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Abstract: The introduction of an electron-donating triphenylamine motive into a 2,2′,6′,2′ ′-terpyridine
(terpy) moiety, a cornerstone molecular unit in coordination chemistry, opens new ways for a rational
design of photophysical properties of organic and inorganic compounds. A push-pull compound,
4′-(4-(di(4-tert-butylphenyl)amine)phenyl)-2,2′,6′,2′ ′-terpyridine (tBuTPAterpy), was thoroughly in-
vestigated with the use of steady-state and time-resolved spectroscopies and Density Functional
Theory (DFT) calculations. Our results demonstrate that solvent parameters have an enormous
influence on the optical properties of this molecule, acting as knobs for external control of its photo-
physics. The Intramolecular Charge Transfer (ICT) process introduces a remarkable solvent polarity
effect on the emission spectra without affecting the lowest absorption band, as confirmed by DFT
simulations, including solvation effects. The calculations ascribe the lowest absorption transitions to
two singlet ICT excited states, S1 and S2, with S1 having several orders of magnitude higher oscillator
strength than the “dark” S2 state. Temperature and viscosity investigations suggest the existence of
two emitting excited states with different structural conformations. The phosphorescence emission
band observed at 77 K is assigned to a localized 3terpy state. Finally, protonation studies show that
tBuTPAterpy undergoes a reversible process, making it a promising probe of the pH level in the
context of acidity determination.

Keywords: 2,2′,6′,2′ ′-terpyridine; triphenylamine; intramolecular charge transfer; polarity;
viscosity; protonation

1. Introduction

2,2′:6′,2′′-terpyridine (terpy) and its derivatives are among the most important build-
ing blocks in coordination and supramolecular chemistry. Three heterocyclic nitrogen
donors make terpy suitable to form stable coordination compounds by chelating transition
metal ions, whereas the rigidity of the terpy core facilitates the formation of supramolec-
ular architectures through non-covalent interactions [1]. Since 1932, when terpy was
first reported by Morgan and Burstall [2,3], a great variety of terpy derivatives and their
transition metal compounds have been synthesized and characterized in numerous ap-
plications [1,4–20]. Several studies revealed that the variation of substituents attached
to the terpy unit causes an impressive change in the photophysical and electrochemical
properties of these ligands and of their complexes [13,21–26]. Most importantly, the intro-
duction of strong electron donating groups into the electron acceptor terpy core gives rise
to Intraligand Charge Transfer (ICT) transitions, which offer a large degree of control over
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the system’s optical properties [27,28]. Other remarkable aspects of these compounds are
their optical sensitivity to the pH, polarity and viscosity of the local environment [29–41].

Among possible electron donating units, particular attention was devoted to tripheny-
lamine (TPA), which is well known for its light-harvesting capabilities, high hole mobility
properties, and non-coplanar structure preventing molecular aggregation [42,43]. Organic
push-pull systems based on the TPA motive are of high importance for potential appli-
cations in solar-energy conversion [44–50] and as organic light-emitting diodes [51–54],
logic gates [55], field-effect transistors [56–59] and photoswitches for theranostics [60–62].
In our previous contribution, we demonstrated the beneficial impact of the TPA unit on
the luminescent properties of terpy and its Re(I) coordination compound [63]. 4′-(4-(di(4-
tert-butylphenyl)amine)phenyl)-2,2′,6′,2′′-terpyridine ligand (tBuTPAterpy) (Scheme 1)
was found to be highly emissive in chloroform solution (λPL = 489 nm, Q.Y. = 84%),
whereas the Re(I) carbonyl complex [ReCl(CO)3(tBuTPAterpy)], in which the tBuTPAterpy
is coordinated to the metal centre in a bidentate way, showed significantly enhanced photo-
luminescence (PL) in comparison with [ReCl(CO)3(terpy-κ2N)] (see also Figures S1 and S2
in Electronic Supporting Information (ESI)).
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Scheme 1. Structure of 4′-(4-(di(4-tert-butylphenyl)amine)phenyl)-2,2′,6′,2′′-terpyridine 
(tBuTPAterpy). 

In the present work, ICT processes in tBuTPAterpy are thoroughly investigated with 
steady-state and time-resolved optical spectroscopy and Density Functional Theory (DFT) 
simulations. The in-depth knowledge of the system's photophysical properties is of high 
significance for the rational design of new functional materials with tailored optical 
behavior.. 

