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Abstract: Salicylic acid (SA) is an active secondary metabolite that occurs in bacteria, fungi, and plants.
SA and its derivatives (collectively called salicylates) are synthesized from chorismate (derived from
shikimate pathway). SA is considered an important phytohormone that regulates various aspects of
plant growth, environmental stress, and defense responses against pathogens. Besides plants, a large
number of bacterial species, such as Pseudomonas, Bacillus, Azospirillum, Salmonella, Achromobacter,
Vibrio, Yersinia, and Mycobacteria, have been reported to synthesize salicylates through the NRPS/PKS
biosynthetic gene clusters. This bacterial salicylate production is often linked to the biosynthesis of
small ferric-ion-chelating molecules, salicyl-derived siderophores (known as catecholate) under iron-
limited conditions. Although bacteria possess entirely different biosynthetic pathways from plants,
they share one common biosynthetic enzyme, isochorismate synthase, which converts chorismate
to isochorismate, a common precursor for synthesizing SA. Additionally, SA in plants and bacteria
can undergo several modifications to carry out their specific functions. In this review, we will
systematically focus on the plant and bacterial salicylate biosynthesis and its metabolism.

Keywords: salicylic acid; siderophore; salicylate hydroxylase; isochorismate synthase; salicylate synthase

1. Introduction

Phenolic compounds contain an aromatic benzene ring with one or more hydroxyl
groups produced as secondary metabolites in nature, primarily in plants and some mi-
croorganisms [1,2]. They were presumed to be the byproducts of metabolic pathways, and
dispensable for important processes common to all organisms [3]. While plants and a few
microorganisms (especially bacteria and fungi) produce phenolics, there are variations
between and within species [4]. In plants, phenolics play crucial roles in the regulation of
different biochemical and physiological processes [5]. One such important phenolic com-
pound is 2-hydroxy benzoic acid, called salicylic acid (SA) [6,7]. There is a wide variation
in the basal levels of SA, with up to 100-fold differences among plants of the same family,
and significant differences between species [8,9].

Although SA or its related metabolites have long been used as a pain reliever, the ac-
tive extract of the inner bark of the Salix alba was isolated and named ‘salicin’ by a German
chemist, Johann Buchner, in 1828 [10]. However, the first report of SA signaling in plants
was published in 1987, when a mass spectroscopic analysis of the male flowers of calla lily
indicated their role in heat production [11]. Subsequent studies revealed that the repro-
ductive organ of gymnosperms and angiosperms displays a thermogenesis phenomenon
due to SA signaling [8,12]. A few years after discovering its role in thermogenesis, SA has
emerged as a signaling molecule during pathogen infection [13]. Exogenous SA application
into tobacco plant leaves was shown to induce pathogenesis-related proteins and improve
resistance to tobacco mosaic virus (TMV) infections [14,15]. Since then, many research
groups have demonstrated that the increased levels of SA are associated with the induction
of defense genes and systemic acquired resistance in the plant species [16,17]. Afterwards,
many studies have established that SA is a key signal molecule in regulating the activation
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of local and systemic defense responses against infections by pathogens [12,16,18]. With
SA being accepted as the ‘sixth’ principal plant hormone in the late 1990s [19], several
scientific groups started working on its different physiological roles, barring thermogenesis
and plant immunity [16,20–23]. In a short period of time, SA has become an essential
signaling molecule in plants and plays a regulatory role in abiotic stresses, like heat stress
and drought, and biotic stresses, such as the systemic acquired resistance mediated defense
response against pathogen infection [24–29]. In addition, SA’s function also influences
plant growth and development by regulating various processes, such as photosynthe-
sis, respiration, vegetative growth, seed germination, flowering, senescence, etc. [30–33].
Furthermore, acetylsalicylic acid (under the popular trade name, Aspirin) has been an
important agent for treating various medical conditions [34]. It has been widely used to
manage fever and pain, as well as for the management of cardiovascular diseases [34–36]
and dermatological conditions such as acne, blisters and pruritus [37].

