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Abstract 
Protein acetylation is one of the extensively studied post-translational modifications (PTMs) due to its significant roles across a myriad 
of biological processes. Although many computational tools for acetylation site identification have been developed, there is a lack of 
benchmark dataset and bespoke predictors for non-histone acetylation site prediction. To address these problems, we have contributed 
to both dataset creation and predictor benchmark in this study. First, we construct a non-histone acetylation site benchmark dataset, 
namely NHAC, which includes 11 subsets according to the sequence length ranging from 11 to 61 amino acids. There are totally 
886 positive samples and 4707 negative samples for each sequence length. Secondly, we propose TransPTM, a transformer-based 
neural network model for non-histone acetylation site predication. During the data representation phase, per-residue contextualized 
embeddings are extracted using ProtT5 (an existing pre-trained protein language model). This is followed by the implementation of a 
graph neural network framework, which consists of three TransformerConv layers for feature extraction and a multilayer perceptron 
module for classification. The benchmark results reflect that TransPTM has the competitive performance for non-histone acetylation 
site prediction over three state-of-the-art tools. It improves our comprehension on the PTM mechanism and provides a theoretical basis 
for developing drug targets for diseases. Moreover, the created PTM datasets fills the gap in non-histone acetylation site datasets and 
is beneficial to the related communities. The related source code and data utilized by TransPTM are accessible at https://www.github. 
com/TransPTM/TransPTM. 
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INTRODUCTION 
Protein post-translational modification (PTM) is a fundamental 
mechanism where chemical groups are added to amino acid 
chains. It is widely reported that PTMs modulate protein 
functions, physicochemical properties, conformation, stability 
and interactions between proteins [1–3]. The most prominent 

PTMs include methylation, phosphorylation, glycosylation, ubiq-
uitination and acetylation [4–7]. In particular, protein acetylation, 
a type of covalent PTM, involves the bonding of an acetyl group 
to the amino group of a lysine residue within a protein [8]. 
It is suggested that lysine acetylation can be categorized into 
histone acetylation and non-histone protein acetylation, playing 
distinct roles in cellular functions. Histone acetylation typically
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occurs in the context of chromatin structure and gene regulation, 
which have been widely studied [9]. It reduces the electro-
static attraction between histones and DNA, thereby loosening 
chromatin structure and facilitating transcriptional activation 
[10]. These reversible regulation processes are catalyzed by 
histone acetyltransferases and histone deacetylases [11]. On 
the other hand, non-histone protein acetylation encompasses 
a broader range of enzymes and target proteins. A notable 
example is the acetylation of α-tubulin at the lysine 40 (K40) 
position, which is catalyzed by the acetyltransferase αTAT1 [12]. 
Moreover, non-histone protein acetylation plays diverse roles in 
cellular signaling, DNA damage repair, autophagy, messenger RNA 
stability and protein–protein interactions [13–15]. Furthermore, 
many non-histone protein acetylations are associated with 
various diseases, such as heart failure, Alzheimer’s disease and 
cancers [16–18]. 

In recent years, with the growth of acetylome databases, 
a large number of computational tools for acetylation site 
identifications have emerged. For example, Wu et al. [19] employed  
deep learning to create DeepAcet, a new model for acetylation 
site prediction. This prediction model merges various feature 
extraction methods and utilizes a multilayer perceptron (MLP) 
for classification. Upon evaluating the model’s prediction 
performance via 10-fold cross-validation and independent 
testing set, the accuracies of 84.95% and 84.87% were reported, 
respectively. Meanwhile, Muhammad et al. [20] proposed Histone-
Net, a novel deep learning predictor capable of predicting three 
types of histone makers (histone occupancy, acetylation and 
methylation levels) across multiple datasets in intra-domain and 
cross-domain binary classification paradigms. Within the study, 
‘intra-domain’ means the model is trained and tested on the 
same type of histone marker, while ‘cross-domain’ means it is 
trained on one type of histone marker and tested on another 
type of histone marker. This model outperforms state-of-the-art 
approaches by an average accuracy of 7% across 10 different 
datasets. However, the landscape of lysine acetylation remains 
incomplete. The existing in silico protein acetylation tools, whether 
they are traditional machine learning models or deep learning 
models, are applied only to histone acetylation. Despite the iden-
tification of a substantial number of lysine-acetylated proteins, 
the development of predictors for non-histone acetylation site 
identification has significantly lagged behind. 

