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A probabilistic model of human
variability in physiology for future
application to dose reconstruction
and QIVIVE
Kevin McNally * and George D. Loizou

Health and Safety Laboratory, Buxton, UK

The risk assessment of environmental chemicals and drugs is undergoing a paradigm

shift in approach which seeks the full replacement of animal testing with high throughput,

mechanistic, in vitro systems. This new approach will be reliant on the measurement

in vitro, of concentration-dependent responses where prolonged excessive perturbations

of specific biochemical pathways are likely to lead to adverse health effects in an

intact organism. Such an approach requires a framework, into which disparate data

generated by in vitro, in silico, and in chemico systems can be integrated and utilized for

quantitative in vitro-to-in vivo extrapolation (QIVIVE), ultimately to the human population

level. Physiologically based pharmacokinetic (PBPK) models are ideally suited to this and

are needed to translate in vitro concentration- response relationships to an exposure or

dose, route and duration regime in human populations. Thus, a realistic description of

the variation in the physiology of the human population being modeled is critical. Whilst

various studies in the past decade have made progress in describing human variability,

the algorithms are typically coded in computer programs and as such are unsuitable for

reverse dosimetry. In this report we overcome this limitation by developing a hierarchical

statistical model using standard probability distributions for the specification of a virtual

US and UK human population. The work draws on information from both population

databases and cadaver studies.

Keywords: human variability, physiology, PBPK, Bayesian, QIVIVE

Introduction

The approach to assessing the risk to human health posed by exposure to chemical hazards
has been largely unchanged in the past 50 years (Bhattacharya et al., 2011). The established
protocol is based upon observation of an adverse response in a homogeneous animal population
subjected to a high dose. An extrapolation to an acceptable dose for human exposures is then
made by applying a number of conservative assessment factors. A radical departure from the
established protocol was proposed by the US National Research Council in the ground breaking
document “Toxicity Testing in the twenty-first Century: A Vision and a Strategy” (National
Research Council, 2007). This approach defines intracellular “toxicity” pathways, which are innate
sub-cellular biochemical pathways that may be disturbed by environmental stressors. Successful
application of this new vision will be reliant on the measurement in vitro, of concentration-
dependent responses where prolonged excessive perturbations of toxicity pathways are likely
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to lead to adverse health effects in an intact organism (National
Research Council, 2007; Bhattacharya et al., 2011; Krewski et al.,
2011; Basketter et al., 2012). Computational systems biology
pathway (CSBP) models provide the quantitative description of
how multiple cellular response (toxicity) pathways are perturbed
following exposure to environmental stressors. However, a
framework into which disparate data generated using in vitro,
in silico, and in chemico systems, can be integrated and utilized
for quantitative in vitro-to-in vivo extrapolation (QIVIVE) is
required. Physiologically based pharmacokinetic (PBPK) models
are ideally suited for this and are necessary to link CSBP models
with external exposure or dose (National Research Council, 2007;
Blaauboer, 2010; Bhattacharya et al., 2011; Krewski et al., 2011;
Basketter et al., 2012). PBPK models are independent, structural
models, comprising compartments that correspond directly and
realistically to the organs and tissues of the body connected by the
cardiovascular system (Rowland et al., 2004; National Research
Council, 2007; Zhao et al., 2011).

PBPK models may contain many parameters, particularly
so if it is necessary to describe multiple routes of exposure,
and the mathematical description of the underlying biology
is complex; for example, at least three additional parameters
are required for each discretely defined compartment. The
addition of a CSPB model to relate a perturbed toxicity
pathway observed at the cellular level to an exposure or dose
regime requires a significant additional tier of complexity and
additional parameters. This mathematical description for the
“mean individual” is a significant challenge in itself and at the
time of writing the process of linking the endpoint in a perturbed
pathway described by a CSPB model to an external dose has
yet to be successfully demonstrated. To be of practical use, the
methodology needs to be applied at the population level and
therefore a probabilistic description of human variability is an
essential component.