Chorismate (the end-product of the shikimate pathway) is employed as a primary
source for the SA biosynthetic pathway. The shikimate pathway starts with erythrose-
4-phosphate and phosphoenolpyruvate, and a series of condensation/redox reactions
occur, resulting in the formation of chorismate [38,39]. This exclusively conserved path-
way is found in bacteria, plants, and fungi, but not in animals [40]. Chorismate is a
central metabolic route for the biosynthesis of aromatic amino acids (L-tryptophan, L-
phenylalanine, and L-tyrosine) and various aromatic secondary metabolites (such as alka-
loids, flavonoids, lignins, aromatic antibiotics, and SA) [41,42]. Thus, chorismate acts as a
common connecting precursor of primary and secondary metabolism [43,44]. The first step
in the SA biosynthesis is to convert chorismate to isochorismate by using isochorismate
synthase (ICS), or its homologous enzyme, common to both bacteria and plants [20,45].
Seven chorismate-utilizing enzymes exist. Of these, five (ICS, salicylate synthase (SAS),
anthranilate synthase, aminodeoxyisochorismate synthase, aminodeoxychorismate syn-
thase) are structural homologues and are collectively known as menaquinone, siderophore,
and tryptophan (MST) enzymes [46]. The others, two chorismate-utilizing enzymes (cho-
rismate mutase and chorismate lyase), belong to the non-MST family and are responsible
for biosynthesizing phenylalanine, tyrosine amino acid, and ubiquinone. Among the
above-mentioned seven enzymes, five are present in both plants and bacteria, while the
other two (SAS and chorismate lyase) are exclusively reported in bacteria.

The biosynthesis of SA and its functions in plants have now been completely un-
derstood through two breakthrough studies [47,48]. However, knowledge on microbial
SA biosynthesis is still scarce, and their functions are yet to be elucidated. In plants, SA
functions as a hormone, regulating several physiological processes, such as biotic and
abiotic stress responses, seed germination, and flowering [6,24,25]. Meanwhile, in bac-
teria, SA is mainly associated with salicyl-derived siderophores [49,50], and some of its
derivative compounds also act as antibacterial agents, e.g., promysalin [51]. Salicyl-derived
siderophores are produced by few plant-growth-promoting rhizobacteria and pathogenic
bacteria [52,53]. Considering the practical importance of SA, the objective of this study is
to investigate the occurrence of bacterial salicylate, its biosynthetic pathways, and compare
with plant SA biosynthesis. Herein, we have illustrated bacterial salicylate production
with two crucial examples. Overall, this review confirms that bacterial salicylate is directly
correlated with salicylate-derived siderophore biosynthesis.

2. Biosynthesis of SA: Overview

SA is usually known as a defense-related plant hormone, regulating various cellular
processes. In addition, many bacterial spp. also produce SA as an intermediate compound
and they are ultimately incorporated into salicylate-based siderophores. All prokaryotic
and eukaryotic organisms require chorismate as a starting precursor for SA biosynthesis.
In plants, SA biosynthesis is considered to originate from two pathways: the isochorismate
synthase (ICS) pathway (major fraction) and the phenylalanine ammonia-lyase (PAL)
pathway [6,47,48]. Both are biosynthetic pathways starting in plastids from chorismate
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and vary between plant species. In bacteria and fungi, SA or its derivates are produced
as natural products [49]. These natural products are secondary metabolites (such as SA,
siderophore, aromatic antibiotics, and lignins) and encoded by a set of genes termed as a
biosynthetic gene cluster (BGC) [54]. Typically, BGC is found as contiguous clusters on the
genome, and their genes encode all enzymes required to synthesize a secondary metabolite.
All genes are organized as an operon and expressed jointly [55,56]. There are two common
BGC systems: nonribosomal peptide synthetase (NRPS) and polyketide synthases (PKS),
which are involved in the majority of secondary metabolite synthesis [57]. The borders of
a BGC can be hard to predict because multiple genes of a biosynthetic pathway are often
expressed on a single operon and separated by few (30–50) nucleotides. In some scenarios,
the genes of a BGC are encoded by multiple operons. However, many computational
tools, such as ClusterFinder, antiSMASH, ClustScan, etc., can be used to detect BGCs in the
microbial genome [58].