Hence, we present a deep model called TransPTM (Transformer 
PTM) for non-histone protein lysine acetylation site prediction. 
First, we have meticulously constructed an unprecedented 
dataset of non-histone acetylation site, NHAC (Non-Histone 
Acetylation Collection), incorporating experimentally identified 
site obtained from a comprehensive review conducted by Narita 
et al. [15]. Secondly, to effectively transform amino acid sequence 
character signals into numerical signals, we utilize embeddings 
extracted from the protein language model (pLM), ProtT5 (based 
on the NLP seq2seq model, ProtT5 [21]). This method is employed 
to gather multiple residue information and generate feature 
vector. After that, the data are represented by graph, which 
consists of a pLM embedded sequences as node features and 
amino acids interactions as edge features. To detect acetylation, 
graphs are then fed into a transformer-based [22] graph neural 
network (GNN) architecture, which comprises a transformer 
module and an MLP module. Its performance on the non-
histone acetylation independent testing set outperforms three 
existing acetylation site predictors, in terms of accuracy, area 
under the receiver operating characteristics (ROC) curve (AUC) 
and area under precision-recall curve (AUPRC) (0.88, 0.83 and 

0.51), respectively. Finally, amino acid distribution analysis 
[23], attention maps of positions and dimensionality reduction 
visualization [24] are conducted to illustrate the interpretability 
of TransPTM. The results indicate that non-histone acetylation 
tends to occur on the downstream regions with specific positions 
of protein sequences; TransformerConv layers in our model can 
transform the original data vectors into separable space before 
MLP module classification. 

METHODS 
Benchmark dataset construction 
Non-histone acetylation sites refer to a broad concept that 
includes all acetylation events on lysine residues within proteins, 
aside from those in histones. Given this concept’s extensive scope, 
it is challenging to directly obtain accurate statistics on non-
histone acetylation sites from existing databases. To construct the 
benchmark dataset, NHAC (Non-Histone Acetylation Collection) 
(Figure 1), we leveraged Narita et al.’s [15] review article as our 
original data source. To the best of our knowledge, this study 
provides the most comprehensive collection of non-histone 
protein acetylation site information, including 379 full-length 
protein sequences with 1100 acetylated positions. These long 
sequences were first downloaded in bulk from the UniProt [25] 
database. Then, peptide sequences of length 2θ+1 were truncated 
from full-length proteins. In this context, ‘1’ represents our target 
amino acid lysine (K), and the symbol θ is an integer serving as 
an indexing notation for the sequence. This approach enables a 
standardized representation of varying peptide sequence lengths 
as derived from Chou’s formulation [26]. The peptide sequence 
samples can be described by the following equation: 

Pθ (K) = A−θ A−(θ−1) · · · A−1KA+1 · · · A+(θ−1)A+θ , (1)  

where the character K denotes lysine at the center position of 
the sequence and As represent neighboring amino acids of the 
K site. A−θ represents the θth upstream amino acid residue from 
the center, and A+θ represents the θth downstream amino acid 
residue. 

We designate the peptide sequences that contain acetylated 
central K as positive samples, while the sequences that encom-
pass non-acetylated central K are referred as negative samples. 
Quantitatively, 1100 positive samples and 11 784 negative samples 
are obtained from the original full-length protein sequences. In 
order to examine the impact of window size diversity on perfor-
mance, we varied the value of θ across 11 increments from 5 to 
30. For each sequence length, we obtained a total of 1100 positive 
samples and 11 784 negative samples. 

To minimize redundancy and alleviate data imbalance, both 
positive and negative sequences with more than 40% homol-
ogy were cut off using the CD-HIT software [27, 28]. Finally, the 
obtained 886 acetylated and 4707 non-acetylated peptide samples 
were randomly split to construct the training dataset, indepen-
dent testing dataset and validation set. The ratio of samples 
allocated to each set was maintained at 7:2:1. Table 1 tabulates 
the information of our benchmark dataset, which is provided in 
the github page. 

