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Mounting evidence supports that the malignant phenotypes of cancers are defined not
only by the intrinsic activity of tumor cells but also by immune cells that are recruited
and activated in tumor-related microenvironment. Here, we developed a diagnostic and
prognostic model for colon cancer, based on expression profiles of immune-related
genes and immune cell component. As a result, we found that B cell infiltration ratio,
CD4+ T cells, as well as immune-related genes of TRIB3, CHGA, CASP7, LGALS4, LEP,
NOX4, IL17A, and HSPD1 may be highly relevant with clinical outcome of colon cancer.
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INTRODUCTION

Colon cancer is the third most common type of cancer, making up ∼10% of all cases (Forman
et al., 2014), especially in developed countries, where more than 65% of cases have been found.
It was reported that ∼145,290 new cases of colorectal cancer were diagnosed every year in
the United States (Kim et al., 2018). In spite of the advances in screening, diagnosis, and
curative resection, colon cancer is still one of the leading causes of cancer death worldwide, with
unsatisfactory clinical outcome (Siegel et al., 2017). Presently, the molecular pathogenesis of this
cancer is still poorly understood.

Recently, mounting evidence supports that the malignant phenotypes of cancers are defined not
only by the intrinsic activity of tumor cells but also by immune cells that are recruited and activated
in tumor-related microenvironment (Ben-Baruch, 2002). A previous study reported that tumor
can be viewed as distinct immunological organ, which has complex immune microenvironment
(Fridman et al., 2012). Pathologists have long recognized the diversity of immune infiltration into
tumors, and the most widely studied are tumor-infiltrating lymphocytes (TILs) (Bense et al., 2017).
TILs have been suggested to promote or inhibit tumor growth actively and are important to the
clinical outcome (Brockhoff et al., 2018; Shibutani et al., 2018; Udall et al., 2018). In terms of colon
cancer, study has demonstrated that the level of lymphocyte infiltration into primary tumor is a
strong independent predictor of overall survival (OS). What is more, high lymphocyte infiltration
represents a positive prognostic factor (Galon et al., 2006). In addition to immune cells, the cancer
tissues also include various chemokines, cytokines, and growth factors (Bremnes et al., 2011). They
interact with each other to form tumor-related microenvironment and exert inhibitory effects on
tumor cells. Tosolini et al. (2011) have applied expression profiling of colorectal cancer to define the
relevance of specific immune signatures and found that T helper 17 (Th17) type, interleukin (IL)-
17-dominant immune profiles indicated a poor prognosis, and Th1 type, interferon-γ-dominant
immune profiles indicated an improved prognosis.

In this study, we developed a molecular classifier associated with colon cancer prognosis
based on the gene expression profiles of immune-related genes. This study may provide insights
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into the complex relationship between the heterogeneity of
immune cells and disease prognosis in colon cancer.

RESULTS

Differential Expression Analysis
On the basis of adj. p-value < 0.05 and |logFC| > 1, we
identified 265 differentially expressed (200 upregulated and
65 downregulated) immune genes. The volcano plot of all
differentially expressed immune genes and the heatmap of top 10
up- and downregulated immune genes are shown in Figure 1.

EPIC Immune Cell Infiltration Ratio
Figure 2A shows infiltration ratio of immune cells. Other
cells, including endothelial cells, CD4+ T cells, and CD8+
T cells accounted for a relatively large proportion, while B
cells, carcinoma-associated fibroblasts (CAFs), macrophages,
and natural killer (NK) cells accounted for a relatively small
proportion. For the infiltration ratio of each immune cell, Welch
two-sample non-paired t-test was used to conduct statistical
analysis of tumor vs. normal samples, and the results showed
that there were significant differences (p < 0.001) except for NK
cells (Figure 2B).

