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BACKGROUND/OBJECTIVES: Oxidative stress causes cell damage and death, which contribute to the pathogenesis of 
neurodegenerative diseases. Urolithin A (UA), a gut microbial-derived metabolite of ellagitannins and ellagic acid, has high 
bioavailability and various health benefits such as antioxidant and anti-inflammatory effects. However, it is unknown whether 
it has protective effects against oxidative stress-induced cell death. We investigated whether UA ameliorates H2O2-induced 
neuronal cell death. 
MATERIALS/METHODS: We induced oxidative damage with 300 μM H2O2 after UA pretreatment at concentrations of 1.25, 2.5, 
and 5 μM in SK-N-MC cells. Cytotoxicity and cell viability were determined using the CCK-8 assay. The formation of reactive 
oxygen species (ROS) was measured using a 2,7-dichlorofluorescein diacetate assay. Hoechst 33342 staining was used to characterize 
morphological changes in apoptotic cells. The expressions of apoptosis proteins were measured using Western blotting. 
RESULTS: UA significantly increased cell viability and decreased intracellular ROS production in a dose-dependent manner in 
SK-N-MC cells. It also decreased the Bax/Bcl-2 ratio and the expressions of cytochrome c, cleaved caspase-9, cleaved caspase-3, 
and cleaved PARP. In addition, it suppressed the phosphorylation of the p38 mitogen-activated protein kinase (MAPK) pathway. 
CONCLUSIONS: UA attenuates oxidative stress-induced apoptosis via inhibiting the mitochondrial-related apoptosis pathway 
and modulating the p38 MAPK pathway, suggesting that it may be an effective neuroprotective agent.
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INTRODUCTION1)

Oxidative stress is involved in the pathogenesis of diseases 
such as cardiovascular disease, chronic kidney disease, neuro-
degenerative diseases (NDs), macular degeneration, and cancer 
[1]. Reactive oxygen species (ROS) generated during normal 
metabolic processes of cells are removed by intracellular 
antioxidant enzymes, but imbalances between the production 
and elimination of ROS that result from abnormalities of the 
antioxidant homeostasis system induce oxidative stress [2-4]. 
Oxidative stress causes peroxidation of lipids in the cell membrane, 
impairment of intracellular essential components such as 
proteins and DNA, induction of mitochondrial dysfunctions, and 
activation of apoptosis-related cell signals, eventually leading 
to fatal injury and cell death [5,6].

NDs including Alzheimer’s disease (AD) and Parkinson’s 
disease (PD) lead to progressive loss of cognitive and behavioral 
capacities, resulting in severe disability and death [7]. Although 
pathological mechanisms involving NDs are complex and have 
not yet been fully elucidated [6], apoptosis induced by oxidative 
stress and abnormal protein aggregation are major causes of 

pathogenesis [7-9]. Thus, protecting neuronal cells from injury 
by oxidative stress is considered a promising therapeutic approach 
for the treatment of NDs in terms delaying progression and 
improving status of disease [10]. 

According to epidemiological studies and many in vitro and 
in vivo intervention studies, dietary polyphenols have many 
health benefits such as antioxidant, anti-inflammatory, anticancer, 
anti-obesity, anti-diabetic, and neuroprotective effects [3]. 
However, because only 5-10% of dietary polyphenols are 
absorbed in the small intestine, to apply as dietary agents for 
the prevention or treatment of diseases has the limitation 
[11,12]. Several studies have recently reported that the health 
benefits of polyphenol-rich foods are mainly due to their gut 
microbial-derived metabolites, not their polyphenol compounds 
[12,13]. Polyphenols are converted into phenolic metabolites of 
small molecular weight by the action of gut microbiota in the 
small intestine; these gut microbial-derived metabolites have 
high bioavailability and permeability of the blood-brain barrier 
(BBB) [14]. 