2. Results and Discussion 
2.1. Optical Spectra of tBuTPAterpy vs Constituent Building Blocks 

The absorption and emission properties of the push-pull tBuTPAterpy molecule 
were compared to those of its constituent building blocks considering the combination of 
two possible pairs: (i) 2,2′:6′,2′′-terpyridine (terpy) and bis(4-tert-butylphenyl)aniline 
(tBuTPA), and (ii) 4′-phenyl-2,2′:6′,2′′-terpyridine (4′-Ph-terpy) and bis(4-tert-
butylphenyl)amine (tBuDPA) (see Scheme S1 and Table S1). To minimize the impact of 
the solvent polarity, the absorption and emission spectra of tBuTPAterpy and its building 
blocks were measured in the apolar solvent n-hexane, and the results are shown in Figure 
1. 

Scheme 1. Structure of 4′-(4-(di(4-tert-butylphenyl)amine)phenyl)-2,2′,6′,2′′-terpyridine (tBuTPAterpy).

In the present work, ICT processes in tBuTPAterpy are thoroughly investigated
with steady-state and time-resolved optical spectroscopy and Density Functional The-
ory (DFT) simulations. The in-depth knowledge of the system’s photophysical properties
is of high significance for the rational design of new functional materials with tailored
optical behavior.

2. Results and Discussion
2.1. Optical Spectra of tBuTPAterpy vs Constituent Building Blocks

The absorption and emission properties of the push-pull tBuTPAterpy molecule were
compared to those of its constituent building blocks considering the combination of two
possible pairs: (i) 2,2′:6′,2′ ′-terpyridine (terpy) and bis(4-tert-butylphenyl)aniline (tBuTPA),
and (ii) 4′-phenyl-2,2′:6′,2′ ′-terpyridine (4′-Ph-terpy) and bis(4-tert-butylphenyl)amine
(tBuDPA) (see Scheme S1 and Table S1). To minimize the impact of the solvent polarity, the
absorption and emission spectra of tBuTPAterpy and its building blocks were measured in
the apolar solvent n-hexane, and the results are shown in Figure 1.
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Figure 1. (a) Comparison of absorption and (b) emission spectra of tBuTPAterpy with its constituent
building blocks in n-hexane (c = 10 µM).

The UV-Vis spectrum of tBuTPAterpy in Figure 1a shows two well-resolved bands,
with maxima at 291 nm and 364 nm, and with the high energy absorption profile fairly
reproduced by the sum of the absorption bands of terpy and tBuTPA. The low-energy
absorption band of tBuTPAterpy at 364 nm is absent in all model chromophores, meaning
that it arises from the conjugation of the two building blocks terpy and tBuTPA into the
extended molecule (tBuTPAterpy), most likely involving a charge transfer process from
the electron-rich tBuTPA donor to the electron-deficient terpy acceptor. The fluorescence
spectrum of tBuTPAterpy, in black in Figure 1b, cannot be ascribed to the emission of any
of the building blocks. In fact, this emission band is distinctly red-shifted with respect to
the others, suggesting that it originates from an electronic state that is more delocalized
than the separated molecular moieties.

2.2. Solvent Polarity Effect

Steady-state electronic absorption and emission spectra of tBuTPAterpy were recorded
in a wide range of solvents of different polarities in order to characterize their photophysical
properties as a push-pull system. The spectra are shown in Figures 2–4 and summarized in
Table 1 (see also Tables S2 and S3 and Figures S3–S6 in the ESI) [64–66].
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polarity, namely from 407 nm in n-hexane to 527 nm in acetonitrile. This significant red-
shift is accompanied by changes in the emission profile—from narrow and vibronically 
structured in apolar n-hexane and cyclohexane to structureless and very broad (FWHM 
of 4050 cm−1) in the more polar aprotic acetonitrile. Such solvatochromic behavior is 
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formation of a highly polar emitting state that is stabilized by polar solvents with respect 
to the neutral GS [70,71]. 

Figure 2. Comparison of the steady-state absorption spectra of tBuTPAterpy in solvents of differ-
ent polarity (c = 10 µM). Inset: dependence of the lowest absorption band maximum (nm) on the
Dimroth-Reichardt polarity parameter ET(30) (kcal·mol−1) [67]; Hex—n-hexane, CHx—cyclohexane,
Tol—toluene, CHCl3—chloroform, EtAc—ethyl acetate, THF—tetrahydrofuran, DCM—dichloromethane,
DMF—dimethylformamide, DMSO—dimethylsulfoxide, ACN—acetonitrile, MeOH—methanol.
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To estimate the difference between the excited and ground state dipole moments (Δµ 
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Table 1. Spectral properties of tBuTPAterpy.