Diagnostic Model of Colon Cancer
Based on Immune Characteristics
With immune cells component and the expression profile of
differentially expressed immune genes being features for model
input, the integrated sample number was 329 (288 tumor and
41 normal), and the feature number was 272 (265 differentially
expressed immune genes and the composition ratio of seven
immune cells except for NK cells). Dimensionality reduction
in principal component analysis (PCA) was performed on the
feature dimensions of each sample, and the results showed that
the tumor and normal samples were significantly distinguished
when only the first two principal components were used
(Figure 3A), indicating that these features could be well used to
construct a diagnostic model.

After cross-validation of the training model, we obtained the
optimal parameters of different models and the evaluation results
on the test set, as shown in Table 1. These models were excellent
predictors of colon cancer samples, both in terms of accuracy and
area under the curve (AUC) (the AUC values of SVM, L1–LR,
and RandomForest were 1) (Figure 3B). Through the XGBoost
model, we ranked the importance of features and selected the
top 20 features (Figure 3C), including TRIB3, CHGA, multiple
LGALS family genes (LGALS4, LGALS3, LGALS2, and LGALS9),
CASP7, B cell infiltration ratio, etc.

Immune Gene Expression, Immune Cell
Component, and Survival Analysis
The downloaded clinical TCGA data contained phenotypic
information of 551 samples, and 277 samples had both
gene expression profile and effective survival information. We
extracted survival status and survival time of these samples and

plotted K–M survival curve by combining the expression of
265 differentially expressed immune genes in different samples,
immune cell component, and sample clinical information. The
significance threshold was set as p < 0.05. The results showed
that CD4+ T cells and 72 immune genes were highly relevant
to prognosis. Survival curves of CD4+ T cells and the top five
immune genes are shown in Figure 4 based on the significance of
p-value.

Clinical Phenotype and Survival Analysis
In line with the survival status and survival time of 551
samples in TCGA clinical data, we drew K–M survival curves in
combination with gender, age, histological type, number of lymph
nodes, tumor, node, and metastasis (TNM) stage, colonic polyp,
and prognosis information (a total of 244 valid samples). The
significance threshold was set as p < 0.01. The results showed
that the number of lymph nodes (lymph node examined count,
p = 0.0067), M staging (pathologic M, p = 0.00011), and T
staging (pathologic T, p < 0.0001) were connected with survival
time (Figure 5).

Prognostic Model of Colon Cancer
Based on Immune Characteristics
Using “train_test_split” package in Python, we divided 277
samples with both gene expression profile and effective survival
information into training set and test set at a ratio of 5:5 (random
state = 123). Considering the content of CD4+ T cells and the
expression values of 72 immune genes, we used Cox multivariate
regression to construct a prognostic model. The results of both
likelihood ratio test and score (log-rank) test were significant,
and the p-values were p = 1.493e−08 and p = 0.001621,
indicating that this multivariate model was highly relevant to
the prognosis. In Cox multivariate model, there were 19 factors
(p< 0.05) of great influence, including CD4+ T cells, LEP, NOX4,
RETNLB, LAIR1, IL17A, HSPD1, CYTIP, SLAMF7, CD14, C7,
CORO2A, PPARGC1B, LTB4R, CHGA, CD300A, TLR6, CD209,
and P2RY14.

The risk model was built with the following factors:

Riskscore = − 665∗CD4+ Tcells + 6.2∗LEP + 10.7∗NOX4

+ − 5.92∗RETNLB + − 34.9∗LAIR1 + 5.67∗IL17A + − 32.1
∗HSPD1 + 23∗CYTIP + − 16.3∗SLAMF7 + − 15.3∗CD14

+ − 3.37∗C7 + − 19.5∗CORO2A + 14.5∗PPARGC1B +

5.91∗LTB4R + 4.7∗CHGA + 17.5∗CD300A + − 15.2∗TLR6x
+ 16.8∗CD209 + − 14.5∗P2RY14

According to this risk score, samples in the test set were
divided into high- and low-risk groups, and K–M survival
analysis showed that the risk score has significant relevance with
prognosis. The survival time of patients in the low-risk group
was much longer than those in the high-risk group (p ≤ 0.01) in
the TCGA test set (Figure 6A) and the independent validation
dataset (Figure 6B). The AUC values of the survival time (1-
/3-/5-year survival rate) in TCGA test set predicted by this risk
model were 0.733, 0.728, and 0.711, respectively (Figure 6C).
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FIGURE 1 | Identification of differentially expressed immune genes. (A) Volcano plots of differentially expressed immune genes. Red dots represent upregulated
genes, and green dots represent downregulated genes. (B) Heatmap of top 10 up- and downregulated immune genes.

Nomogram Visualized Prognostic Model
There were 127 samples with clinical number of lymph nodes and
TNM stage in the test set. Based on the risk score of the risk model
of multivariate Cox regression and prognostic clinical factors
(lymph node examined count, pathologic M, and pathologic T),
we visualized the nomogram of 127 test samples to show the risk
model, as in Figure 7.

The results of the four prognostic factors in the nomogram
and the C index and p-value of combined model for the Coxph
model are shown in Table 2. The results showed that the C index
of the combined model was the highest, and the risk score (C
index > 0.7) had high fitting degree for the Coxph model. Among
the clinical factors, only pathologic M had the most significant
statistical test result (p = 0.0108).

DISCUSSION

In the tumor stroma, there exists a complex biological process
between immune cells and malignant cells, and the immune
system plays a dual role of promoting and inhibiting tumor
growth, which is of great significance for prognosis (Nagalla et al.,
2013). In this study, we identified hundreds of immune genes
and analyzed the tumor-infiltrating immune cells in colon cancer.
Based on these immune genes and immune cells, we constructed
and validated a colon cancer diagnostic prediction model and
a prognostic model. B cell infiltration ratio, TRIB3, CHGA,
CASP7, and multiple LGALS family genes such as LGALS4 were
important features in diagnostic prediction model. Additionally,
19 factors such as CD4+ T cells, LEP, NOX4, IL17A, HSPD1, and
CHGA had great influence on prognostic model.

In colorectal cancer, immune cells have significant infiltration,
and their distribution, tissue localization, and cell types are
highly relevant with progression and survival (Huh et al., 2012).
Additionally, a study has reported that high infiltration of tumor-
infiltrating immune cells in rectal cancer biopsies is related

to improved tumor response to preoperative radiotherapy and
chemotherapy, also with prolonged disease-free survival and
OS (Anitei et al., 2014). In this study, B cell infiltration was
found to be a diagnostic predictive feature of colon cancer, and
CD4+ T cell infiltration was highly relevant with prognosis of
colon cancer. A previous study has reported that infiltration of
CD4+ lymphocytes is frequent in colorectal cancer (Diederichsen
et al., 2003). Our results further provided evidence that immune
cell infiltration may represent a favorable prognostic factor
of colon cancer.

In addition to immune cells, we also identified some diagnostic
prediction-associated immune genes, such as TRIB3, CHGA,
LGALS4, and CASP7. Tribbles pseudokinase 3 (TRIB3) is
upregulated in some colorectal tumors and is responsible for poor
outcome. TRIB3 can interact with β-catenin and transcription
factor 4 in intestine cells to increase expression of genes that
are relevant with cancer stem cells in colorectal cancer (Hua
et al., 2019). Human chromogranin-A (CHGA) is a 439-residue-
long protein found in the secretory granules of some normal
and neoplastic neuroendocrine cells, the expression of which is
related to the prognosis of colorectal cancer (Gunay et al., 2019).
Long and Campbell (2017) reported that male patients with low
expression of galactin 4 (LGALS4) had significantly shortened
disease-free survival in colon cancer. Caspase-7 (CASP7) plays
an important role in the autophagy and apoptosis of colon cancer
(Athamneh et al., 2017). Additionally, CASP7 polymorphism is
highly responsible for poor outcomes in patients with surgically
resected colorectal cancer (Chae et al., 2011). Taken together,
these genes may serve as diagnostic markers of colon cancer.