2.1. Biosynthesis of SA in Plants

Two SA biosynthetic pathways have been elucidated in plants, namely, the ICS and
the PAL pathways [6,20,47,48] (Figure 1). Although plants use both biosynthetic pathways
simultaneously, ICS is the major pathway contributing to more than 90% of SA synthe-
sis [48,59]. Both pathways originate from a primary metabolic precursor, chorismate. In
the ICS pathway, the first step is the conversion of chorismate to its isomer, isochorismate,
by the ICS enzyme, and this is found to be a common step in both bacteria and plants [60].
Usually, plants have one or two genes encoding for the ICS enzyme (e.g., Arabidopsis and
soybean have two ICS genes, while rice contains only a single ICS gene). Although their
activity may vary among plant species, their primary structures are almost conserved [60].
In plants, isochorismate is synthesized in plastids and subsequently transported from
plastids to the cytosol with the enhanced disease susceptibility 5 (EDS5) gene. This gene
localized on the plastid envelope and encoded for plastidal MATE (multidrug and toxic
compound extrusion) transporter enzyme [47,48,61]. Subsequently, ICS is conjugated with
L-glutamate and converted to isochorismate-9-glutamate (ICS-Glu) through the cytosolic
amidotransferase enzyme. These amidotransferases are encoded by avrPphB susceptible
3 (PBS3; also known as Gretchen Hagen 3.12). Finally, the spontaneous decomposition
of ICS-Glu yields SA and 2-hydroxy- acryloyl-N-Glutamate. However, occasionally, an
acyltransferase encoded by enhanced Pseudomonas susceptibility 1 (EPS1) may be involved
in this final step [22,48]. Moreover, the activity of PBS3 amidotransferase is inhibited by
SA as a negative feedback regulation. Additionally, plants utilize the PAL pathway to
synthesize a minor fraction (~10%) of SA and this occurs entirely in the cytosol. Here, the
PAL enzyme converts phenylalanine to trans-cinnamic acid (t-CA), and the gene encoding
for this enzyme is present in multiple copies in plants [62]. Later, t-CA is converted to SA
via two possible intermediates: ortho-coumaric acid and benzaldehyde.

SA in plants exists in two main forms: its active free form and its inactive vacuolar stor-
age form (SA glucoside: (SAG), SA glucose ester: (SGE)). SAG and SGE accumulate in the
cell vacuoles in large quantities and can form active, usable forms by hydrolysis [63]. Due
to pathogen attack, the total SA (SA + SAG/SGE) level increases enormously and activates
the systemic acquired resistance dependent defense pathway. In addition, methylation of
SA results in the formation of a volatile form of SA, namely methyl salicylate, which is
responsible for increased membrane permeability. Methyl salicylate can serve an impor-
tant function for plant–insect interactions and systemic acquired resistance signaling [64].
Additionally, hydroxylation of SA results in 2,3-dihydroxybenzoic acid (2,3-DHBA) [65].
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Figure 1. Salicylic acid biosynthesis in plants. Plants possess two pathways (ICS and PAL) and
both start from chorisimic acid. In the ICS pathway isochorismate requires two additional genes,
named EDS5 and PSB3. The EDS5-encoding enzyme exports isochorismate from the plastid to the
cytosol. Further, isochorismate attached to glutamic acid with the help of PBS3 (encoding cytosolic
amidotransferase), consequently leads to the formation of an unstable compound, isochorismate-9-
glutamate. The non-enzymatic decomposition of isochorismate-9-glutamate then yields salicylate
and 2-hydroxy-acryloyl-N-glutamate as final products. The PAL pathway includes the amino acid,
phenylalanine as an intermediate compound and comprises multiple sequential enzymatic steps,
indicated by several arrows. SA may exist in various modified functional forms, for instance,
SAG/SGE, MeSA, 2,3-DHBA. Abbreviation: EDS5 (enhanced disease susceptibility 5), EPS1 (enhanced
Pseudomonas susceptibility 1), PBS3 (avrPphB susceptible 3), SAG (SA glucoside), SGE (SA glucose
ester), MeSA (methyl salicylate), 2,3-DHBA (2,3-dihydroxybenzoic acid), MT (methyltransferases),
UDP-GST (uridine diphosphate glucose-glycosyltransferase) S3H (SA 3-hydroxylase).