A similar class of problems, referred to in the literature
as reverse dosimetry, whereby an external dose is estimated
using biological monitoring data from breath, hair, blood or
urine biomarker data has been addressed over the last decade
(Sohn et al., 2004; Tan et al., 2006a,b; Allen et al., 2007; Lyons
et al., 2008; Mosquin et al., 2009; McNally et al., 2012). In
this class of problems population-based estimates of exposure
that account for human inter-individual variability, both in the
modeling of chemical disposition and in the description of
plausible exposure conditions can be achieved using Bayesian
inference in conjunction with PBPK modeling. McNally et al.
(2014) noted that the processes of reverse dosimetry using
biological monitoring data and QIVIVE share some important
similarities. Specifically, both belong to a class of inverse
problems based around a PBPK model, and for inference at a
population level a probabilistic description of human variability
is an essential component (Figure 1). Difficulties encountered in
reverse dosimetry applications will inevitably be exacerbated in a
more complex QIVIVE application.

A common feature of reverse dosimetry problems is that, after
accounting for all known sources of uncertainty/variability, the
range of external exposures that is consistent with measurements
is typically wide. Biologically plausible limits on the parameters

of the PBPK model may be encoded via informative prior
distributions. However, within these limits a potentially wide
range of parameter sets (and hence unknown external doses)
may offer a similar quality of fit to the available data. Bayesian
inference still allows the problem to be resolved and knowledge
(or lack of knowledge) about model parameters including
ranges, central values and measures of dispersion is described
probabilistically. QIVIVE models that require a mathematical
description of sub-cellular activity will exacerbate the problem1.
Given that a wide range of parameter sets result in similar
dose-response curves for comparison with measurements, more
intensive sampling of this curve offers only very limited scope for
discrimination between parameter sets. However, there is a scope
for substantial improvements in the mathematical description of
human variability and hence discrimination between parameter
sets is achieved through the prior distribution.

The present approach to describing variability in human
physiology is fairly crude in the context of reverse dosimetry.
The problem of describing variability in the human population is
converted to a problem of describing variability, via probability
distributions, in individual organs and tissues (e.g., adipose,
muscle, liver, brain etc.) or aggregated compartments (rapidly
and slowly perfused tissues). Masses and blood flows are
discretely defined using representative biological data. The
specification of masses and flows can be direct with probability
distributions assigned to masses and flows of individual organs
or aggregated compartments (Sohn et al., 2004) or more
typically as a proportion of body weight and cardiac output,
respectively (Gelman et al., 1996; Allen et al., 2007). In this latter
approach body mass and cardiac output are assigned probability
distributions, and masses and flows of organs and aggregated
compartments are specified as proportions of body mass and
cardiac output, respectively. There is an inconsistency in the
literature as to the probability distributions assigned to these
proportions. For example, Gelman et al. (1996) represented
population variability using lognormal distributions whereas
Allen et al. (2007) used normal distributions. Furthermore, when
many compartments are discretely defined, logical constraints
on mass balance and cardiac output can be violated. Gelman
et al. (1996) proposed a re-parameterization for circumventing
this problem. However, even when logical constraints on mass
balance and cardiac output are not violated, this piecemeal
approach defines a physiology that is much more diverse than
actually occurs within the human population: a model that
satisfies mass balance constraints does not necessarily equate
to a physically realistic physiology. McNally et al. (2012)
noted that due to the scarcity of data for calibration there
was little difference between marginal prior distributions and
posterior distributions for many parameters; the implication
is therefore, that inference (on dose reconstruction) could
have a strong dependence on (arbitrary) decisions of the
modeler.

1Models that describe sub-cellular activity also need extensive checking when

ranges for the parameters are specified in order to ensure that the model output

does not describe odd and non-physical behavior for a subset of parameter space.

These checks are similar in spirit, but potentially far more complex than mass and

flow balance checks.
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FIGURE 1 | The reconstruction of exposure from in vitro concentration response or biological monitoring data.