Amino acid encoding 
To convert each amino acid residue in sequence into a numerical 
vector, we apply two amino acid encoding methods: (1) one-hot 
encoding and (2) ProtT5 embedding (Figure 2), as described below.
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Figure 1. Workflow of the non-histone acetylation benchmark dataset (NHAC) construction. 

Table 1: Statistics of the benchmark dataset NHAC 

Data type Positive samples Negative samples Total Sequence length 

Training 637 3387 4024 11, 15, 21, 25, 
31, 35, 41, 45, 
51, 55, 61 

Validation 76 401 477 
Testing 173 919 1092 
Total 886 4707 5593 

Figure 2. Extraction of embeddings from ProtT5 language model (L = 2θ+1 
(θ = 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30)). 

One-hot encoding processes non-histone protein sequence 
data by converting each amino acid in the protein sequence into a 
20-dimensional vector. We use it for two main reasons: One is that 
it serves as a straightforward and effective feature representation 
for biological sequences, such as proteins [ 29] and RNAs [30]. 
More importantly, earlier studies [7] have frequently employed  
one-hot as a baseline encoding scheme for amino acid chain, 
such as MusiteDeep [31], one of the most cited tools in this field. 
Therefore, we also employ one-hot encoding to represent our 
peptide chains. The 20 distinct amino acids (as there are a total of 
20 natural amino acids) is encoded into a 20-dimensional vector, 

consisting solely of 0s and 1s. For example, amino acid alanine (A) 
was encoded as (0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), and lysine 
(K) was encoded as (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0). As a 
result, each sequence with a window size of 2θ+1 (θ =  5, 7, 10,  
12, 15, 17, 20, 22, 25, 27, 30) was transformed into a 20 × (2θ+1)-
dimensional feature vector. 

Recently, language models (LMs) have been given attention for 
their capacity to derive contextualized embeddings from large 
unlabeled language datasets, in contrast to static and context-
insensitive word embeddings. This progress is now applied to 
proteins via pLMs [32]. Due to the abundance of protein sequence 
databases, many pLMs have been created to extract useful 
information from those resources [33]. This information can then 
be repurposed for other tasks, such as protein property prediction 
[34]. Notably, these pLMs have demonstrated their capacity to 
better understand sequence relationships. In our research, we 
utilize the encoder output of the pre-trained model ProtT5-XL-
U50 [35] to extract the embedding feature. ProtT5-XL-U50 is a 
transformer-based LM with 3 billion parameters. It is initially 
trained on the Big Fantastic Database (BFD) [36], which contains 
65 million protein families cataloged using multiple sequence 
alignments (MSAs) and hidden Markov models. And subsequently 
fine-tuned on the UniRef50 [37] database, which provides 
clustered sets of sequence data from UniProtKB and selected 
UniParc records [25]. The embedding feature for a peptide 
chain is acquired by inputting its sequence into ProtT5-XL-U50 
to enable the encoder output, yielding the embedding with 
1024 embedded dimensions for each residue. Consequently, 
this embedding feature is position-dependent, capturing each 
residue’s contextual information.
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Figure 3. The overall architecture of the TransPTM. Protein sequence data are encoded by one-hot and ProtT5. Node features (ProtT5-XL-U50 embedding) 
and edge features (adjacency matrix) were compiled to construct the graphs. The graphs were then processed through three TransformerConv layers 
and input into an MLP to produce the final prediction. L = 2θ+1, which is the length of input protein sequence. 

Graph representation 
A graph  G consists of a set of nodes (also known as vertices) V 
and a set of edges E. In this context, node i is represented by a 
vector →vi. The edges can be represented as an adjacency matrix E, 
in which, if eij = 1, it indicates that nodes i and j are connected 
by an edge. In a protein sequence graph, each node represents an 
amino acid residue, and an edge defines the relationship between 
protein pairs (residual contacts). In our setting, protein sequences 
have been embedded by pre-trained pLM ProtT5 as mentioned 
above, which is a L × 1024 matrix where L is length of protein 
sequence. Each residue is considered as a node and edges are 
defined between any two residues, which means G is a complete 
graph. 