Ellagitannins (ETs) are hydrolyzed into ellagic acid (EA) in the 
body after ingestion of polyphenols in pomegranates, walnuts, 
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and berries. ETs and EA have excellent antioxidant and 
cell-protective abilities but they are also limited in having low 
bioavailabilities; thus, studies have increasingly investigated gut 
microbial-derived metabolites such as urolithins (uros) [15,16]. 
Uros have been found in various forms such as Uro-M5, Uro-M6, 
Uro-M7, Uro-D, Uro-C, Uro-B, Uro-A, and isoUro-A. Among them, 
Uro-A (UA) is the most common form in humans. It has health 
benefits such as antioxidant, anti-cancer, anti-inflammation, and 
anti-obesity effects in vivo and in vitro [17,18]. However, there 
have been no reports on the effects of UA on brain-related 
diseases, such as NDs caused by oxidative stress.

In this study, we investigated the protective effects of UA 
against H2O2-induced oxidative stress in human neuroblastoma 
SK-N-MC cells. We also examined possible mechanisms asso-
ciated with the action of UA.

MATERIALS AND METHODS

Materials
The SK-N-MC human neuroblastoma cell line was purchased 

from American Type Culture Collection (Rockville, MD, USA). 
Eagle’s minimum essential medium (EMEM), trypsin-EDTA, 
antibiotics, Dulbecco’s phosphate-buffered saline (PBS), and 
Hank’s balanced salt solution (HBSS) were purchased from 
WelGENE (Daegu, Republic of Korea). Fetal bovine serum (FBS), 
urolithin A (UA), and general reagents were purchased from 
Sigma-Aldrich (St. Louis, MO, USA). Cell counting Kit-8 (CCK-8) 
assay reagents were purchased from Dojindo Molecular Techno-
logies (Gaithersburg, MD, USA), and the intracellular ROS assay 
kit was purchased from Cell Biolabs (San Diego, CA, USA). 
Anti-Bax (#2772), anti-total p38 (#9212), anti-caspase-9 (#9502), 
anti-caspase-3 (#9665), anti-PARP (poly (ADP-ribose) polymerase, 
#9532), anti-mouse IgG horseradish peroxidase [HRP]-conjugated 
antibody (#7076), anti-rabbit IgG HRP-conjugated antibody 
(#7074), and p38 mitogen-activated protein kinase (MAPK) 
inhibitor SB203580 (#5633) were purchased from Cell Signaling 
Technology (Danvers, MA, USA).

Cell culture and treatment
SK-N-MC cells were grown in EMEM supplemented with 10% 

FBS and 1% antibiotics, and maintained in a humidified 
incubator at 37°C in an atmosphere of 5% CO2 and 95% air. 
The cell culture medium was changed every 2 days. When the 
cells were approximately 90% confluent, they were subcultured 
in plates at an appropriate density according to each 
experimental scale. The cells were pretreated with various 
concentrations (1.25, 2.5, and 5 μM) of UA for 6 h and then 
exposed to 300 μM H2O2 for 18 h.

Measurement of cell viability 
The cell viability was evaluated using a CCK-8 assay [19]. 

CCK-8 is reduced by dehydrogenases in cells to give a yellow-
colored product (formazan). The amount of the formazan dye 
generated by the activity of dehydrogenases in cells is directly 
proportional to the number of living cells. This characteristic 
can be used for cell viability analysis. The cells were seeded 
at 5 × 104 cells/100 μL in a 96-well plate and cultured for 24 
h to confirm cell viability. After the cultured cells had been 

treated with various concentrations of UA and H2O2 for various 
times, they were incubated with the CCK-8 solution for 2 h. 
Then absorbance at 450 nm was measured using a microplate 
reader (Sunrise; Tecan, Grödig, Austria).

Measurement of intracellular ROS production
To measure the amount of ROS produced in cells, used the 

cell-permeable fluorogenic probe 2’, 7’-Dichlorodihydrofluorescin 
diacetate (DCFH-DA). In brief, DCFH-DA is diffused into cells and 
is deacetylated by cellular esterases to non fluorescent DCFH, 
which is rapidly oxidized to highly fluorescent DCF by ROS [20]. 
The cells were seeded at 8 × 104 cells/100 μL in a 96-well black 
plate. After 24 h, the cells were treated with 1.25, 2.5, and 5 
μM UA and cultured for 6 h. The cell culture medium was 
removed and the cells were washed twice with HBSS, treated 
with 10 μM DCFH-DA solution, and incubated for 45 min. The 
DCFH-DA solution was removed and the cells were washed 
twice with HBSS and then treated with 300 μM H2O2. 
Intracellular fluorescence intensities were measured at 485 nm 
and 530 nm using a fluorescence microplate reader (Infinite 
M200; Tecan). 

