs. Here, n represents
the number of samples in the GWAS related to exposure, k
represents the number of IVs, and R2 is the extent to which
IVs explain exposure. When the F-statistic is <10, we usually
consider the IVs as weak, which may bias the results somewhat.

Statistical analysis

We used the inverse variance weighted (IVW), MR-Egger,
weighted median, simple mode, and weighted mode methods to
evaluate the causal link between IAs and plasma homocysteine.
The IVW method is characterized by an analysis that does not
take into account the presence of an intercept term and uses
the inverse of the outcome variance (quadratic of the standard
error) as a weight to provide a comprehensive estimate of the
impact of the plasma homocysteine on the incidence of IA.
Ensuring these SNPs are not pleiotropic when using the IVW
method is important, otherwise, the results will be highly biased.
The MR-Egger method can provide causal estimates that are
unaffected by breaches of standard IV assumptions and can
detect whether standard IV assumptions are violated (25). The
weighted median method combines information from various
hereditary variations into a solitary causal gauge, and that gauge
is predictable even when half of the IVs are null (26).

To test whether horizontal pleiotropy was present among
the included SNPs, we performed MR-Egger regression. To
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examine for a potentially strong impact of an SNP and
whether causal effect estimates were reliable, a leave-one-
out analysis was performed. In addition, Cochran’s Q-statistic
was applied to examine whether heterogeneity was present
among the selected SNPs. We calculated MR power through
a web-based tool (https://shiny.cnsgenomics.com/mRnd/) (27).
The statistical power under each odds ratio (OR) value was
calculated by combining the proportion of cases with IA
GWAS, the variance jointly explained by the instrumental
variable single nucleotide polymorphisms (SNPs), and the
sample size together (Supplementary Table 1). For the primary
analysis using serum homocysteine, a relative difference of
21.2% was detected with 80% power (OR: 1.212/0.795) and
an alpha value of 5% (Supplementary Table 1). The MR
analyses were performed utilizing the TwoSampleMR package
for R (version 4.1.2).

Results

First, we screened 18 SNPs as IVs (genome-wide statistical
significance threshold, P < 5 × 10−8) from a GWAS of
plasma homocysteine levels (22). After the removal of SNPs
with LD, 13 SNPs remained as IVs (P < 5 × 10–8)
(rs7422339, rs12134663, rs957140, rs12921383, and rs2851391
were removed). When homocysteine was analyzed against
IAs and aneurysmal subarachnoid hemorrhage, two SNPs
(rs838133 and rs548987) were found to be absent in the
IA and aneurysmal subarachnoid hemorrhage datasets, and
when homocysteine was analyzed with unruptured aneurysms,
four SNPs (rs838133, rs548987, rs234709, and rs1801133) were
absent in the unruptured aneurysm dataset. None of these SNPs
have a proxy SNP. The SNPs we used and their association with
IAs are shown in Table 1.

TheMR-Egger regression indicated no horizontal pleiotropy
in the analysis of the relationship between homocysteine and
aneurysms (P = 0. 622 for IA, P = 0. 491 for aSAH,
P = 0. 975 for UIA). Furthermore, there were no weak
instrumental variables (F-statistic: 100.340 for IA and aSAH,
and 47.203 for UIA [all >10]). The Chochran’s Q-statistics
showed no significant heterogeneity (P = 0.849 for IA, P =

0.943 for aSAH, P = 0.998 for UIA). The limited number of
SNPs included prevented examination of horizontal pleiotropy
and heterogeneity.

The results of all MR analyses showed no association
between IAs and homocysteine, with all P > 0.05
(Figure 1). The results of the IVW analysis for aSAH
[OR: 1.104; 95% confidence interval (CI): 0.878–1.387,
P = 0.398], IA (OR: 1.124; 95% CI: 0.923–1.368,
P = 0.246), and UIA (OR: 1.126; 95% CI: 0.682–
1.858, P = 0.644) showed no association between IAs
and homocysteine. T
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FIGURE 1

Mendelian randomization analyses of plasma homocysteine levels and the risk of IA. CI, confidence interval; IVW, inverse variance weighted; OR,

odds ratio; SAH, subarachnoid hemorrhage; SNP, single-nucleotide polymorphism; UIA, unruptured intracranial aneurysm.

Discussion

This MR study provides evidence that IAs are not associated
with homocysteine in Europeans. To our knowledge, this is the
first MR study on the association between plasma homocysteine
levels and IAs.

Based on the data from the Global Burden of
Disease Study 2019 (https://www.healthdata.org), stroke
is the second leading cause of disability and mortality
worldwide (28). Hyperhomocysteinemia has long been
recognized as an independent risk factor for stroke (29).
Hyperhomocysteinemia is common in the Chinese population
(30). Hyperhomocysteinemia can lead to elevated inflammatory
factors in blood vessels, damage to the vascular endothelium,
and proliferation of vascular smooth muscle cells (31, 32). High
homocysteine has been reported to promote atherosclerosis
and increase the risk of ischemic strokes (11, 33, 34). Because
mechanisms such as inflammation are involved in the
formation and rupture of IAs, pathological changes caused
by homocysteine may contribute to their formation and
rupture. Xu et al. found accelerated IA formation in rats with
methionine diet-induced hyperhomocysteinemia (16). Another
study showed that methionine-induced hyperhomocysteinemia
from excessive methionine intake promotes aneurysmal
rupture in orchiectomized rats (35). However, such studies are

lacking in humans, and therefore, the relationship between
homocysteine and IAs has remained unknown. While some
observational studies have reported that IAs are associated
with hyperhomocysteinemia in the Chinese population,
there is no evidence of a causal link (14, 15). In a Brazilian
case-control study, IAs were reported to occur independently
of hyperhomocysteinemia, and another study reported that
hyperhomocysteinemia is not associated with abdominal aortic
aneurysms (17, 36). Thus, the association between IAs and
homocysteine remains questionable.

Elevated levels of serum homocysteine mainly cause a
decrease in the antithrombotic effect of the vessel wall,
increasing the risk of stroke (37). In contrast, aneurysm
formation and rupture are mainly considered to be related to
damage to the vessel wall and the release of inflammatory factors,
and may not be related to the level of homocysteine. Serum
levels of homocysteine can be elevated by nutritional deficiencies
of folic acid, vitamin B6, and vitamin B12 in the diet. Dietary
effects have not been considered in most studies of intracranial
aneurysms and homocysteine. Elevated homocysteine levels
may also be the result of a ruptured aneurysm; therefore, large
prospective studies are still needed to confirm the relationship
between aneurysms and homocysteine.

The fundamental benefit of this MR analysis is that
estimates of the causal effect of MR were not affected by
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confounding factors or reverse causal associations found in
traditional epidemiological studies. Therefore, compared with
observational studies, our current findings may be more
reliable. Yet, several limitations remain. First, Genotypic
variants in enzymes associated with blood homocysteine
levels increase the risk of unprovoked pulmonary embolism
(38). Due to the differences in genetic characteristics among
different populations, our results may only apply to European
populations because all participants in the GWAS were of
European origin. Second, not all SNPs were examined, as some
were removed because of LD (and no proxy SNPs were found),
which may have impacted the results.

At the genetic level, the present MR study suggests that there
is no causal relationship between hyperhomocysteinemia and
IA or IA rupture. However, further studies are needed to more
comprehensively assess the relationship between homocysteine
and IAs.
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