Solvent
Room-Temperature Low-Temperature (77 K)

λabs, nm (ε, 103·M−1cm−1) λPL, nm ΦPL τ, ns λPL, nm τ, ns

n-Hexane 364 (87.4), 291 (107.4) 407 0.48 1.53 ± 0.01 438 1.48 ± 0.01

Cyclohexane 366 (57.0), 293 (68.8) 408 0.54 1.55 ± 0.01 418 0.99 ± 0.06 (24.74%),
2.29 ± 0.02 (74.26%)

Toluene 369 (74.6), 293 (96.7) 435 0.64 2.55 ± 0.01 422 2.00 ± 0.01

Chloroform [63] 371 (74.6), 294 (100.2) 487 0.84 4.30 ± 0.02 442 3.05 ± 0.01

Ethyl acetate 363 (74.1), 291 (92.2) 468 0.70 3.57 ± 0.01 424 2.44 ± 0.01

Tetrahydrofuran 364 (75.2), 291 (101.8) 467 0.75 3.81 ± 0.01 428 2.12 ± 0.01

Dichloromethane 369 (42.8), 292 (59.1) 497 0.79 4.83 ± 0.01 439 1.78 ± 0.06 (41.12%),
3.43 ± 0.05 (58.88%)

Dimethylformamide 367 (33.3), 291 (46.0) 518 0.77 5.87± 0.02 439 1.61 ± 0.06 (30%),
3.46 ± 0.03 (70%)

Dimethylsulfoxide 372 (46.8), 292 (67.4) 528 0.83 6.56± 0.02 441, 516sh 2.52 ± 0.01

Acetonitrile [63] 364 (31.6), 289 (41.5) 527 0.63 5.53± 0.03 463 2.05 ± 0.20 (27.77%),
4.07 ± 0.12 (72.23%)

Methanol 369 (47.3), 290 (66.6) 557 0.02 n.d. 438 * 2.95 ± 0.02, 0.75 ± 0.23 *

Butyronitrile n.d. 508 n.d. 4.89 ± 0.01 429 2.33 ± 0.01

* measured in methanol: ethanol (1:4 v/v) mixture.

The position of the tBuTPAterpy absorption maxima in Figure 2 is marginally affected
by the solvent polarity, which, however, modulates the molar absorption coefficients of
the entire spectrum and the width of the low-energy band (see also Figure S6 in the
ESI). Specifically, by going from non-polar to polar solvents, a decrease of the extinction
coefficients and an increase of the Full Width at Half Maximum (FWHM) is observed,
indicating a low polar character of the Ground State (GS) [68–71].

In contrast, the fluorescence spectra of tBuTPAterpy reported in Figure 3 show a
strong dependence of the position of the emission band on the solvent polarity [72]. The
emission maximum progressively shifts to longer wavelengths with increase the solvent
polarity, namely from 407 nm in n-hexane to 527 nm in acetonitrile. This significant red-
shift is accompanied by changes in the emission profile—from narrow and vibronically
structured in apolar n-hexane and cyclohexane to structureless and very broad (FWHM of
4050 cm−1) in the more polar aprotic acetonitrile. Such solvatochromic behavior is typical
of push-pull systems undergoing a photoinduced ICT process, which leads to the formation
of a highly polar emitting state that is stabilized by polar solvents with respect to the neutral
GS [70,71].

To estimate the difference between the excited and ground state dipole moments
(∆µ = µe − µg), the correlation between the solvent polarity and the Stokes shift was
analysed using Lippert equations [73]:

hνEm = hνEm
o −

2µe
(
µe − µg

)
a3

o
× f (ε, n) (1)

hνAbs = hνAbs
o −

2µe
(
µe − µg

)
a3

o
× f (ε, n) (2)

where: hνEm represents the emission energy of the compound in a particular solvent; hνEm
o

corresponds to the absorption and emission energies in vacuum, µg and µe are the dipole
moments of the molecule in its ground and excited states, ao is the Onsager cavity radius,
and f is defined as:

f (ε, n) =
ε− 1

2ε + 1
− 1

2

(
n2 − 1

2n2 + 1

)
(3)
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The plot of the Stokes shift of tBuTPAterpy against the orientation polarizability
(Figure 3, top inset) shows a very good linearity, spanning from 2887 cm−1 in n-hexane to
8609 cm−1 in acetonitrile, as expected for a push-pull compound. The large Stokes shift
values in polar environments can be ascribed to a remarkable change in the dipole moment
of tBuTPAterpy between the GS and the emitting excited state [74], with an estimated ∆µ
value of 23.49 D, assuming the Onsager cavity radius of 6.79 Å determined by quantum
chemical calculations.

The solvent also affects the excited state lifetime of tBuTPAterpy at room temperature
(Table 1 and Table S2 and Figure S6), which gradually increases with the solvent polarity.
Concerning the quantum yield of the system, it is very high in chloroform, ethyl acetate,
tetrahydrofuran, dichloromethane, dimethylformamide, dimethylsulfoxide (0.7–0.84), and
it is slightly attenuated in acetonitrile (0.63) and in the apolar solvents n-hexane (0.48),
cyclohexane (0.54), toluene (0.64). Instead, a dramatic reduction occurs in methanol (0.02),
which is probably related to conformational changes induced by H-bonding interactions
between the terpyridine nitrogen atoms and the solvent molecules.