Hoechst 33342 staining
Hoechst 33342 (Invitrogen, Carlsbad, CA, USA) staining was 

used to observe changes in the nuclei of apoptotic cells [21]. 
The cells were seeded at 4 × 105 cells/mL in a six-well plate, 
cultured for 2 days, then treated with various UA concentrations 
for 6 h. The medium containing UA was removed and the cells 
were cultured for 18 h in the presence of 300 μM H2O2. Then the 
cells were washed with PBS and fixed with 4% paraformaldehyde 
(Sigma-Aldrich) for 10 min at room temperature. After washing 
with PBS, Hoechst 33342 dye was used at a concentration of 
5 μg/mL for 10 min to stain the cells. After staining and washing 
with PBS, the cells were observed using fluorescence microscopy 
(IX81; Olympus, Tokyo, Japan).

Western blotting analyses
After removing the culture medium from the treated cells, 

the cells were washed with PBS, and the proteins were extracted 
using an EzRIPA lysis kit (ATTO, Tokyo, Japan). Protein concent-
rations were quantified using the BCA method (Thermo Scientific, 
Rockford, IL, USA) and then the cells were mixed with 5× SDS 
sample buffer, followed by loading of 15 μg protein per sample 
well. The proteins were separated by electrophoresis on a 
10-15% SDS-PAGE gel and transferred to a PVDF membrane 
(Merck Millipore, Darmstadt, Germany). After transfer, the 
membrane was blocked for 1 h with 5% skim milk (Sigma- 
Aldrich) in TBS-T buffer. Then the membranes were incubated 
with primary antibodies diluted at a ratio of 1:1,000, overnight 
at 4°C. After washing three times, HRP-conjugated secondary 
antibodies diluted 1:2,000 were added and allowed to react at 
room temperature for 1 h. After washing three times with TBS-T, 
protein bands were visualized after treatment with ECL-Western 
Blotting Substrate (Thermo Scientific).

Statistical analyses
The results are expressed as means ± SD. Statistical analyses 

included t-tests and one-way analysis of variance (ANOVA) using 
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Fig. 1. Protective effects of urolithin A (UA) on H2O2-induced cell death and cytotoxicity in SK-N-MC cells. Cell viability was determined by CCK-8 assay. (A) The molecular 
of UA. (B) SK-N-MC cell were treated with increasing concentrations (0.1-40 µM) of UA for 24 h. (C) SK-N-MC cell were treated with increasing concentrations (100-500 µM) of H2O2

for 24 h. (D) The cell pretreated with UA at the indicated concentration (1.25-5 µM) for 6 h, and then treated with 300 µM H2O2 for 18 h. (E) The morphological change of SK-N-MC 
cells was observed using a microscope (magnification 100x). The results are expressed as mean ± SD. * P < 0.05, ** P < 0.01, *** P < 0.001 compared with control cells. Different letters 
indicate a significant difference according to analysis of variance (P < 0.05).

SPSS statistical software for Windows, version 20.0 (SPSS, 
Chicago, IL, USA). A one-way ANOVA followed by Duncan’s 
multiple range test was used to determine differences among 
the treatment groups. The test results were considered 
statistically significant at P < 0.05.