2.2. Biosynthesis of SA in Bacteria

A large number of different bacterial genera have been reported to synthesize SA, or
its related metabolites, especially in plant-growth-promoting rhizobacteria [52]. Among
these, the Pseudomonas genus is versatile and its presence is well documented. Bacterial SA
synthesis seems to be an artifact and usually incorporates SA into SA-derived siderophores
(detail discussed in Section 3). In bacteria, secondary metabolite biosynthesis is controlled
by a set of two or more locally clustered genes, known as BGCs. They together encode
a core biosynthetic enzyme for the backbone of the compound [66]. In addition, BGC
also consists of many genes for (1) regulatory enzymes (transcription factors), (2) tailoring
enzymes for modifying backbone structure, and (3) enzymes required for transportation
and resistance [67]. Diverse structural classes of BGCs exist, such as nonribosomal pep-
tide synthetases (NRPSs) and polyketide synthases (PKSs), bacteriocins, cyclopeptides,
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terpenes and homoserine lactones, etc. Typically, one BGC accounts for the production
of one or several similar bioactive compounds, and they may vary in terms of specificity.
Furthermore, the synthesis of some secondary metabolites implicates two or more BGCs.

3. SA-Derived (Catecholate) Siderophores in Bacteria

Siderophores are small Fe3+-chelating secondary metabolites secreted by bacteria and
fungi under low-iron conditions [68]. In addition, some plants also produce siderophores
for iron acquisition [69]. Generally, siderophores are produced intracellularly and secreted
outside the cell as iron-free (deferri) compounds. After scavenging iron (Fe3+ form), the
iron-siderophore complex is transported into the cell by the transport system. Based on their
structural features and iron-chelating functional groups, siderophores have been classified
into three main classes: catecholate (also termed as pheno-catecholate or salicyl-derived
siderophore), hydroxamate, and carboxylate [70]. In addition, there are mixed-types (con-
taining more than one of the above-named moieties). In the aforementioned three major
classes of siderophores, catecholate siderophores are exclusively produced by bacteria. Usu-
ally, bacterial SA is assimilated into the salicyl-derived (termed as salicylates) siderophore
backbone. A few mycorrhizal fungi (Ustilago maydis and Phialocephala fortinii) have also
been reported to produce hydroxamate siderophore [71]. Further, the Pseudomonas spp.
have been documented as the main synthesizer for the catecholate siderophore. More
than 100 salicylate siderophores have been reported, and a few are listed in Table 1. Based
on their major structural moieties, the catecholate siderophores can be classified into
three classes, oxazoline/oxazole, thiazoline/thiazole, and serine-backbone groups. All
catecholate siderophores use SA or its hydroxylated derivate, 2,3-dihydroxybenzoic acid
(2,3-DHBA), as the common precursor, and its biosynthesis has been well established to
involve enzymatic transformations starting from chorismate [72]. Furthermore, several bac-
teria are capable of producing more than one type of siderophore, such as mycobacterium
(produces both types, catecholate and carboxylate).

Table 1. Salicylic acid-producing bacteria and their salicylate-derived siderophores.

Bacteria Species Salicylate-
Siderophore Bacterial Source NRPS Biosynthetic

Genes References

Anabaena cylindrical # Anachelin Pond ICS-IPL [73,74]

Acinetobacter baumannii Acinetobactin * Human ICS-IPL [75,76]

Pseudomonas fluorescens CHA0 Pyochelin Tobacco rhizosphere ICS-IPL [77–79]

P. fluorescens WCS374 Pyochelin Potato rhizosphere ICS-IPL [80,81]

P. fluorescens WCS417 Pyochelin Wheat rhizosphere ICS-IPL [80,82,83]

Serratia marcescens Pyochelin Cucumber/Tobacco
rhizosphere ICS-IPL [84,85]

P. aeruginosa 7NSK2 Pyochelin Barley roots ICS-IPL [78,86–88]

P. aureofaciens 63-28 Pyochelin Cucumber roots ICS-IPL [89]

P. corrugata 13 Pyochelin Cucumber roots ICS-IPL [89]

P. fluorescens Pf4–92 Pseudobactin * Chickpea rhizosphere ICS-IPL [90,91]

P. fluorescens PICF3 Pyochelin Olive root ICS-IPL [81]

P. aeruginosa RsG18 and P.
aeruginosa RsG27 Pseudobactin * Rhizosphere soil ICS-IPL [92]

P. cepacia Azurechelin * Human ICS-IPL [93]
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Table 1. Cont.

Bacteria Species Salicylate-
Siderophore Bacterial Source NRPS Biosynthetic

Genes References

P.tremae N/A Leaves of Salix
babylonica N/A [94]

Paenibacillus larvae Bacillibactin Larvae of honeybees ICS-IPL [95]