The impact of the solvent polarity on the emission spectra of tBuTPAterpy was also
investigated in rigid matrices formed at the liquid nitrogen temperature. Under these
conditions, the solvent reorganisation effect is strongly reduced, limiting the spectral
tuning of the ICT states [75]. As shown in Figure 4, the emission energy of tBuTPAterpy
at 77 K is indeed slightly affected by the solvent polarity. In this condition, the estimated
value of ∆µ is reduced to 14.02 D.

Compared to the room temperature measurements, the fluorescence maximum of
tBuTPAterpy in n-hexane and cyclohexane red-shifts upon cooling to 77 K. An opposite
trend occurs for solvents with an ET(30) larger than 33 kcal·mol−1. For these media, the low-
temperature emission maximum is systematically narrowed and blue-shifted compared to
the room-temperature spectra. This finding is compatible with a stronger ICT character
of the emitting state upon solvent polarity increase because the rigidity of the 77 K glassy
matrix prevents the full stabilization of the solute through solvent reorganization.

It is worth highlighting that the temperature decrease leads to higher emission in-
tensities while the corresponding excited state lifetimes become shorter. For instance, the
PL decay time of tBuTPAterpy in butyronitrile is twice longer at room temperature than
that at low temperature (Figure S7). This observation agrees with the hypothesis that the
initially populated Franck–Condon (FC) state and the Lowest Energy Excited State (LEES)
have different electronic characters.

2.3. Temperature and Solvent Viscosity Effects

To investigate the impact of the solute conformational changes on its photophysics,
steady-state PL spectra were acquired in a methanol:ethanol mixture (1:4) at selected
temperatures in the 80–290 K range (Figure 5a). Additionally, the tBuTPAterpy room
temperature emission was measured in several mixtures of two solvents having similar
polarity, but different viscosity, glycerol (η = 954 cP; ε = 46.5)/methanol (η = 0.54 cP;
ε = 32.7), and Time-Resolved Emission Spectra (TRES) were recorded in pure glycerol, the
solvent with the highest viscosity, with the results respectively reported in Figure 5b,c.

Figure 5a shows that the emission band of tBuTPAterpy remains centred at ~430 nm
and slightly changes in intensity in the temperature range from 80 to 110 K, i.e., when
the intramolecular rotations of the solute are hindered and the solute-solvent interactions
are weak. Upon temperature increase up to 210 K, a bathochromic shift of the band is
observed along with a gradual drop of its intensity, suggesting that conformational changes
in the electronically excited state of tBuTPAterpy become allowed, stabilizing the ICT
emitting state. For temperatures higher than 230 K, the emission energy and its intensity
remain unchanged.
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Figure 5. (a) PL spectra of tBuTPAterpy in a methanol: ethanol mixture (1:4) at different temper-
atures (c = 10 µM; λPE = 375 nm); (b) Steady-state emission spectra of tBuTPAterpy in methanol:
glycerol mixtures with different fraction of the two solvents (c = 10 µM, λPE = 370 nm); (c) Normal-
ized tBuTPAterpy TRES traces at different time delays in glycerol (room temperature, c = 10 µM,
λPE = 375 nm; emission slit: 2 nm; detector signal: 6000 cps, wavelength step: 3 nm, stop condition:
300 s).

Stationary tBuTPAterpy PL spectra collected in methanol: glycerol mixtures of vari-
able composition are reported in Figure 5b and show that the addition of glycerol up to
30% induces a small decrease of the emission intensity at 560 nm. Instead, in the 20:80
methanol: glycerol mixture, the emission band centered at 560 nm shifts towards higher
energies, and a strong band appears at 450 nm. A further increase of the glycerol proportion
up to 90% leads both emission bands to slightly red-shift and a significantly increase in
intensity [72]. Finally, in pure glycerol (η = 954 cP at 25 ◦C), tBuTPAterpy is characterized
by two emission bands centered at 458 nm and 594 nm, with intensities respectively higher
and lower than in the 10:90 methanol: glycerol mixture, and shows an isoemissive point
at 517 nm. The appearance of a second emission band upon solvent viscosity increase
indicates the presence of two emitting states having different structural conformations.
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TRES of tBuTPAterpy recorded in pure glycerol as a function of the time delay
(Figure 5c) also report the presence of an isoemissive point around 20 ns, suggesting that
the two emissive states are populated in a sequential way upon a conformational change.
In less viscous solvents, this structural modification probably occurs on shorter time scales,
and it cannot be observed due to the limited time resolution of the TRES measurements
(see Figure S8), calling for dedicated ultrafast investigations in order to characterize this
population transfer process.