RESULTS

Effect of UA on cell viability
Human neuroblastoma SK-N-MC cells have been widely used 

as an in vitro model to study the pathogenesis of NDs such 
as AD because of their high stability and homogeneity [22,23]. 
The cell viabilities were determined using the CCK-8 assay. 
Cell viability was not significantly affected at UA concentrations 
up to 10 μM (Fig. 1B). We subsequently chose a UA concentration 
range of 0.1-10 μM that did not induce cytotoxicity in SK-N-MC 

cells. H2O2 significantly decreased cell viability in a dose- 
dependent manner; 300 μM indicated 63.1 ± 1.5% cell viability 
(Fig. 1C). To assess the neuroprotective effects of UA against 
H2O2, the cells were pretreated with UA for 6 h and then treated 
with 300 μM H2O2 for 18 h (Fig. 1D). Pretreatment with UA 
significantly increased cell viability compared to H2O2 alone 
(62.3 ± 1.3%). Pretreatment with different concentrations of UA 
(1.25, 2.5, and 5 μM) increased the cell viability to 70.2 ± 2.0, 
76.9 ± 2.0, and 80.2 ± 4.0%, respectively. These results were also 
confirmed by observing cell morphologies (Fig. 1E). 

Effects of UA on intracellular ROS production 
To confirm that UA inhibited ROS production induced by 

H2O2, ROS levels in the cells were detected using DCFH-DA. 
Intracellular ROS production was increased by 2.34 ± 6.69-fold 
in the group treated with 300 μM H2O2, compared to the controls. 
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Fig. 2. Intracellular reactive oxygen species (ROS) scavenging activity of urolithin 
A (UA). The cells were pretreated with UA for 6 h, and then treated with 300 µM H2O2

for 18 h. The results are expressed as mean ± SD. Different letters indicate a significant 
difference according to analysis of variance (P < 0.05).

Fig. 3. Urolithin A (UA) inhibits H2O2-induced apoptosis. Cells were pretreated with UA for 6 h, and then treated with 300 μM H2O2 for 18 h. (A) The expression of 
Bax and Bcl2 were analyzed by Western blotting and normalized to the levels of GAPDH. The results are expressed as mean ± SD. Different letters indicate a significant difference according 
to analysis of variance (P < 0.05). (B) Morphological changes of nuclear chromatin by Hoechst 33342 staining were observed using the fluorescence microscope. Hoechst dye stained 
both fragmented and condensed nuclei (arrowheads)

(A)

(B)

However, pretreatment with UA significantly diminished the 
increase in intracellular ROS production (Fig. 2). 

UA inhibits H2O2-induced apoptosis
To demonstrate the anti-apoptotic effects of UA, we 

confirmed the protein expressions of Bcl2 and Bax via Western 

blotting analyses. In the 300 μM H2O2 treatment group, the 
Bax/Bcl2 ratio increased approximately three-fold compared to 
the control group. However, UA pretreatment resulted in a 
significant decrease in the Bax/Bcl2 ratio, particularly at UA 
concentrations of 2.5 and 5 μM, compared to the H2O2-treated 
group (Fig. 3A). 

In addition, Hoechst 33342 staining showed DNA condensation 
and nuclear fragmentation after H2O2 treatment. However, 
these apoptotic characteristics were inhibited by pretreatment 
with UA (Fig. 3B). Taken together, the results imply that UA 
pretreatment inhibited H2O2-induced apoptosis.

UA prevents apoptotic cell death by suppressing the expression 
of mitochondrial-related apoptosis proteins

Next, we investigated the protein expression of the mitochondrial- 
related apoptosis pathway in H2O2-induced SK-N-MC cells in the 
presence or absence of UA. As shown in Fig. 4, H2O2 increased 
the expressions of cytochrome c, cleaved caspase-9, cleaved 
caspase-3, and cleaved PARP. However, in the UA pretreatment 
group, the expressions of these mitochondrial-related apoptosis 
proteins were suppressed, demonstrating that UA attenuates 
apoptotic cell death by its anti-apoptotic properties against 
H2O2-induced apoptosis in SK-N-MC cells.
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Fig. 4. Effects of urolithin A (UA) on the mitochondria-related apoptosis pathway. The cells were pretreated with UA for 6 h, then treated with 300 µM H2O2 for 18 h. (A) 
The protein expression by Western blotting. (B-E) Quantitative analysis of the bar graphs showed the densities of the protein bands; (B) cytochrome c, (C) cleaved caspase-9, (D) cleaved 
caspase-3, and (E) cleaved PARP. The normalization of cytochrome c, cleaved caspase-9, cleaved caspase-3, and cleaved PARP used GAPDH. The results are expressed as mean ±
SD. Different letters indicate a significant difference according to analysis of variance (P < 0.05). 