In the past two decades there has been substantial progress
in the quantification of variability in human anatomical,
physiological and biochemical parameters (Price et al., 2003;
Willmann et al., 2007; Jamei et al., 2009). Freely available
software, linked to population databases, such as Physiological
Parameters for PBPK Modeling (P3M) (P3M™ Database, 2003),

and PopGen2 (McNally et al., 2014) and commercially available
software such as PK-Sim R©3 and Simcyp4 can generate realistic
anatomically correct human populations. Invariably these tools
also generate a proportion of implausible physiologies although
this is much smaller than for the approaches described
previously. However, whilst software for generating a virtual
human population is available, at present, a concise probabilistic
description of human variability (i.e., not executed in a computer
code) is not readily available. These software applications can
generate records which can be read into software and therefore
used in conventional forward dosimetry, however the algorithms
are not in a mathematically convenient form that allow precise
prior distributions to be easily specified. Population summaries
from these applications can be used (McNally et al., 2014) and
offer an improvement over the prior specifications found in
the literature, however population summaries fail to capture
key correlations and therefore allow unrealistic variability in
physiology.

The present work aims to plug the gap between software
algorithms and reverse dosimetry applications by developing
a prior distribution for the physiology of the adult working
population (individuals aged between 16 and 65) that provides
narrower and more realistic bounds on the human physiology.
We consider male and female UK and US populations. Our

2http://xnet.hsl.gov.uk/popgen (6/8/2014).
3http://www.systems-biology.com/products/pk-sim.html (6/8/2014).
4http://www.simcyp.com/ (6/8/2014).

prior distributions vary by gender but also by ethnicity; we
provide prior distributions for Caucasian, Asian and Black UK
populations and Caucasian, Non-Black Hispanic, and Black
US populations. Some comparisons against alternative prior
specifications from the literature are made. Moreover, we report
on how readily obtainable physical information such as gender,
ethnicity, age and height can be used to substantially reduce
uncertainty. Practical use of this prior specification in reverse
dosimetry applications, and comparisons against previous results
will be presented in a subsequent report.

Materials and Methods

Probability Model for Human Variability
Conceptual Approach
The model described in the paper is based upon the PopGen
software developed at the Health and Safety Laboratory (McNally
et al., 2014). PopGen simulates the physiology of healthy
human populations. A two-phased approach is encoded in the
software:

• In the first phase the gender, ethnicity, age, height, body mass,
and cardiac output of an individual are generated.

• For an individual of a given gender, ethnicity, age, height, and
weight the organ masses and flows are then generated in the
second phase.

The software links to four reference databases covering UK, US,
and Western European populations, which govern the gender
and ethnicity dependent relationship between age, height, and
body mass in the population. For the current work male and
female populations were generated for a healthy working age
UK population (ages 16 to 65) using the Health Survey for
England (HSE) reference database (Department of Health, 2010).
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Ten thousand individuals were simulated for male and female
populations for Caucasian, Asian and Black populations—six
distinct cases in all. Male and female populations for a healthy
working age US population were based upon the NHANES III
reference database. Ten thousand individuals were generated for
male and female populations for Caucasian, Non-Black Hispanic
and Black populations. The populations were constrained to a
Body Mass Index (BMI) in the range 17.5–32.5; the adaptations
that are required for a grossly obese sub-population are discussed
later. Our approach was based upon a statistical analysis of the
output from each of these sub-populations.

The PopGen algorithms for organ masses and flows were
initially based upon allometric scaling (based upon height) of
reference man (ICRP, 2003) and replicated the methodology
described in Willmann et al. (2007) as implemented in the PK-
Sim R©commercial software. Some changes to the relationships
for organ masses have recently been made in the PopGen
software and additionally it accounts for age-related trends in the
adult population (Beaudouin et al., 2010), which are particularly
important for cardiac output, skeletal muscle mass, skeleton
mass, and adipose mass. Technical details can be found in
McNally et al. (2014).