2.4. Protonation Effect

The effect of protonation on the absorption and emission properties of tBuTPAterpy
was studied in titration experiments conducted with the use of trifluoroacetic acid (TFA) in
CHCl3 using the procedure previously described in [34]. The portions of TFA were selected
in order to cover a broad range of titration steps from 1:1 to 1:1000. Then, the deprotonation
experiment was conducted with the use of the strong basis triethylamine (TEA), adding
1000 equivalents to the 1:1000 tBuTPAterpy:TFA sample.

Upon the addition of TFA to the chloroform solution, naked eye color changes from
pale yellow to orange-red are observed. The changes in the absorption and emission
profiles of tBuTPAterpy are shown in Figure 6a–c and Figures S9 and S10 of the ESI. In
the absorption spectra (Figure 6a), the gradual addition of TFA (1–1000 equivalents) leads
to an intensity decrease of the band at 372 nm and to the formation of two new bands
with maxima at 330 nm and 493 nm. In the literature, the band at 330 nm was ascribed to
1π→ 1π* transitions of the protonated terpy unit [76,77]. Instead, the spectral red shift in
the visible region was attributed to the enhancement of the tBuTPAterpy ICT character due
to the electron-withdrawing increase of the terpy acceptor upon protonation [34]. Isosbestic
points at 352 nm and 398–434 nm indicate the presence of multiple protonated–neutral
forms in equilibrium between each other.
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Figure 6. (a) UV–Vis titration experiment of tBuTPAterpy (c = 1× 10−5 M) with TFA (1–1000 equivalents)
in CHCl3 (red line represents spectra for 1 tBuTPAterpy: 1000 TFA: 1000 TEA); (b) PL spectral changes
after titration of a tBuTPAterpy (c = 1×10−5 M) chloroform solution with TFA (1–1000 equivalents);
inset: PL spectra for TFA additions in the range 30–1000 equivalents; (c) Normalized TRES of
tBuTPAterpy (c = 1 × 10−5 M) with 50 equivalents of TFA (λPE = 375 nm; emission slit: 10 nm;
detector signal: 6000 cps, wavelength step: 3 nm, stop conditions: 300 s); (d) Picture showing
PL changes after sequential additions of TFA (1000 equivalents) and TEA (1000 equivalents) to a
chloroform solution of tBuTPAterpy.
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The PL spectra in tBuTPAterpy titrated with TFA acid (Figure 6b and Figure S9) show
significant quenching of the fluorescence band at 476 nm upon the increase of the acid
concentration. Starting from the addition of 30 equivalents of TFA (inset in Figure 6b),
the decrease in the emission band at 476 nm occurs together with the appearance of a
red-shifted emission band. The spectra for mixtures tBuTPAterpy:TFA with acid fractions
higher than 200 equivalents exhibit only one emission maximum (at 595 nm for a 1:200
mixture and at 624 nm for a 1:1000 one). The PL lifetime for the protonated form is
5.92 ns, and it is 1.4 times higher than in the neutral compound (see Figure S10 in the ESI).
The presence of an equilibrium between neutral and protonated forms of tBuTPAterpy
is supported by the observation of an isoemissive point around 520–530 nm, which is
visible in the normalized steady-state emission spectra of the system upon the addition
of TFA (1–1000 equivalents) (Figure S9 in the ESI), as well as in the TRES collected for
the 1:50 tBuTPAterpy:TFA mixture (Figure 6c). The excitation spectrum recorded for the
protonated form displays a maximum at 435 nm (see Figure S9 in the ESI), which well
overlaps with the isosbestic point of the absorption spectra.

Finally, the reversibility of the protonation/deprotonation processes was demonstrated
by recovering the original absorption and emission spectra of neutral tBuTPAterpy after
the addition of 1000-equivalents of TEA to the final mixture of tBuTPAterpy and TFA
(1:1000) (Figure 6a,d and Figure S9) [78].

2.5. Phosphorescence of tBuTPAterpy

The phosphorescence of tBuTPAterpy was measured and compared to the triplet
emission of the model chromophores terpy and tBuTPA, as reported in Figure 7a,b. The
77 K steady-state emission spectrum of tBuTPAterpy was recorded with the addition of a
10% dopant of ethyl iodide—a fluorescence quencher—in order to promote phosphores-
cence. Having a heavy iodine atom, ethyl iodide facilitates the intersystem crossing via a
stronger spin-orbit coupling [79]. The results in Figure 7a show that the low-temperature
phosphorescence band of tBuTPAterpy overlaps with its room-temperature ICT emission.
In Figure 7b, the phosphorescence spectra of tBuTPAterpy, terpy and tBuTPA are respec-
tively observed in the ranges: 460–650 nm, 425–650 nm and 400–550 nm. By comparing
the phosphorescence of tBuTPAterpy with its model building blocks, we conclude that
the triplet state of tBuTPAterpy is predominately related to the electron-acceptor terpy
fragment. Also, low-temperature TRES of tBuTPAterpy in BuCN highlights the late ap-
pearance (>27 ns) of an emission band in the same wavelength range of the isolated terpy
unit, suggesting the formation of a localised terpy triplet state (Figure 7c).