(A)

UA has protective effects by modulating the p38 MAPK pathway.
The mitogen-activated protein kinase (MAPK) signal pathway, 

including c-Jun N-terminal kinase (JNK), extracellular signal- 
regulated kinase (ERK), and p38 was activated by ROS. We 
investigated whether UA regulated the MAPK signal pathway 
in SK-N-MC cells. As shown in Fig. 5, pretreatment with UA 
significantly reduced the expression of p-p38 induced by H2O2. 
However, the effects on the expressions of p-JNK and p-ERK 

were not significant (data not shown).
To further confirm the action of UA on the p-p38 MAPK 

pathway, changes in cell viability were measured by treating 
cells with a p38 MAPK inhibitor (SD203580) (Fig. 5B). The cell 
viability decreased to 65.8 ± 1.5% when treated with H2O2, but 
was significantly increased by treatment with p38 MAPK 
inhibitor and UA (77.9 ± 3.6% and 78.6 ± 1.2%, respectively). In 
addition, the cell viability was further increased to 83.7 ± 0.6% 
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(A) (B)

Fig. 5. Urolithin A (UA) attenuated H2O2-induced SK-N-MC cell death by modulating the p38 MAPK signaling pathway. (A) The cells pretreated with UA for 6 h, and 
then treated with 300 μM H2O2 for 18 h. The protein levels of phosphorylated p38, total p38, and GAPDH were determined by Western blotting and normalized to the levels of 
GAPDH. (B) The cells were pretreated with SB206580 (p38 MAPK inhibitor) for 1 h, treated 5 µM UA for 6 h, and then treated with 300 µM H2O2 for 18 h. The cell viability was measured 
using the CCK-8 assay. The results are expressed as mean ± SD. Different letters indicate a significant difference according to analysis of variance (P < 0.05).

in the group pretreated with p38 MAPK inhibitor and UA. 
Together, the results indicate that UA treatment suppresses 
H2O2-induced neuronal cell death by modulating the p38 MAPK 
pathway.

DISCUSSION

Polyphenols are converted into small molecular metabolites 
by gut microbiota. The converted metabolites have the advantages 
of excellent body utilization and high BBB permeability, compared 
to polyphenols [13,24]. Therefore, metabolites derived from gut 
microbes are expected to be effective protective agents for the 
prevention and treatment of brain-related diseases. In this 
study, we hypothesized that UA, a representative polyphenol 
metabolite, may have neuroprotective effects by inhibiting cell 
death induced by oxidative stress.

ETs, which are abundant in pomegranates, berries, and nuts, 
are hydrolyzed into EA in the body after ingestion as a kind 
of water-soluble tannin, and hydrolyzed EA is metabolized by 
Uros [17,24,25]. ETs and EA have anti-inflammatory, antioxidant, 
and anti-cancer effects [26,27], but dietary EA has low bioava-
ilability, due to its low solubility in the stomach and limited 
absorption in the intestine [14,28-30]. González-Sarrías et al. [31] 
reported that EA concentrations in the plasma or tissues do 
not exceed 100 nM, even after oral ingestion of pure EA at 
high concentrations. However, when EA is converted into UA, 
the uptake in the intestinal villi increases and is maintained at 
a high level in the plasma, allowing circulation to the target 
tissue through the blood [11,28,32]. Cerda et al. [33] detected 
UA levels in plasma of up to 14-40 μM after administering 
pomegranate juice to healthy people, and there was no 
apparent toxicity. Vicinanza et al. [34] also reported high 
concentrations of UA in the target tissues of animal models 
after oral administration. Therefore, after intestinal absorption, 
UA has high bioavailability because can reach concentrations 