In this study, except for CD4+ T cells, 18 important genes
were identified in prognostic model, such as LEP, NOX4, IL17A,
HSPD1, and CHGA. Leptin (LEP) is a cytokine produced by
adipose tissue and plays a role in promoting tumorigenesis
(Housa et al., 2006). A study has reported that LEP polymorphism
is responsible for an increased risk of developing colorectal
cancer (Partida-Pérez et al., 2010). NADPH oxidase 4 (NOX4)
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FIGURE 2 | Identification of immune cell infiltration features. (A) Immune cell infiltration ratio in each sample. (B) Differences in different immune cell components
between tumor and normal samples. ***p < 0.001.

is a major source of reactive oxygen species production, which
has been reported to involve tumorigenesis (Juhasz et al., 2009).
A recent study demonstrated that overexpression of NOX4
can promote tumor progression and predict poor prognosis in
human colorectal cancer (Lin et al., 2017). IL17A is a cytokine
that can be produced by some immune cells. It has been reported
to play an important immunopathogenic role in inflammation-
related colonic diseases (Korn et al., 2009). Previous studies
have reported that overexpression of IL17A means poor survival
in colorectal cancer patients (Liu et al., 2011; Tosolini et al.,
2011). Heat shock protein family D member 1 (HSPD1), as
a signaling molecule in the immune system, is dysregulated
in various cancers (Davalieva et al., 2015; Jin et al., 2016).
Li et al. (2017) recently suggested that HSPD1 can serve as

potential biomarker for the detection of colon cancer. Given
the roles of these immune genes in colon cancer, we suppose
that the constructed prognostic model may predict the prognosis
of colon cancer.

CONCLUSION

In conclusion, our analysis constructed an immune-related
prognostic model of colon cancer. B cell infiltration ratio, CD4+
T cells, as well as genes of TRIB3, CHGA, CASP7, LGALS4,
LEP, NOX4, IL17A, and HSPD1 may be highly relevant with
clinical outcome of colon cancer. Our results may help to
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FIGURE 3 | Evaluation of colon cancer diagnostic model. (A) Principal component analysis (PCA) of two-dimensional visualization results. PC1 and PC2 represent
the first two principal components with the largest variance in PCA results, respectively. (B) Receiver operating characteristic (ROC) curves of model. FPR represents
false positive rate [FP/(FP + TN)], and TPR represents true positive rate [TP/(TP + FN)]. The greater the area between ROC curve and X-axis (area under the curve
value, between 0 and 1), the better the model effect. Different models are represented by different color curves. (C) The 20 most important features evaluated by
XGB model. F score means the importance of the feature (the larger F score means the greater contribution of the feature to the model).

TABLE 1 | The optimal parameters of different models and the evaluation results on the test set.

Model Parameter Accuracy Area under the curve

SVM Kernel = “rbf;” C = 1.0; degree = 3; cache_size = 200 0.992 1.0

L1-LogisticRegression C = 1.0; penalty = “11;” max_iter = 100; tol = 0.0001 1.0 1.0

GBDT n_estimators = 50; learning_rate = 0.1; max_depth = 3; subsample = 0.7; min_samples_split = 3 0.985 0.996

RandomForest n_estimators = 50; min_samples_leaf = 2; min_samples_split = 3 1.0 1.0

XGBoost max_depth = 3; min_child_weight = 1; gamma = 0.01; learning_rate = 0.1; n_estimators = 50 0.984 0.995

uncover the clinical and biological significance of the immune
microenvironment for colon cancer.