The key considerations in constructing a statistical
approximation to the PopGen model were that: the marginal
probability distributions that represent organ masses and
flows needed to be a close approximation to the PopGen
output; significant correlations between the masses and flows
in the PopGen output needed to be appropriately modeled
in the approximation; the framework should have sufficient
flexibility to incorporate contextual information that allows
tighter bounds on human physiology to be built into the prior
specification. Contextual information includes determinants
such as gender, age, weight, ethnicity, and height. Although
contextual information is not required for a PBPK model this

information is central to our approach. In essence we construct
a viable human “shell” (phase 1) and then specify the organs
and tissues within (phase 2). Contextual information may be
probabilistically modeled, or may be replaced with known values
or ranges.

Phase 1 Parameters
Gender and ethnicity are assumed to be known for any given
individual. The age of each population member is initially
specified. For a probabilistically modeled age a non-standard
distribution based on census data could be encoded, however,
this very high level of precision is unnecessary. A piecewise linear
fit is used in PopGen to smooth over small variations and to
remove the need to annually update the population distribution;
however a uniform distribution between 16 and 65 is an adequate
approximation to the working age population (Table 1). Specific
information about a population can easily replace this prior
distribution, an exact age for study participants may be used, or
limits for each individual (e.g., individual is known to be between
46 and 50 years of age) may be used.

For a given ethnicity, gender, and age the height and weight
are specified. An analysis of the reference databases indicated
that heights are normally distributed with an age, gender, and
ethnicity dependent mean. The relationship along with gender
and ethnicity dependent coefficients are given in Table 1, where
the upper case A denotes the age variable and the lower case
characters denote coefficients. Similarly, the natural logs of body
weight are normally distributed with age, gender, and ethnicity
dependent means. The relationship and coefficients are also given
in Table 1. A comparison of the age-related trends in height
and body weight is made for a UK population in Figure 2

and for a US population in Figure 3. For heights the trend
represents the arithmeticmeanwhereas for bodyweight the trend
represents the geometric mean. After removing age related trends

TABLE 1 | Marginal distributions for age, height, and log(body mass) and the correlation between the height and log(body mass).

Population Age Height (cm) Log(Body Mass (kg)) Correlation

H ∼ N(α + a1A+ a2A
2
, σ

2) log(BM) ∼ N(α + a1A+ a2A
2
, σ

2)

α a1 a2 σ α a1 a2 σ ρ

UK

Male, White U(16, 65) 176.0 0.15 −0.003 6.9 4.06 0.0168 −0.00017 0.17 0.41

Male, Asian 174.4 −0.086 0 6.3 3.96 0.0186 −0.00021 0.18 0.42

Male, Black 178.8 −0.113 0 7.4 4.10 0.0167 −0.0002 0.19 0.45

Female, White 163.9 0.052 −0.0017 6.3 4.00 0.0099 −0.00009 0.20 0.29

Female, Asian 162.0 −0.126 0 6.0 3.94 0.009 −0.00007 0.20 0.29

Female, Black 161.9 0.228 −0.0049 6.3 3.93 0.0147 −0.00013 0.19 0.36

US

Male, White U(16, 65) 175.6 0.136 −0.002 6.6 3.96 0.0197 −0.00020 0.19 0.43

Male, Non-black hispanic 171.0 −0.03 0 6.4 3.86 0.0226 −0.00024 0.18 0.44

Male, Black 172.4 0.267 −0.0038 7.0 3.92 0.0233 −0.00026 0.22 0.28

Female, White 162.1 0.142 −0.0025 6.3 3.88 0.014 −0.00012 0.22 0.31

Female, Non-black hispanic 159.3 −0.066 0 6.0 3.79 0.020 −0.00021 0.21 0.29

Female, Black 162.3 0.108 −0.0019 6.4 3.87 0.020 −0.0002 0.25 0.46
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FIGURE 2 | A comparison of the age related trends in height and body mass for a UK population based upon the HSE survey.