Non-histone acetylation site prediction model 
based on transformer 
We present a computation model, TransPTM, for non-histone 
protein acetylation site prediction, utilizing a transformer (Trans-
formerConv) [22] based GNN to extract information from protein 
sequence. The overall design of TransPTM is outlined and depicted 
in Figure 3. Specifically, pLM-embedded protein sequences (11 sets 
of data according to length difference) are the input node data, 
which capture the relationships among different amino acids. 
Here, GNN is a widely used approach for graph data feature learn-
ing. It aggregates information from neighboring regions via con-
volution, exhibiting significant performance in graph represen-
tation learning [38]. First, the model leverages three transformer 

graph convolutional layers to encode and propagate node features 
throughout the graph. Each TransformerConv layer employs self-
attention mechanism, enabling the model to capture both local 
and global graph patterns. Subsequently, the self-attention coeffi-
cient was computed, embodying the similarity between the query 
and the key. This self-attention coefficient served as the weight, 
and the output vector of the layer was determined as the weighted 
sum of the values. The TransformerConv layer calculates the 
output feature for each node using the following equation: 

x′ 
i = W1xi +

∑
j∈N(i) 

αij
(
W2xj + W3eij

)
(2) 

In this equation, xi represents the input feature vector of node i, 
x′ 

i signifies the output feature vector for node i and N(i) denotes 
the set of neighboring nodes for node i. The attention matrix αij is 
calculated using the following equation: 

αij = softmax

(
(W4xi)

T (
W5xj + W3eij

)
√

d

)
, (3)  

where xi refers to the input feature of node i, eij represents the 
edge feature of edge ⟨i, j⟩ and d corresponds to the hidden size of 
the node feature. All Ws are weight matrices that can be adjusted 
or optimized during training. The attention matrix αij assists the 
network in determining the importance of different neighbors for 
each residue. For our objective, given that the per-residue embed-
dings are contextualized features, we only picked the 64-length



TransPTM | 5

embeddings for the site under investigation, namely the lysine 
(K). Following these layers, an MLP module with three dropout 
layers and two ReLU layers is applied. This module predicts the 
acetylation probability, denoted as S, using equation (4): 

S = Sigmoid
(
W6HT + b

)
, (4)  

where W6 ∈ R
1×64 represents the weight matrix and b ∈ R 

stands for the bias term. H is the output from the last layer. The 
sigmoid function is used to map the value into the range (0,1). 
Output values that exceed the threshold of 0.5 are classified as 
acetylation, while output values that are below 0.5 are classified 
as non-acetylation. This architecture blends the capabilities of 
transformer-based feature learning and neural network-based 
classification, utilizing complex graph structures to achieve accu-
rate node classification. 

Model training 
Deep learning models here were trained to minimize the binary 
cross-entropy (BCE) loss, which is showed by equation (5): 

Loss = − 1 
N 

N∑
i=1

[
yi log

(
y′ 

i

) + (
1 − yi

)
log

(
1 − y′ 

i

)]
, (5)  

where yi represents the actual value, and y′ 
i corresponds to the 

predicted probability for the ith instance among N data points. In 
particular, we employed a batch size of 64, set an initial learn-
ing rate of 0.00003 and used a weight decay of 0.0001, all in 
conjunction with the Adam optimizer. Subsequently, the model 
was trained on an independent validation set, with the BCE func-
tion serving as the loss function. We use 5-fold stratified cross-
validation to select the best protein sequence encoding method. In 
5-fold cross-validation, the original dataset is evenly divided into 
five subsets. The model is then iteratively trained on four of these 
subsets and validated on the remaining subset. This process is 
repeated five times, and the average of the validation results from 
the five iterations is calculated to evaluate the performance of the 
model and reduce the risk of overfitting. In addition, we compare 
our approach with the other seven benchmark methods, including 
four baseline models and three existing acetylation site prediction 
tools. They are Random Forest (RF) [39], Support Vector Machine 
(SVM) [40] Convolutional Neural Network (CNN) [41] Long Short-
Term Memory (LSTM) [42], GPS-PAIL [11], Musitedeep [31] and  
Deep-PLA [43]. In addition, we also fine-tuned the ProtT5 model, 
employing it as a baseline for comparison. 