Azospirillum iipoferurn D-2 N/A Digireria roots ICS-IPL [96]

Bacillus anthracis Petrobactin Sunflower soil ICS-IPL [97]

Marinobacter hydrocarbonoclasticus Petrobactin N/A ICS-IPL [98]

B. pumilus SF3 Bacillibactin Sunflower plant ICS-IPL [95,99,100]

B. subtilis Bacillibactin Banana plant [100]

Citrobacter Enterobactin Tomato roots ICS-IPL [101]

Klebsiella pneumoniae Enterobactin Tomato leaves ICS-IPL [101]

Photorhabdus luminescens Photobactin Nematode(Heterorhabditis
bacteriophora) SAS [102]

Amycolatopsis methanolica 239T Amychelin Soil SAS [103]

Salmonella enterica serotype
Typhimurium Salmochelin Human SAS [104–106]

Vibrio cholerae Vibriobactin Human SAS [107,108]

V. vulnificus Vulnibactin Human SAS [108–111]

Yersinia enterocolitica Yersiniabactin * Human SAS [112–114]

Y. pestis Yersiniabactin * Human SAS [115]

Mycobacterium tuberculosis Mycobactin Human SAS [116–121]

* Stands for mixed-type siderophore containing salicylates siderophore; # Stands for cyanobacterium; T Stands for author name (Tang et al.);
N/A stands for not available.

Siderophore biosynthesis occurs in two ways: the nonribosomal peptide synthetase
and polyketide synthases (NRPS/PKSs) pathway, and the NRPS-independent siderophore
(NIS) synthetase pathway. Both NRPS/PKSs and NIS biosynthetic enzymes are encoded as
BGCs on the microbial genome. Further, each gene is encoded by a specific module and rep-
resents a specific enzyme. Bacteria synthesize salicyl-derived siderophores by two methods:
either NRPS biosynthetic gene clusters (NRPS BGC) or NRPS/PKS hybrid biosynthetic
gene clusters (NRPS/PKS BGC). For example, pyochelin and bacillibactin biosynthesis
involves NRPS, while yersiniabactin and mycobactin involve both NRPS/PKS [122]. PKSs
are commonly found in fungi, but they are also contained in a few bacteria. Addition-
ally, some bacteria employ other gene clusters along with NRPS/PKS biosynthetic gene
clusters [123].

NRPS catalyzes the synthesis of highly diverse natural microbial products, such as
antibiotics, toxins, and siderophores [124]. They are found in all three domains of life
(bacteria, archaea, and eukarya) and can synthesize a peptide from a variety of standard,
non-proteinogenic amino acids, as well as carboxylic and hydroxy acids. Typically, NRPSs
are multimodular enzymes consisting of repeated modules (type I NRPS), but nonmodular
enzymes (type II NRPS) are also reported [125,126]. In multimodular NRPS, each module
contains three domains: adenylation domain, thiolation domain (also termed as peptidyl
carrier protein), and condensation domain. Condensation domains of NRPS (which cat-
alyze the amide bond formation) are functionally the most important and suitable target
for natural product genomic analysis [125,127]. Nonmodular NRPSs are linear, comprising
specialized tailoring enzymes for more diversification. Nonmodular NRPSs commonly
combine their substrate with other pathways to generate a final product [126]. All NRPS
biosynthetic genes are organized as operons in BGCs, and their regulation takes place
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at a transcriptional or post-translational level [128,129]. Additionally, salicylate-derived
siderophores comprising BGC show significant similarity among the same bacterial genus.
For instance, the salicylate-coding gene cluster of P. fluorescens was compared with the
other three Pseudomonas strains and showed a 99% (having 100% query coverage) identity
in conserved biosynthetic gene sequences [56].