by regressing height and log body mass against age for each of
the sub populations a large correlation between the residuals
from these regression models residuals is apparent (Table 1);
it is therefore necessary to simulate height and log body mass
from a bivariate normal distribution in order to capture the
relationship. A convenient way of specifying height and log body
weight is to use a well-known formulation of the bivariate normal
distribution

X ∼ N(µX, σ 2
X) (1)

Y ∼ N(µY + (σYσ−1
X ρ (X − µX) ,

(

1− ρ2
)

σ 2
Y ) (2)

In Equations (1) and (2) µX and µy denote means, σX and
σy denote standard deviations and ρ denotes the correlation.
Parameter values are given in Table 1 for each sub population.
The order of the simulations, i.e., unconditional height (Equation
1) and log body mass conditional on height (Equation 2) or
vice-versa depends upon what contextual information may be
available for an individual. Bounding information such as height
or body mass known within an interval (for example a body mass
between 65 and 70 kg) can easily be accommodated by specifying
truncated normal distributions. The quantity σ−1(upper—lower)
is computed for both height and log body mass, where upper
and lower are as defaults taken as ± 3σ values and overwritten
by known values where available: the variable for which this
quantity is smallest is simulated unconditionally from Equation
(1). The known heights and body weight of an individual remove
the need for this probabilistic specification; the exact height
and body mass would be used when defining organ and tissue
masses and flows in phase 2 (described below). An example

based upon bounding information is described in the results
section.

The final phase 1 parameter is cardiac output. The trend
in cardiac output from new-born to adulthood encoded into
PopGen is based upon reference man (ICRP, 2003). An age-
related decline in cardiac output is also encoded in the software.
Additionally cardiac output scales with height. Equations
describing cardiac output as a function of Age and Height are
given in Table 2, with ethnicity dependent coefficients. In this
instance different relationships were required for males and
females owing to females reaching physical maturity sooner than
males.

Phase 2 Parameters
In phase 2 organ and tissue masses and flows are specified based
upon the phase 1 parameters. Regression models were fit to the
data from each of the populations with the simulated organ
flows as dependent variables and polynomials of the contextual
variables [Age, Height, Body Mass, Body Mass Index (BMI;
derived from height and body mass) and Cardiac Output] as
explanatory variables. All flows were normally distributed and
specified as fractions of cardiac output (Table 3). In contrast
whilst the majority of organ masses were normally distributed,
the masses of the lung, spleen, adipose, and skeletal muscle
were log-normally distributed. Whilst the distributions were
based on statistical analysis of data generated by PopGen,
the PopGen algorithms themselves are informed by cadaver
studies (Willmann et al., 2007). The mathematical forms,
assumed distributions and dependencies are given in Table 3,
with corresponding coefficients given in Tables 4A–C (UK
populations) and Tables 5A–C (US populations). The variables
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FIGURE 3 | A comparison of the age related trends in height and body mass for a US population based upon the NHANESIII survey.

TABLE 2 | Probabilistic relationships between cardiac output and anthropometric (tier 1) parameters.

Population Cardiac Output (ml min−1)

Male Female

CO ∼ N(α + h1H + a1A + a2/(1+exp(-a3*(A-18))),σ
2) CO ∼ N(α + h1H + a1A + a2A

2 + a3A
3, σ

2)

α h1 a1 a2 a3 σ α h1 a1 a2 a3 σ

UK

White 2.755 0.025 −0.030 −0.707 −0.626 0.109 1.870 0.0246 0.0122 −0.000908 0.00000689 0.093

Asian 2.748 0.026 −0.031 −0.513 −0.716 0.108 1.703 0.0257 0.0173 −0.000916 0.00000642 0.093

Black 2.645 0.026 −0.029 −0.399 −0.934 0.110 1.893 0.0248 0.0090 −0.000869 0.00000689 0.093