2.6. Quantum Mechanical Calculations

Figure 8 shows the simulated absorption spectra of tBuTPAterpy in the wavelength
range 240–500 nm that were obtained from the calculated vertical excitation energies and
the relative oscillator strengths between singlet states. The position of the simulated band
maxima agrees well with the experiment (differences within 10–25 nm) and has little
dependence on the solvent polarity. An even better agreement between experiment and
theory is found for the position of the band at ~390 nm (differences of only a few nm).

In all solvents, the absorption band for wavelengths longer than 350 nm involves
two electronic transitions with significantly different oscillator strengths. Specifically,
the excitation to the lowest singlet state, S1, has an oscillator strength several orders of
magnitude higher than the excitation to the S2 state. As such, the absorption band is
dominated by an electronic transition to the lowest singlet state, S1, while the state S2 acts
as a “dark” state, not being involved in the light absorption process. The second band at
shorter wavelengths (about 300 nm for the simulated spectra) arises from the transition
to four further singlet states, three of which are characterized by a significant oscillator
strength, while the transition to the S3 state is one order of magnitude less intense than
the others (Table S4). Except for S6, all these states result from an electronic excitation
from the Highest Occupied Molecular Orbital (HOMO), which is localized on the central
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phenyl ring and on the aromatic rings of the amine substituents, towards the unoccupied
π* antibonding orbitals located on different parts of the molecule (Figure S11).
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Figure 7. (a) Comparison of the normalized steady-state emission spectra of tBuTPAterpy at room
temperature (red), 77 K (blue) and 77 K after addition of 10% of ethyl iodide to the solution (purple)
(c = 10 µM; λPE = 375 nm); (b) Comparison of the steady-state emission spectra of tBuTPAterpy at
77 K with a 10% addition of ethyl iodide (purple), 77 K emission spectra of terpy (blue) and tBuTPA
(black) (c = 10 µM; λPE = 375 nm); (c) Normalized TRES traces of tBuTPAterpy in BuCN at 77 K
(λPE = 375 nm; emission slit: 1 nm; detector signal: 7000 cps, wavelength step: 3 nm, stop conditions:
300 s).
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panel shows the comparison of the three simulated spectra; TD-DFT—Time-Dependent Density
Functional Theory.

The Lowest Unoccupied Molecular Orbital (LUMO) and LUMO+1 are populated upon
transition to the S1 and S2 electronic states, respectively. Even though the character of both
excitations is essentially the same and can be classified as CT, the LUMO orbital extends
over both the central phenyl ring and the terpyridine fragment, while the LUMO+1 orbital
is located solely on the terpyridine motif (Figure 9). The higher oscillator strength of the
S0 → S1 excitation with respect to the S0 → S2 one should thus be related to the larger
overlap between the two conjugated π-molecular orbitals involved in the former transition.
In contrast, the absence of such an overlap in the case of the LUMO+1 orbital results in
an almost zero value of the transition moment, leading to an inactive S0 → S2 excitation.
Figure S12 shows that the calculated oscillator strength of the HOMO→ LUMO transition is
drastically reduced upon the increase of the dihedral angle between the plane of the phenyl
ring and the plane of the substituent. This effect can be rationalized in terms of a decoupling
of the π-electronic system between the central phenyl ring and the substituents, which
changes the form and the local symmetry of the HOMO and LUMO orbitals. Specifically,
when the plane of the terpyridine rings is perpendicular to the plane of the phenyl ring, the
π-orbitals of the phenyl-terpyridine units become completely decoupled from each other,
and the oscillator strength drops to almost zero. Furthermore, the LUMO orbital localizes
on the terpyridine motif and increases in energy, becoming the LUMO+1 orbital, as shown
in Figure 10. As a consequence, the S1 and S2 states change in their relative energy order,
and the oscillator strength of the S0 transition towards both states becomes very small.
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Since the S1 excitation is characterized by a significant value of the oscillator strength,
the position of the first absorption band maximum is mostly determined by this electronic
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transition. In the calculations, the negligible solvent dependence of the S1 transition energy
agrees very well with the experimental observations, suggesting that both the optimized
GS and the FC region of the S1 state have comparable solvation energies [72]. This is
confirmed by the Polarizable Continuum Model (PCM) energy stabilization of the GS (FC
S1) state compared to the energy of the isolated system, corresponding to 2.6 kcal/mol
(7.1 kcal/mol), 5.3 kcal/mol (7.1 kcal/mol) and 7.6 kcal/mol (13.9 kcal/mol) for n-hexane,
chloroform and acetonitrile, respectively. Since for all solvents both GS and FC S1 states are
stabilized by a similar degree, the energy gap between them does not significantly depend
on the solvent polarity.