Biosynthetic genes are encoded by a specific module of the NRPSs gene cluster. Two
SA biosynthetic routes have been illustrated in bacteria, and the SA is finally incorporated
into salicyl-derived siderophores or other metabolites (Figure 2). First, most SA-producing
bacterial spp. (e.g., Pseudomonas and Bacillus spp.) operate an ICS-like biosynthetic path-
way. Here, the first step is converting chorismate to its isomer, isochorismate, by the
ICS enzyme, while the next step requires another enzyme, isochorismate pyruvate lyase
(IPL). IPL converts isochorismate to SA and pyruvate, and is considered a crucial enzyme
for bacterial salicylate biosynthesis [45]. So far, no orthologous gene corresponding to
bacterial IPL has been identified in plant genomes [7]. Second, some pathogenic bacterial
spp. (Yersinia, Vibrio, Salmonella, and Mycobacterium) possess a single bifunctional enzyme
called salicylate synthase (SAS) that can directly convert chorismate to SA through an
isochorismate intermediate. All bacterial biosynthetic genes, ICS, IPL, and SAS are encoded
by a specific module of an NRPS BGC. Further, both ICS and SAS enzymes evolutionally
originate from a common ancestor and are highly similar to each other [46,113]. The type I
NRPS and the type II NRPS siderophores are represented by the vibriobactin siderophore
(in Vibrio) and mycobactin (in Mycobacterium), respectively.

Salicylate monooxygenase (also known as salicylate 1-hydroxylase) converts salicylate
into catechol (1, 2-dihydroxybenzene). This enzyme is also important for salicyl-derived
siderophore synthesis and is encoded by a specific module of the NRPS biosynthetic gene
clusters [129–131]. These enzymes in the Pseudomonas species are encoded from the genes
of NahG in P. fluorescens 142 NF and P. putida [131,132], NahW in P. stutzeri AN10 [133], and
NahU in P. putida BS3701 [134].

Pyochelin siderophore is made from one molecule of SA and two molecules of cysteine
by a thiotemplate mechanism. In Pseudomonas aeruginosa, the biosynthesis of pyochelin
takes place by the BGC comprising pchDHIEFKCBA operon [135–137]. Two enzymes, pchA
(ICS) and pchB (IPL), start the synthesis. Chorismate is converted to isochorismate by the
pchA and subsequently, the isochorismate is converted to salicylate by pchB. Subsequently,
salicylate is activated by pchD (salicyl-adenylating enzyme). In the meantime, enzyme
pchC (encoded for type II thioesterase) removes wrongly charged molecules. Afterward,
two tailoring enzymes (pchE and pchF) add L-cysteine residues and perform cyclization
and epimerization, resulting in the formation of an intermediate product. Finally, the action
of pchK (saccharopine reductase) results in pyochelin synthesis (Figure 3a).

Mycobactin biosynthesis is performed by an NRPS/PKS hybrid system in M. tuber-
culosis. The biosynthetic genes are encoded by two BGCs (Mbt-1 and Mbt-2) and include
14 gene encoding enzymes [121]. The Mbt-1 cluster (mbtA-mbtJ) consists of 10 essential gene
encodings for biosynthetic enzymes (MbtA-MbtJ) involved in core mycobactin scaffold
formation (Figure 3b), while Mbt-2 includes four genes encoding for acyltransferase. Mbt-1
consists of salicylate synthase encoded as Mbt I, which initiates the synthesis of mycobactin
followed by the activation of salicylic acid by the adenylating enzyme, MbtA. Similarly, V.
cholerae produces the catechol siderophore, vibriobactin, using vibABCDEFH BGC operon.
Here, the BGC operon contains SAS encoded by VibH [108,138].
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enzyme SAS encoded by MbtI (in Mycobacterium) and Irp9 (in Yersinia) converts chorismate to 
SA. Further, SMO (also called S1H) converts SA to 1,2-dihydroxybenzene (catechol). Additionally, 
hydroxylation of SA results in 2,3-DHBA and 2,5 DHBA. Here, salicylate/2, 3-DHBA/catechol can 
be converted to salicyl-derived siderophores with the help of more than one enzyme. Moreover, 
catechol and gentisate (2, 5-DHBA) are also metabolized in the TCA pathway. Promysalin, an anti-
biotic synthesized from SA is also reported in a few Pseudomonas spp. [51]. Solid arrows denote 
single enzymatic steps, while several arrows denote multiple sequential enzymatic steps. All the 