Model evaluation and criteria 
In this study, non-histone protein sequence with acetylated site 
are considered as positives samples and non-acetylated site are 
considered as negatives samples. In the prediction process, acety-
lated site correctly identified are termed as true positives (TP), 
while non-acetylated site correctly identified are known as true 
negatives (TN). Situations where negative sequences are incor-
rectly classified as positive are labeled as false positives (FP), 
and cases where positive sequences are wrongly classified as 
negative are referred to as false negatives (FN). All performance 
metrics, unless stated otherwise, are averaged and reported. The 
performance was assessed with four metrics, including accuracy, 
sensitivity, precision and MCC (Matthew’s correlation coefficient), 
with a decision probability threshold set to 0.5. Additionally, the 
area under the ROC curve and the area under the precision-recall 
(PRC) curve were also used as performance indicators. Equations 

Figure 4. MCC value of TranPTM on the training dataset for sliding 
window size ranging from 11 to 61. 

(6)–(9) describe these evaluation criteria: 

Accuracy = TP + TN 
TP + TN + FP + FN 

(6) 

Sensitivity = 
TP 

TP + FN 
(7) 

Precision = 
TP 

TP + FP 
(8) 

MCC = TP · TN − FP · FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN) 

(9) 

RESULTS 
Window size selection 
Numerous studies have focused only on employing a fixed local 
sliding window in modeling process. Yet, it is important to note 
that diverse sliding windows may yield varied prediction results. 
Window size optimization can notably assist in feature selection 
and enhance prediction performance [44]. For that reason, an 
equal number of residues on both side of the site of interest (K) 
is taken as input to capture local sequence information for K. To 
determine the optimal window size, we conducted experiments 
across a range of window sizes, which are 11, 15, 21, 25, 31, 35, 41, 
45, 51, 55 and 61 (Figure 4). In Figure 4, the mean MCC for different 
window sizes is shown. We can observe that, as the length of the 
protein sequence is increased, MCC value reaches the maximum 
value (0.4359) when the window size is 25. In general, we expect 
that the longer the sequence is, the more semantic and contextual 
information it contains. However, it has been declining in the 
range of 25–61. We presume that this may be because the amino 
acid pattern that determines the acetylation of central K is at the 
proximal end of K, and a sequence that is over long will dilute this 
information. Hence, 25 was selected as the optimized window size 
value for acetylation residue for subsequent analysis. 

Performance evaluation of TransPTM 
In this section, we first discuss the prediction performance 
of TransPTM using 5-fold cross-validation on the training set. 
The ROC curves and PRC curves are plotted in Figure 5, which  
presents the performance comparison of one-hot encoding and 
ProtT5 embedding. On 5-fold cross-validation, the average AUC 
and AUPRC values of our model with one-hot encoding method 
are 0.74 and 0.45, respectively, while our model with ProtT5 
embedding shows average AUC and AUPRC values of 0.83 and 
0.64, respectively. We then evaluated and compared the prediction
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Figure 5. Performance of TransPTM (one-hot) and TransPTM (ProtT5) using 5-fold cross-validation on the training dataset. (A) ROCs of TransPTM (one-
hot), (B) Precision-recall curves of TransPTM (one-hot), (C) ROCs of TransPTM (ProtT5), (D) Precision-recall curves of TransPTM (ProtT5). 

Figure 6. Performance of TransPTM (one-hot) and TransPTM (ProtT5) 
on the independent testing dataset. (A) ROC curves, (B) Precision-recall 
curves. 

performance of two encoding schemes with independent non-
histone acetylation site testing dataset. The prediction results 
of our TransPTM model with one-hot encoding and ProtT5 
embedding are also evaluated in terms of AUC and AUPRC. As 
shown in Figure 6, ROC curves and PRC curves of the independent 
testing set have been plotted. Our deep learning predictor with 
ProtT5 embedding has an accuracy of 0.88, AUC of 0.83 and AUPRC 
of 0.51. In contrast, our model with one-hot encoding scheme 
shows an accuracy of 0.86, AUC of 0.75 and AUPRC of 0.35. 
The results of TransPTM using the ProtT5 embedding method 
outperform those using the one-hot encoding method for the 
dataset. We speculate that the superior performance observed 
can be attributed to the pLMs embedding’s ability to capture 
contextual dependencies within raw protein sequences, which 
is crucial for PTM site prediction. On the other hand, one-hot 
encoding only represents individual amino acid information at 
each position and does not capture sequence-level dependencies. 
Therefore, we use TransPTM with ProtT5 embedding for the state-
of-the-arts performance comparison. 