In order to characterize the properties of the emissive states, the electronic and geo-
metric configurations of the system were computed, performing structural optimizations
of its relaxed lowest singlet (S1) and triplet (T1) states by using TD-DFT and Unrestricted
Density Functional Theory (UDFT), respectively. The results for the relaxed S1 state are
shown in Figure 11, while the theoretical values of emission wavelength, oscillator strength
and orbital character are reported in Table S3 for both S1 and T1 states. The de-excitation
from the S1 state preserves the same CT character (Figure 11b) of the vertical excitation
from the relaxed S0 structure (HOMO πR1/Ph → LUMO π*R2/Ph), and it is independent of
the solvent employed in the PCM model. The structural changes of the system as a result
of the S1 optimized geometry compared to the initial GS structure are mostly related to
the spatial arrangement of the amine and terpyridine fragments with respect to the plane
of the central phenyl ring (Figure 11a). In the case of the terpyridine group, the dihedral
angle between the plane of the substituent and the plane of the phenyl ring becomes close
to zero, i.e., both fragments of the molecule lay in a common plane. At the same time, the
amino group undergoes a larger torsion with respect to the plane formed by the two other
fragments. Therefore, in the relaxed S1 geometry, the LUMO orbital is localized on the
flattened structure. Instead, the HOMO orbital is almost completely localized along the
vertical plane of the amine group with respect to the central phenyl ring. With respect
to the ground state, the S1 energy can be stabilized, among other processes, by lowering
the energy of the LUMO orbital, i.e., by fully coupling the π-electron system between the
terpyridine motif and the central phenyl ring. This is achieved when both fragments of the
molecule lie in a common plane. At the same time, upon excitation, the depopulation of
the HOMO facilitates the rotation of the amine group. It is worth noting that the oscillator
strength for the vertical transition from the relaxed S1 state is halved compared to the
vertical excitation of the absorption process occurring from the relaxed S0 state. According
to the present analysis, in the relaxed S1 state, the decoupling of the HOMO π-electron
system that results from the rotation of the amino group (Figure 11b) is the most likely
cause of the electronic dipole moment reduction for the excited-to-ground state transition.

The calculated vertical de-excitation energies S1 → S0, without taking into account the
state-specific equilibrium solvation of the excited state, show a negligible dependence on the
solvent polarity and correlate quite well with the experimental data for low-temperature PL
measurements. When including the contribution of the state-specific equilibrium solvation
in the PCM model, the calculated vertical de-excitation energies S1 → S0 reproduce the
relative bathochromic shift observed in the room temperature PL measurements (Table
S4, results indicated by the superscript a), even though the predicted emission energies
are systematically underestimated. This inaccuracy can be related to the limitations of the
PBE0 functional. However, this functional is expected to correctly describe the electronic
structure and the energies of low-lying excited states, as in the case of similar molecular
systems [80], since it captures the relative energy shift of the emission experiment for the
n-hexane, chloroform, and acetonitrile series. Indeed, even though in tBuTPAterpy the
differences between the calculated emission wavelengths and the experimental results
range from ~77 nm to ~109 nm, the relative shift of the simulations correlates well with the
experiment. As such, the observed bathochromic shift can be interpreted in terms of the
“classic” non-equilibrium state effect of the solvent occurring in the electronic transition
between the relaxed excited state S1 and the ground state S0. Overall, the difference in the
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equilibrium and non-equilibrium solvent effects originates from the electronic structure
of the S1 state with respect to the S0 state. Compared to the ground state, the geometry
relaxation of the S1 state leads to a discernible change in the form of the orbitals involved in
electronic excitation. The HOMO→ LUMO excitation, in combination with the geometry
relaxation, increases the electron density polarization, for which one electron remains on
the HOMO orbital localized on the amine group, and the excited electron occupies the
LUMO orbital located on the remaining part of the molecule. Since the excited electron
density increases the difference of the solvent equilibrium interaction around the molecule
in the relaxed S1 and GS, it also causes a stronger stabilization of the S1 state upon solvent
polarity increase.
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Figure 11. (a) tBuTPAterpy geometry changes as a result of the excitation and structural relaxation of
the S1 state; (b) Character of the electronic transition for the S1 excited state in its optimised geometry.
H and L are used as abbreviations for HOMO and LUMO, respectively.