in the bloodstream that can exert effects in vivo. Moreover, UAs 
circulating through the blood can penetrate the BBB. The BBB 
is a interface that limits and regulates molecular exchanges 
between the blood and the neuronal tissue or its fluid spaces, 
having a crucial role in providing nutrients and controlling the 
access of compounds to the brain [35,36]. Although high- 
molecular-weight polyphenols such as ETs is not able to cross 
the BBB, UA conversed into low-molecular-weight metabolites 
has high permeability on the BBB [28,37]. UA is the major form 
found in humans [17,32]. It has antioxidant [38], anti-inflammatory 
[18], and anti-cancer [13,29,30,32] effects, attenuates endothelial 
dysfunction [39], and inhibits fat accumulation [17]. However, 
few studies on the action of UA in relation to the pathogenesis 
of NDs due to oxidative stress have been conducted. We 
expected that UA would has potential a therapeutic effect on 
the NDs by reducing loss of brain tissue through protection 
of neuronal cells. Therefore, we investigated the neuroprotective 
effects of UA on oxidative stress. 

UA pretreatment increased the cell viability reduced by H2O2 
in SK-N-MC cells (Fig. 1). It also decreased the increased 
intracellular ROS production (Fig. 2). According to many 
previous in vitro studies, hydrogen peroxide (H2O2) had toxic 
effects on various cells, including neurons, by causing oxidative 
damage to nucleic acids, proteins, and cell membrane lipids 
[7,10,40]. In our study, UA protected cells against H2O2 toxicity 
and inhibited the induction of oxidative damage by ROS. UA 
exhibits antioxidative effects through removal of free radicals 
[41] and inhibition of pro-oxidative enzymes such as heme- 
peroxidase [38]. Therefore, we conclude that the antioxidant 
activity of UA protected SK-N-MC neuronal cells from oxidative 
damage by H2O2. Tang et al. [18] also reported that when 
hypoxia/reoxygenation (H/R) injury was induced in primary 
cultured neonatal rat cardiomocytes, decreased cell viability and 
increased accumulation of intracellular ROS were attenuated by 
pretreatment with 10 μM UA. Although there have been several 
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reports that high concentrations (> 50 μM) of UA have anti- 
proliferative effects in various cancer cell lines [13,17], a study 
using SH-SY5Y human neuroblastoma cells reported that 
pretreatment with 10 μM UA inhibited the reduction of cell 
viability by H2O2 [11]. Moreover, our results demonstrate that 
low concentrations (≤ 5 μM) of UA may alleviate inhibition of 
cell growth by oxidative stress in SK-N-MC human neuroblastoma 
cells. Thus, we investigated the mechanism of the neuroprotective 
effects of UA based on the results of Figs. 1 and 2.

The first mechanism of UA protection against neuronal 
apoptosis is inhibition of apoptosis through regulation of 
mitochondrial-related apoptosis pathways. Mitochondria play 
important roles in intracellular energy metabolism. Oxidative 
stress induce alteration in mitochondrial protein, lipids, and 
DNA. Structural damage of the mitochondria results in defects 
in mitochondrial function, that are connected apoptosis and 
caspase activation which in turn leads to the damage to nerve 
cell. Therefore, mitochondrial dysfunction has a crucial role in 
the pathophysiology of NDs [25,42]. ROS-induced damage to 
mitochondrial membranes opens mitochondrial permeability 
transition pores (MPTPs), which induces release of mitochondrial 
cytochrome c. This activates caspase-9, which in turn triggers 
activation of caspase-3, leading to DNA damage, which impairs 
mitochondrial function [5,6]. During this process, members of 
the Bcl-2 family play important regulatory roles in the 
mitochondrial-related apoptosis pathway. Bax, a proapoptotic 
member, promotes apoptosis by accelerating the opening of 
MPTPs and inhibiting apoptosis via the anti-apoptotic Bcl-2 
pathway [43]. In the present study, we confirmed increases in 
the Bax/Bcl-2 ratio, apoptotic nuclei, and expressions of 
cytochrome c, cleaved caspase-9, cleaved caspase-3, and cleaved 
PARP after H2O2 treatment. However, all of these apoptotic cell 
signals induced by H2O2 were significantly reduced by pretreat-
ment with 2.5 and 5 μM UA (Figs. 3 and 4). Thus, UA inhibited 
apoptosis of SK-N-MC cells by inhibiting the mitochondrial- 
related apoptosis pathway. Tang et al. [18] reported that UA 
inhibits apoptosis of neonatal rat cardiomyocytes during 
hypoxia/reoxygenation (H/R) injury via the PI3K/Akt pathway. 
In addition, there have been many reports on the preventive 
competence and mechanism of EA, a metabolite precursor of 
UA. Firdaus et al. [44] reported that EA ameliorates mitochondrial 
dysfunction by reducing mitochondrial membrane potential 
and cytochrome c release against AS2O3-induced toxicity in 
SH-SY5Y human neuroblastoma cells. Chen et al. [45] reported 
that EA suppresses apoptosis by regulating the expressions of 
Bax, Bcl-2, and caspase-3 in the livers and brains of rats treated 
with D-galactose. In addition, Baluchnejadmojarad et al. [46] 
showed that EA has a protective effect via Nrf2/HO-1 signaling 
in a rat model of PD. These studies support our results that 
UA inhibits apoptosis. Therefore, we suggest that UA, which 
can pass through the BBB, may have a therapeutic effect on 
neurodegenerative diseases by ameliorating mitochondrial 
dysfunction of neuronal cells due to oxidative stress.