MATERIALS AND METHODS

Gene Expression Data Collection
The colon cancer gene expression profile data for the TCGA
cohorts were downloaded from the University of California Santa
Cruz (UCSC) Xena database (Crawshaw et al., 2007), which

included gene expression data of 329 samples (288 tumor samples
and 41 normal samples). The log2(x + 1)-transformed RNA-Seq
by Expectation–Maximization (RSEM) normalized read counts
from UCSC Xena were downloaded for analysis. In addition,
we also downloaded (download time: May 2019) the clinical
phenotype data of the samples, including age, gender, TNM
staging, and corresponding survival time and survival status.
According to the gene annotation in the InnateDB database (Ge
et al., 2002; Lang et al., 2016), 952 immune-related genes were
annotated from the gene expression profile.
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FIGURE 4 | Gene expression-related survival curve. The black and red curves represent the low- and the high-expression groups, respectively.

FIGURE 5 | Clinical phenotype-related survival curve. (A) Survival analysis for lymph node examined count. (B) Survival analysis for pathologic_M. (C) Survival
analysis for pathologic_T.

For the validation dataset, gene expression dataset of
GSE17538 (Smith et al., 2010) was downloaded from Gene
Expression Omnibus (Barrett et al., 2013). This dataset included
gene expression data of 244 colon cancer samples. After

deleting the samples without survival information, 213 colon
cancer samples and the corresponding survival information were
obtained. The gene expression data have been preprocessed
by robust multiarray average (RMA) normalization in affy
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FIGURE 6 | Evaluation of multivariate prognostic model. (A) A risk model was constructed using 19 immune-related factors, and the test set was divided into high-
and low-risk groups according to scoring values. (B) The survival analysis for independent validation dataset. (C) The receiver operating characteristic (ROC) curve
and area under the curve (AUC) value of survival time were predicted by multivariate risk model.

FIGURE 7 | Survival rate predicted by nomograms. The factors used to construct the nomograms include risk score, lymph node examined count, pathologic M,
and pathologic T. Total points are generated according to the values of these factors, corresponding to the survival probability of 1/3/5 years.

package. We downloaded the normalized gene expression data
for further analysis.

Differential Expression Analysis
of Immune Genes
For immune genes, the differential expression analysis for tumor
vs. normal samples was performed using the limma package

TABLE 2 | Analysis of prognostic factors to the fitting degree of Coxph model.

Factor C index p-value

Combined model 0.828 3.22E−21

Risk score 0.725 4.16E−11

Lymph node examined count 0.587 0.0956

Pathologic M 0.636 0.0108

Pathologic T 0.596 0.0647

(Bradizza et al., 2006) (version 3.10.3). The genes with zero or
missing values were removed. After statistical test, we obtained
the corresponding p-values of all genes. Benjamini and Hochberg
method was used for multiple test correction to obtain the
adjusted p-value (adj. p-value). The genes with adj. p-value < 0.05
and |log2FC| > 1 were selected as differentially expressed genes.

EPIC Immune Cell Components Analysis
Based on the gene expression profiles of 329 TCGA samples,
we used immune cell infiltration analysis tools EPIC1 (Racle
et al., 2017) to analyze the immune cells ratio in each sample,
including B cells, CAFs, CD4+ T cells, CD8+ T cells, endothelial
cells, macrophages, NK cells, and other types of cells. For the
infiltration ratio of each type of immune cells, Welch two-sample

1https://gfellerlab.shinyapps.io/EPIC_1-1/
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non-paired t-test was used to test the differences between tumor
and normal samples statistically.