Comparison analysis can provide insights into the strengths 
and weaknesses of different methods and guide our future 
research directions. Therefore, we further employed seven 
different classifiers including two baseline machine learning 
models (RF and SVM), two baseline deep learning models (CNN 
and LSTM) and three existing acetylation site prediction tools 
(GPS-PAIL [11], MusiteDeep [31] and Deep-PLA [43]) to compare 
the prediction performance of our model. In addition, we also 
fine-tuned the ProtT5 model, employing it as a baseline for 

comparison. The optimized hyper-parameters, as well as the run 
time for these classifiers, are detailed in Table S1. 

Among them, MusiteDeep and Deep-PLA apply state-of-the-
art deep learning algorithms, whereas GPS-PAIL implements a 
traditional machine learning algorithm. Table 2 lists the outputs 
from all nine methods on the independent non-histone aectyla-
tion site testing datasets, including the accuracy, f1 scores, MCC 
values, AUC and AUPRC. The AUC, AUPRC and MCC values of 
our method on non-histone acetylation site-independent testing 
set were significantly higher than those of the state-of-the-art 
methods. TransPTM secured the accuracy, precision, sensitivity, f1 
score, MCC value, AUC and AUPRC of 0.88, 0.61, 0.43, 0.51, 0.45, 
0.83 and 0.51, respectively. The outstanding results indicate that 
TransPTM is a stable predictor with excellent performance, mak-
ing it the most effective at non-histone acetylation site prediction, 
as evidenced by the independent testing dataset. 

We assert that there are two distinctive factors behind the 
observation that TransPTM method improves prediction perfor-
mance over other methods. The first one is that we represent the 
embedded protein sequence with graph instead of using sequence 
information alone. Moreover, we introduce the TransformerConv 
layer, which uses convolution to extract local features and imple-
ment transformer modules to model long-range dependencies 
during the embedding process. It combines the advantages of 
both transformer model and CNN network, capturing not only 
single amino acid information but also long-range relationships 
between amino acids. 

Analysis of amino acids distribution 
We conducted statistical analysis on the distribution features of 
amino acids positions on sequences, comparing the positive and 
negative subsets. Using the Two Sample Logo web server [23], 
we found measurable differences between the two groups (t-test: 
P <0.05), as illustrated in Figure 7A. Amino acids differ in color 
based on their side chain charge properties, i.e. blue and red mean 
the positively and negatively charged, respectively. Other colors 
means neutral amino acids. In general, noticeable distinctions are 
evident between the acetylated sequence (shown in the upper 
panel) and the non-acetylated sequence (depicted in the lower 
panel). Positively charged amino acids, represented in blue, are 
enriched in the acetylated samples, while the negatively charged 
amino acids, marked in red, show a higher concentration in the 
non-acetylated samples. While neutral amino acids (represented 
by other colors) are evenly distributed on both sides. For all 
samples, no matter they belong to which side, upstream (position
-12 to -1) of sequences tend to having more residues distributed

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae219#supplementary-data
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Table 2: Performance comparison of TransPTM with baseline and state-of-the-art models on independent testing set for non-histone 
acetylation site prediction 

Classifiers Accuracy F1-score MCC AUC AUPRC 

RF 0.87 0.47 0.40 0.68 0.31 
SVM 0.87 0.42 0.35 0.65 0.27 
CNN 0.85 0.49 0.41 0.72 0.31 
LSTM 0.85 0.48 0.40 0.78 0.44 
GPS-PAIL 0.65 0.32 0.19 0.64 0.44 
MusiteDeep 0.77 0.40 0.30 0.69 0.47 
Deep-PLA 0.61 0.29 0.14 0.60 0.42 
ProtT5 (fine-tuned) 0.74 0.41 0.31 0.71 0.24 
TransPTM 0.88 0.51 0.45 0.83 0.51 

than downstream (position 1 to 12). In particular, lysine (K) are 
significantly enriched on the upstream positive side of sequence, 
especially on positions -1, -2, -3, -4, -9 and -10. Moreover, electri-
cally neutral residues leucine(L) mainly distributed in the non-
acetylated. The clear discernment of position-specific differences 
is crucial for the development of reliable tools for PTMs site 
identification. 