Figure 2. Proposed bacterial pathway for the biosynthesis of SA and their derivative catecholate
siderophore. The catecholate siderophore group is only found in bacteria, and their core structures
are synthesized from the SA-BGC system. In the Pseudomonas spp., SA is synthesized from chorismate
via a two-step enzymatic process (pchA; ICS and pchB; IPL), while the single bifunctional enzyme SAS
encoded by MbtI (in Mycobacterium) and Irp9 (in Yersinia) converts chorismate to SA. Further, SMO
(also called S1H) converts SA to 1,2-dihydroxybenzene (catechol). Additionally, hydroxylation of SA
results in 2,3-DHBA and 2,5 DHBA. Here, salicylate/2, 3-DHBA/catechol can be converted to salicyl-
derived siderophores with the help of more than one enzyme. Moreover, catechol and gentisate (2,
5-DHBA) are also metabolized in the TCA pathway. Promysalin, an antibiotic synthesized from SA
is also reported in a few Pseudomonas spp. [51]. Solid arrows denote single enzymatic steps, while
several arrows denote multiple sequential enzymatic steps. All the demonstrated chemical structures
are drawn using the ChemDraw 13.0 software (PerkinElmer, Waltham, MA, USA). Abbreviations:
ICS, isochorismate synthase; IPL, isochorismate pyruvate lyase; SAS, salicylate synthase; SMO,
salicylate1-monooxygenase; S1H, salicylate 1-hydroxylase; S3H, SA 3-hydroxylase; S5H, salicylate
5-hydroxylase; DHBA, dihydroxybenzoic acid; TCA, tricarboxylic acid.
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Figure 3. Biosynthesis pathway of catecholate siderophore in bacteria (a) Pyochelin biosynthesis in P. aeruginosa using BGC
comprising the pchDHIEFKCBA operon. The biosynthesis of pyochelin is initiated from chorismate by two salicylic acid
synthesizing enzymes pchA (ICS) and pchB (IPL), encoded by NRPS BGC. Other gene encoding enzymes are pchC (type
II thioesterase); pchD (salicyl-adenylating enzyme); pchE and pchF (tailoring enzyme that adds L-cysteine and performs
cyclization and epimerization); pchK (saccharopine reductase); pchH and pchI (transporter enzyme). (b) Core mycobactin
scaffold biosynthesis in M. tuberculosis by using BGC comprising the MbtA-J operon. Biosynthesis is carried out by a cluster
consisting of 10 essential gene encodings for the enzyme (MbtA-MbtJ). Conversion of chorismate to salicylate requires the
main enzyme, MbtI. MbtI (salicylate synthase); MbtA (salicyl-adenylating enzyme); MbtB (enzyme for acyl carrier protein);
MbtB and MbtE (enzyme for the addition of serine and lysine residues, respectively); MbtC & MbtD (enzyme for the
addition of malonyl CoA residues); MbtF (enzyme for the addition of terminal lysine); MbtG (enzyme for N6-hydroxylation
of L-lys); MbtJ and MbtH (enzyme encoding unknown functions).

In several bacteria, siderophores can act as virulence factors to combat the host im-
mune system [139,140]. Many catecholate-type siderophores are also found in pathogenic
bacteria, such as mycobactin (M. tuberculosis), vibriobactin (Vibrio cholera), salmochelin
(Salmonella enterica), petrobactin (Bacillus anthracis), and Yersiniabactin (Yersinia entero-
colitica), and are responsible for their pathogenicity (Table 1 [53,141]. Among all the
categories of siderophores, the catecholate-type has stronger iron affinities than transfer-
rin and lactoferrin [142]. These features help it to gain a high degree of pathogenicity
in catecholate-producing pathogenic bacteria. Pathogens sequester iron from the host
protein using siderophores. To counter this, lipocalin-2 protein is released by the host
immune system, which sequesters the catecholate-type siderophores and thus impedes
bacterial growth [53,143]. Furthermore, few bacteria, such as B. anthracis and S. enterica,
secrete lipocalin-2 resistant stealth siderophores and evade the host immune system. Hence,
siderophores and their biosynthetic enzymes (ICS/IPL/SAS) could act as a suitable target
for drugs and could be helpful for medicine development in the future.

4. Quantification of Salicylic Acid or Salicylate Siderophore
4.1. Quantification of Salicylic Acid in Plant

Quantification of total salicylic acid (both free SA and SA-glucosides) in plant tis-
sues can be done by either using the gas chromatography–mass spectrometry (GC–MS)-
based [144–146] or the high performance liquid chromatography (HPLC)-based method [147].
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For both methods, briefly plant tissues were homogenized in liquid nitrogen and mixed
with methanol, followed by centrifugation. Subsequently, the collected supernatant was
mixed with extraction solvent such as ethyl acetate–cyclohexane (1:1) (for HPLC-based
method) or ethyl acetate (for GC–MS-based method). Afterwards, the sample was analyzed
by using a standard amount of SA. GC–MS are highly sensitive approaches that allow more
accurate quantification of plant hormones [144].