Diagnostic Model of Colon Cancer
Based on Immune Characteristics
The machine learning model was constructed in light of the
immune cell components and differentially expressed gene
information. Based on the integrated learning methods of
GBDT, XGBoost, RandomForest, as well as the classification
models of SVM and LR in Sklearn database2, we used the
GridSearchCV package to build a model and adjust preferences.
After adjustment and comparison of different models, we
constructed an effective training classifier, which could predict
colon cancer based on gene expression values. Here, we used
the preprocessing.scale method to normalize the samples. Then,
the samples were randomly divided into training and test sets
at a ratio of 6:4 using train_test_split model from Sklearn
database (random state = 123). We used cross-validation
to validate the training model and added the parameter of
class_weight = “balanced” during the training to eliminate the
influence of category imbalance. Finally, model evaluation was
carried out on test set based on accuracy and AUC (mainly
based on AUC value).

Gene Expression/Clinical Phenotype
and Prognosis Analysis
The prognosis information of corresponding patients was
collected on the basis of the downloaded clinical data, including
OS and OS status. Combining the differentially expressed
immune genes and patient’s clinical phenotype, which are the
candidate features with the sample prognostic information, we
conducted the Kaplan–Meier (K–M) survival analysis by dividing
the patients into high and low-expression groups based on gene
expression or phenotypes. We used log-rank test to calculate the
p-value and preliminarily screened genes with p < 0.05 to obtain
genes and clinical phenotypes associated with prognosis.

Prognostic Model of Colon Cancer
Based on Immune Characteristics
The TCGA data set was randomly divided into training and test
sets at a ratio of 5:5 (random state = 123). In the training set,
we used the prognostic immune cell components and immune
gene expression, as well as the Coxph method in R package
“survival” to comprehensively consider the effects of these
characteristics and obtain the correlation significance [Pr(>|z|)]
and coefficient (coef) of each feature. Here, we screened the genes
with significance p< 0.05. We used the screened significant genes
and constructed the following multivariate risk model:

Risk score = β gene1× exprgene1 + β gene2×

exprgene2+ ... + β geneN× exprgene

where βgene1, βgene2,. . .β,geneN represents the coefficient of
each gene in a multifactor analysis.

2https://scikit-learn.org/

For each sample in TCGA test set and the validation
dataset, we calculated the risk score according to this formula
and divided the samples into high- and low-risk groups
on the basis of the median value of risk score. Then, K–
M survival analysis was performed. In addition, we used
this risk score as the standard to predict the 1-/3-/5-
year survival rate of patients in TCGA test set, and the
receiver operating curve (ROC) and AUC value were used for
model evaluation.

Validation of the Prognostic Model
in Independent Dataset
The EPIC was used to analyze the immune cells ratio in
each sample of GSE17538, including B cells, CAFs, CD4+
T cells, CD8+ T cells, endothelial cells, macrophages, NK
cells, and other types of cells. Risk score of each sample in
validation dataset was calculated based on the following formula:

Riskscore = − 665∗CD4 + Tcells + 6.2∗LEP + 10.7∗NOX4

+ − 5.92∗RETNLB + − 34.9∗LAIR1 + 5.67∗IL17A + − 32.1

∗HSPD1 + 23∗CYTIP + − 16.3∗SLAMF7 + − 15.3∗CD14

+ − 3.37∗C7 + − 19.5∗CORO2A + 14.5∗PPARGC1B + 5.91

∗LTB4R + 4.7∗CHGA + 17.5∗CD300A + − 15.2∗TLR6

+ 16.8∗CD209 + − 14.5∗P2RY14

All samples were divided into high- and low-risk groups
according to the median value of the risk score. K–M survival
analysis and log-rank test were performed for samples in high-
and low-risk groups.

Nomogram Visualized Prognostic Model
The survival rate could finally be obtained by mapping different
factors to points and then adding them together. Therefore, on
the basis of prognostic model risk score and prognostic clinical
phenotypes, the nomogram prediction model was constructed
and visualized. In order to further verify the predictive power
of nomogram, we first calculated the independent prognostic
factors and composite factors in the nomogram to fit the
consistency index (C index) of Coxph model. On top of
that, resampling method was used to carry out statistical
test to calculate the p-value and compare the fitting degree
of each independent prognostic and composite factors to
the Coxph model.
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