Moreover, amino acid residue proportion analysis, Two Sample 
Logo analysis and MSA analysis have also been implemented to 
compare the contexts of the acetylated lysine (K) sites on his-
tone and non-histone protein sequences (Figure S1). The results 
indicate that the amino acid composition near the non-histone 
proteins acetylation sites is more diverse, more irregular and less 
conserved than amino acid composition near histone acetylation 
sites. 

Attention interpretation 
The self-attention components within the TransformerConv 
layers empower our model, TransPTM, to assess the influence of 
amino acids interactions at different positions. Unlike the com-
mon perception of a neural network being an opaque ‘black-box’ 
model, the advantages of our model lie in the self-attention com-
ponent which provides algorithmic transparency [45]. To demon-
strate the interpretability of our model, we applied sequences of 
25 amino acids in length, which corresponds to the window size 
we previously selected. As previously stated, the attention mech-
anism are applied to produce attention weights. These weights 
illustrate the emphasis on amino acid feature vectors across 
different positions. Figure 7B shows the residue–residue attention 
score of the interactions between amino acids which are located 
at different positions, where the amino acids with high attention 
scores are marked in red, and the amino acids with low attention 
scores are marked in blue. In particular, the amino acids strongly 
focus on the 13 positions of the protein sequence, where the 
central lysine (K) is located, while those located at other positions 
receive comparatively less attention. The areas highlighted by 
the amino acid on both sides of lysine (K) are relatively balanced, 
but attention scores in left half area are slightly higher than the 
right half area. Moreover, positions -1, -2, -4, -9, -10, -11 and -12 
show strong attention on central amino acid K. This information 
shows a consistent trend with the amino acid distribution analysis 
(Figure 7A). To investigate how residues transfer their attention to 
those particular positions, Figure 7C and D are introduced as the 
original attention map of positive samples and negative samples 
in the training dataset. Since the original input data were not 
completely trained, amino acids on the protein sequence show 
only few attention on the central K. These results suggest that the 

transformer module in our model has reinforced the attention on 
the amino acids at crucial positions. 

TransPTM mechanism visualization 
To distinguish the abstract features generated by our TransPTM 
model from the original protein descriptors, we employed t-SNE 
dimensionality reduction for visualization. This method maps 
high-dimensional features into a 2D space and normalizes the 
values within a range of [-1, 1] [24]. Specifically, we first choose 
the output of TransformerConv layers to see if this module can 
map semantically similar vectors to adjacent spaces. Then, we 
choose the penultimate layer output of MLP module as the output 
of the TransPTM to see if our model can transform the orig-
inal data vectors into separable classes. Figure 8 presents the 
visualization of both the extracted features from our model and 
the original features of the non-histone acetylation site data. In 
particular, Figure 8A and B represent the t-SNE visualization of 
one-hot encoded and ProtT5 embedded 25 amino acid length 
training data, respectively. Furthermore, we visualized the sample 
distributions from the outputs of the TransformerConv layer and 
the penultimate MLP layer of our TransPTM model using training 
dataset (Figure 8C and D). We can observe that the input data 
(Figure 8A and B) are jumbled, and the positive and negative sam-
ples are intertwined. However, the positive and negative samples 
were clearly separated after the transformer convolution opera-
tion (Figure 8C). Compared with the TransformerConv layer, the 
spatial distribution of samples from the output of the MLP hid-
den layer remains consistent (Figure 8D). The comparison results 
indicate that the original encoded data can be converted into 
a distinguishable representation through transformer module of 
TransPTM, which is helpful in further classification by the MLP 
module. 