The theoretical analysis presented above allows us to qualitatively explain the ex-
perimental results showing the existence of two emitting conformers, one having higher
oscillator strength and a blue-shifted emission, the other having lower transition probabil-
ity and a red-shifted emission. As shown in Figure 5a,b, the tBuTPAterpy emission band
decreases in intensity and red-shifts upon reduction of the conformational hindrance of the
solution by temperature increase and viscosity decrease, respectively. These observations
can be rationalized by accounting for the conformational-dependent energy stabilization of
the S1 state, which involves the rotation of the amine and terpyridine units with respect to
the central phenyl ring. As discussed above, this structural modification red-shifts the emis-
sion wavelength and decreases the oscillator strength compared to the emission process
occurring from the FC S1 state, which takes place from a molecular structure corresponding
to the S0 energy-stabilized structure.
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3. Materials and Methods

tBuTPAterpy was obtained according to the procedure previously described in [63].
The analytical data (1H and 13C NMR spectroscopy, FT-IR technique, HR-MS and elemental
analysis) for tBuTPAterpy are reported in ESI and are in good agreement with those
reported in ref. [63]. All solvents were of spectroscopic grade, commercially available and
used without further purification.

Steady-state electronic absorption measurements were carried out with an Evolu-
tion 220 (ThermoScientific, Waltham, MA, USA) spectrophotometer. An FLS-980 fluores-
cence spectrophotometer (Edinburgh Instruments, Livingston, UK) was used to collect:
steady-state emission spectra, TRES and PL lifetime measurements, the latter made using
a time-correlated single photon counting (TCSPC). The experimental details of the PL
measurements are briefly described in the ESI.

All calculations were obtained employing the DFT [81] and TD-DFT [82], using the
hybrid PBE0 functional [83,84] and the def2-SVP basis set [85]. Solvation effects on the
system’s geometry and electronic structure were included by using a PCM [86]. Three
solvents of increasing polarities were considered in the PCM model: n-hexane, chloroform
and acetonitrile. At the DFT level, the geometry of the ground state (S0) was fully optimized
without any structural parameter constraints. The optimized geometry of the ground
electronic state was employed in TD-DFT calculations to compute the energies of twenty
singlet vertical excitations. The geometry of the lowest singlet excited state (S1) was fully
optimized using TD-DFT. Full geometry optimization of the lowest triplet state (T1) was
also performed using the UDFT formalism. The vertical de-excitation energy of the triplet
state was determined as the energy difference with respect to the energy of the ground
state in the optimised T1 geometry.

4. Conclusions

By the conjugation of terpy and tBuTPA, new absorption and emission features appear
in tBuTPAterpy. The intramolecular charge transfer character of these new bands is
determined based on a solvent polarity investigation. At room temperature, the large
red-shift and broadening of the emission band upon solvent polarity increase highlights the
charge transfer nature of the lowest in energy excited state. At the same time, the negligible
dependence of the absorption maximum suggests different characters between the initially
populated Franck–Condon state and the lowest energy-emitting state. This conclusion
agrees well with the emission measurements at 77 K, which show only minor changes as a
function of the solvent polarity. The observation of two emission bands in the PL spectra
collected for a series of mixtures of methanol: glycerol of variable composition suggests
the presence of two different emitting states. This hypothesis is further supported by the
detection of an isoemissive point in the TRES spectra in pure glycerol. Rigidochromic
and viscosity effects indicate that the two emitting states are related to conformational
changes of the solute. Finally, tBuTPAterpy shows reversible acidochromic properties in
chloroform solution. DFT calculations reveal a dominant role of S0 → S1 vertical transition
in the absorption band at the lowest energy, which has a charge transfer character. A second
S0 → S2 transition is predicted at similar energies but is not observed in the absorption
spectrum because of its much smaller oscillator strength compared to the S0→ S1 transition.
The striking difference in their transition moment values is a consequence of the different
overlap between the orbitals involved in the electronic excitation. Moreover, by calculating
the potential energy curves for the three lowest singlet states as a function of θ and φ
dihedral angles, an exchange of the order of the S1 and S2 states is observed. By comparing
the results for vertical transitions starting from the energy minimum of the S0 and S1 states,
the same HOMO πR1/Ph → LUMO π*R2/Ph character is found. Calculations including
state-specific equilibrium solvation effects in the PCM provide a theoretical explanation for
the substantial solvatochromic spectral shift of the emission band. The two emissive states
observed in the experiments correspond to the energy-stabilized S1 and Franck–Condon S1
states, differing in the relative orientation of the amine-phenyl-terpyridine units. The results
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reported in this manuscript indicate that tBuTPAterpy possesses an intriguing and complex
photophysics that is highly sensitive to external conditions. The strong solvatochromism
of the presented molecule could be used in applications for bioimaging and biosensing,
such as microenviromental polarity and viscosity sensors. Furthermore, the reversible
acidochromism of this molecule makes it a potential candidate for volatile acids sensors.
Further studies should be devoted to the characterization of the ultrafast dynamics of this
molecule upon intramolecular charge transfer excitation.
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