US

White 2.749 0.025 −0.031 −0.449 −0.820 0.110 1.854 0.0248 0.0127 −0.000956 0.00000739 0.092

Non−black hispanic 2.781 0.026 −0.031 −0.458 −0.828 0.109 1.792 0.0257 0.0166 −0.001015 0.00000765 0.092

Black 2.342 0.026 −0.031 0.403 0.917 0.111 1.903 0.0246 0.0088 −0.000839 0.00000625 0.093

A, H, BM, BMI, and CO denote Age, Height, Body Mass, BMI,
and Cardiac Output whereas coefficients corresponding to these
quantities are denoted using lower case letters.

Residuals from each of the regression models were compared
to assess for correlations that were not accounted for by
relationships between the phase 1 parameters. The only
significant and indeed very strong negative correlation was
between the adipose and skeletal muscle; excess mass in an
individual is more likely to arise due to either a high muscle mass
or high adipose mass, rather than a more even allocation of both
(Willmann et al., 2007). The natural logs of adipose and skeletal
muscle masses are therefore simulated from a bivariate normal
distribution. The correlation coefficients are provided for each
population in Tables 4A–C, 5A–C.

Monte-carlo Simulation
Simulation of a member of a population follows the hierarchical
framework described in Sections Phase 1 Parameters and Phase 2
Parameters. The age of each member of the population is initially
simulated. Height and body mass are then jointly simulated
(allowing BMI to be calculated) and finally cardiac output is
simulated based upon the coefficients in Tables 1, 2, respectively.
Organ flows, specified as a proportion of cardiac output, are
then simulated (Table 2) and with intra-individual variability
accounted for by simulating from normal distributions. Intra-
individual variability in organ flows is not well understood and
the ranges are probably generous therefore a truncation at two
standard deviations is proposed. Flow balance is achieved by
re-scaling all flows such that the ratio of their sum to that
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TABLE 3 | Probabilistic relationships between anthropometric parameters simulated in stage 1 and organ masses and flows.

Organ Mass (kg) Flow (lmin−1)

Distribution Dependencies Form Distribution Dependencies Form

Lung Log-normal Height α + h1H Normal CO c1CO

Brain Normal Age α + a1A Normal CO c1CO

Heart Normal Height α + h1H Normal CO c1CO

Kidneys Normal Height α + h1H Normal CO c1CO

Liver Normal Height α + h1H Normal CO c1CO

Pancreas Normal Height α + h1H Normal CO c1CO

Spleen Log-normal Height α + h1H Normal CO c1CO

Stomach Normal Height α + h1H Normal CO c1CO

Small intestine Normal Height α + h1H Normal CO c1CO

Large intestine Normal Height α + h1H Normal CO c1CO

Sexual organs Normal None α Normal CO c1CO

Skin Normal Body mass α +m1BM+m2BM
2 Normal CO c1CO

Bone (M)

Bone (F)

Normal Age, Height α+h1H+h2H(1+exp
(

−a1 (A− 18))
)−1

α + a1A+ a2A
2 + h1H

Normal CO c1CO

Adipose Log-normal Age, Height, BMI α + a1A+ a2A
2 + h1H+ b1BMI Normal CO c1CO

Muscle Log-normal Age, Height, BMI α + a1A+ a2A
2 + h1H+b1BMI+b2BMI

2 Normal CO c1CO

of cardiac output is unity. Organ masses are simulated using
the expressions in Table 3 with population specific parameters
given in Tables 4A–C, 5A–C with intra-individual variability
represented using normal and log-normal distributions. A
truncation at the 5th and 95th percentiles is proposed for each
organ so that masses are not unrealistically small or large.

In order to satisfy the mass balance constraint a re-scaling of
organ masses is necessary. Due to the very large variability in
adipose andmuscle masses, particularly large values for these two
tissue masses would require a large proportional reduction in all
organ masses, a reduction which could take some organ masses
beneath physically realistic values. The method proposed in this
work is to treat all masses except adipose and muscle mass as
being correct and to rescale just the adipose and muscle masses
such that mass balance is achieved. After re-scaling the adipose
and skeletal muscle masses accounted for approximately 50–80%
of body mass.