The original features were unable to clearly differentiate 
between positive and negative samples. However, after using the 
transformer convolution to extract features, a rough separation 
was achieved, which demonstrates the necessity and effective-
ness of the transformer module. 

DISCUSSION 
Protein acetylation is one of the most common PTMs occurring 
in various cellular compartments and is important for cellular 
mechanism investigation. Although a large number of existing 
machine learning-based acetylation site identification tools have 
been published, to the best of our knowledge, there is not any 
benchmark dataset and predictor established for non-histone

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae219#supplementary-data
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Figure 7. Visualization of amino acids distribution and attention map of training dataset. (A) Two sample logo of positive data (upper panel) and negative 
data (lower panel). (B) Attention map learned by TransPTM, generated using the best model weights from the fully trained TransPTM, showcasing the 
learned attention distribution on the training data. (C) and (D) Attention maps of original positive and negative data, processed through the first 
convolutional layer of the TransPTM model, representing the original, unmodified attention distributions of the data. 

Figure 8. t-SNE visualization of original data and extracted features. Red represents the acetylated site, and blue represents the non-acetylated site. (A) 
Original data encoded by one-hot method, (B) original data embedded by ProtT5 pLM, (C) data embedded by TransformerConv layers, (D) data classified 
by TransPTM last layer. 
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acetylation site prediction. Therefore, we have completed two 
unprecedented works to solve these problems. 

First, we construct a non-histone acetylation site benchmark 
dataset, called NHAC, which includes 11 subsets according to the 
sequence length ranging from 11 to 61 amino acids. There are cur-
rently 886 positive samples and 4707 negative samples for each 
sequence length. In the future data curation, we will implement 
routine maintenance to ensure that our dataset remains up-to-
date and relevant. We will periodically survey relevant review and 
experimental papers to update our dataset with the latest acety-
lated non-histone protein sequences. To capture publications not 
included in review papers, we will conduct regular searches in 
databases such as PubMed [46] for the most recent non-histone 
acetylation studies. In parallel, we will also seek collaborations 
with other researchers and institutions to incorporate wet exper-
imental data. Additionally, we are planning to incorporate longer 
acetylated non-histone protein sequences, including full-length 
protein sequences, to enhance the sequence diversity of NHAC. 

Secondly, we propose a transformer-based computational 
model, TransPTM, for non-histone acetylation site identification. 
Our model employs a pre-trained pLM ProtT5 to construct the 
site’s feature space. Then, the embedded protein sequence data 
are fed into a GNN, which combines three TransformerConv layers 
for feature extraction and an MLP for classification. The 5-fold 
cross-validation on training dataset and comparison experiments 
on independent testing datasets indicate that TransPTM has the 
highest performance for non-histone acetylation site prediction. 
The strong performance in non-histone acetylation site prediction 
helps our comprehension of its molecular mechanism and 
provides a theoretical basis for developing drug targets for 
diseases. Moreover, the establishment of the benchmark datasets 
fills the gap in non-histone acetylation site datasets and is 
beneficial to future researchers to do performance evaluation. 

TransPTM has shown promising performance in non-histone 
acetylation site prediction. However, there are still future works 
to be completed. Looking ahead, we will further improve the 
model in the following aspects. First, the prediction performance 
of TransPTM can be enhanced using extensive structural data 
due to the success of AlphaFold2 [47]. Furthermore, given the 
limited quantity of known non-histone acetylation site, in our 
future work, we plan to incorporate additional techniques such 
as SMOTE [48] to handle and impute imbalanced datasets. 

Key Points 
• A transformer-based deep learning model is proposed for 

non-histone acetylation site prediction, which achieves 
the best performance among the state-of-the-art 
models. 

• The establishment of NHAC, a benchmark dataset 
specifically designed for non-histone acetylation site 
prediction, enriches the landscape of lysine acetylation 
site databases. 

• Pre-trained protein language model ProtT5 is employed 
for generating contextualized representations of protein 
sequences by capturing dependencies between amino 
acid residues. 

• The self-attention mechanism in TransPTM can reveal 
key residue positions for non-histone protein acetyla-
tion, thereby demonstrating the interpretability of our 
model. 
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