4.2. Quantification of Bacterial Salicylic Acid and Detection of Salicylate Siderophore
4.2.1. Quantification of Bacterial Salicylic Acid

SA synthesis in broth culture can be determined by the previously described method [78,94].
The chosen bacterial strains were grown in Tris-HCl-buffered (100 mM Tris-HCl; pH 7.5)
casamino acid media (0.25 g MgSO4.7H2O, 0.9 g K2HPO4, 5 g casamino acids in one liter)
at 37 ◦C for 24–36 h. Cells were centrifuged at 3500 revs/min for 15 min and the pH of
the culture supernatants were adjusted to 2.0 with the help of 1N HCl. Thereafter, SA was
extracted by CHCl3 (culture supernatant: CHCl3; 3:1) by vigorous shaking. For the quanti-
tative study, one volume of 2.5 mM FeCl3 was added to the CHCl3 phase. Consequently,
the purple Fe–SA complex developed in the aqueous phase, and the absorbance of this
complex was measured at 520 nm. SA dissolved in the same growth medium was taken
as standard.

4.2.2. Detection of Salicylate Siderophore

Chrome azurol sulphonate (CAS) agar plates were used for regular detection of
siderophores [148,149]. However, this assay does not indicate the type of siderophore,
and the alternative Arnow’s test was required to be performed for salicylate-derived
siderophores [49,150]. This test is based on the reaction between catechol and nitrite-
molybdate reagent. The reagent was prepared by dissolving 10 g NaNO2 and 10 g
Na2MoO4.2H2O in 100 mL of water. Reactants produce a yellow color in an acidic so-
lution, but their color turns to an intense orange-red in alkaline conditions due to the
presence of catecholate-type siderophores. Accordingly, bacterial cultures grown overnight
were centrifuged at 3500 revs/min and rinsed with 1X phosphate-buffered saline (pH
7.4). Subsequently, 1.0 mL of culture filtrate was mixed with 1.0 mL of 0.5 N HCl, and 1.0
mL of nitrite-molybdate reagent. Then 1.0 mL of 1N NaOH was added and incubated at
room temperature for ~5 min, resulting in the generation of an intense orange-red color
formation. The intensity of the color is directly correlated with the amount of siderophores.
The absorbance was measured at 510 nm with blank (uninoculated growth media) and
standard (known concentration of 2,3-DHBA dissolved in the growth medium).

5. Conclusions and Future Perspectives

SA is a phytohormone and a secondary metabolite occurring in plants and microor-
ganisms, such as bacteria and fungi. For both plants and bacteria, the biosynthetic pathway
requires chorismate, which acts as a central branching point between primary and sec-
ondary metabolism. This chorismate is converted to isochorismate, a common step for
SA biosynthesis in both plants and bacteria. In plants, the PBS3 amidotransferase is im-
portant for SA accumulation, which catalyzes the conjugation between isochorismate and
L-glutamate. The bacterial salicylate production is distinct from that of plants and is often
related to the biosynthesis of salicyl-derived siderophores under iron-limited conditions,
especially in plant growth-promoting rhizosphere bacteria and pathogenic bacteria. In
bacterial species, biosynthetic and regulatory enzymes are encoded by the NRPS BGC on
the genome. In salicylate-coding gene clusters, SA biosynthesis starts from chorismate
through two pathways, either reaction catalyzed by two different enzymes, ICS and IPL,
or a single bifunctional enzyme, SAS. A specific module of bacterial NRPS/PKS encodes
these enzymes during the siderophore biosynthesis. In addition, NRPS/PKS also pos-
sess many genes for post-translational modification, which leads to structure variability.
Several rhizospheric and endophytic bacterial species have been reported as salicylate-
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producing bacteria, with most of them belonging to Pseudomonas genera. Salicylate-derived
siderophores play a vital role in the pathogenicity of few bacterial species, and their
biosynthetic enzyme serves as a prime target for inhibitory drug development. Although
remarkable progress has been made for SA biology in plants, there are still many key
questions to be addressed about salicylate biosynthesis and the function of SA-derivatives
in bacteria.
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