A second mechanism for the neuroprotective effects of UA 
involves modulation of the p38 MAPK pathway. MAPK pathways 
play an important role in cell proliferation, differentiation, and 
apoptosis regulation [47], and they are activated by various cell 
stress stimuli such as oxidative stress and endoplasmic reticulum 

stress [48]. The MAPK signaling pathway is involved in the 
pathogenesis of various diseases, including cancer and NDs. In 
the case of AD, activation of the MAPK pathway leads to neuronal 
apoptosis, β-secretase activity, γ-secretase activity, and tau 
phosphorylation [49]. In our study, pretreatment with UA 
significantly reduced expression of phosphorylated p38 MAPK 
(Fig. 5A). It also mitigated cell viability reduced by H2O2 via 
inhibition of the p38 MAPK signaling pathway (Fig. 5B). Although 
we did not confirm the effects of UA on phosphorylated ERK 
and the JNK pathway (data not shown), our results clearly 
indicate that UA protects cells from cytotoxicity by inhibiting 
activation of the p38 MAPK pathway. Chen et al. [50] showed 
that oral administration of EA induced downregulation of the 
JNK, p38 pathway and inflammatory mediators such as TNF-α, 
IL-1α, IL-1β, and COX-2 in induced hypoxic-ischemic brain-injury 
animal models. González-Sarrías et al. [51] reported that ≥ 10 
μM EA and UA mitigated the inflammatory state in human 
colonic fibroblasts that induced inflammation by IL-1β via 
inhibiting the activation of NF-kB and the p38 MAPK pathway. 
In addition, Komatu et al. [16] reported that pretreatment with 
40 μM UA inhibited the phosphorylation of p38 and JNK in 
inflammation-induced RAW264 macrophages induced by 
lipopolysaccharide, and also the formation of various proinfla-
mmatory mediators such as TNF-a, IL-6, and NO. In addition, 
p38 MAPK inhibitors are potential drug treatments for AD, and 
play an important role in the production of Aβ42-induced 
proinflammatory cytokines [52]. Therefore, we propose that UA 
inhibits the p38 MAPK pathway, which is an important 
mechanism for protecting neuronal cells and brain tissue 
through anti-apoptosis and anti-inflammatory effects. 

In conclusion, UA inhibited apoptotic cell death involving 
oxidative stress by decreasing intracellular ROS production, 
inhibiting the mitochondrial-related apoptosis pathway, and 
modulating the p-38 MAPK pathway. Taken together, our results 
indicate that UA protects against H2O2-induced growth inhibition 
and apoptosis induction in SK-N-MC cells. Thus, we suggest that 
it could be a useful neuroprotective agent against oxidative 
stress-related brain diseases. Future studies should examine the 
metabolic processes of UA and its protective effects on brain 
tissue in animal models of AD and PD.
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