A simpler physiology than that described in this paper is often
adequate for many studies; rather than specifying all organs and
tissues, a proportion are summed into aggregated rapidly and
slowly perfused “compartments.” This is easily accommodated by
summing organ masses and flows at the end of the simulation.
Although the output is simplified all of the dependencies are
captured in the resulting output. R code for simulating the
populations described in this paper is provided in Supplementary
Material.

Adaption for Inverse Problems
The class of inverse problems inspiring this research require
the estimation of external dose from a measurement series.
For reverse dosimetry the measurements are from biomarker
data whereas for QIVIVE the measurements will result from an
in vitro, in silico, or in chemico system. In order to account for
variability in human physiology when estimating external dose, it

is necessary to specify the problem within a Bayesian framework.
Typically, inference about external dose and other parameters is
made using aMarkov ChainMonte Carlo (MCMC) algorithm. In
practice a single component update is coded, with the algorithm
stepping through and updating each parameter in turn. In order
to retain mass balance, a “sink” compartment is specified; this
is not specifically updated but is recalculated to retain mass and
flow balance for every parameter update. A similar solution can
be adopted in our case. We propose that the skeletal muscle (or
a slowly perfused compartment) is modified such that mass and
flow balance are achieved

The aggregation of organs and tissues into rapidly and slowly
perfused compartments poses a greater complication for inverse
problems, since a probability distribution for the aggregated
compartment is required and a mixed sum of log-normal and
normal distributions has no closed solution. An approximation
is therefore required, and the form of this approximation will
depend on the organs and tissues contained in the aggregated
compartment: it is model and application specific. This is beyond
the scope of current work.

Comparisons
An Adult Male Population
Sohn et al. (2004) described a model for inhalation exposure to
trichloroethylene. A four compartment PBPK model with liver,
adipose and slowly and rapidly perfused compartments was used.
All masses and flows were specified directly using log-normal
distributions. The components of the prior distribution relating
to masses and flows, taken from Table 1 of Sohn et al. (2004)
are provided in Table 6. A corresponding US Caucasian male
population aged 16–65 was created using our probabilistic model
and masses and flows corresponding to the four compartments
were derived. The organ volumes (l) of Sohn et al. (2004) were
converted to masses (kg) using a 1 to 1 relationship. In both cases
ten thousand samples were drawn for the comparison.
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A Female Population of Child Bearing Age
Allen et al. (2007) described a PBPK model for oral exposure
to methylmercury for women of childbearing age (which was
taken to be 16–49). The model was detailed and included brain,
fat, gut, intestine, kidney, liver, and rapidly and slowly perfused
compartments (in addition to plasma and red blood cells). Body
mass was specified as a log normal distribution, cardiac output as
a normal distribution (scaled to BW0.75) and tissue masses and
regional flows were defined as respective fractions. All fractions
were modeled as truncated normal distributions, with upper and
lower truncation points taken from Clewell et al. (1999). Some
details of the prior specification from Table 1 of Allen et al. (2007)
are provided in Table 7.

Two populations were generated using our prior distribution
for comparison with Allen et al. (2007). Priors for a 16 year
old Hispanic woman and for a 49 year old Caucasian woman
were sampled from. The PopGen organ volumes include the

Table 6 | Prior specification for organ volumes and flows of an adult male

population as used in (Sohn et al., 2004).

Compartment Volume (l) Flow (l/min)

Fat LN(12.87, 2.1) LN(0.3, 2.3)

Slowly perfuse tissue LN(42.3, 2.06) LN(0.81, 2.22)

Rapidly perfuse tissue LN(12.94, 2.18) LN(3.98, 2.22)

Liver LN(2.18, 2.08) LN(1.12, 2.3)

Distributions parameterized by the GM and GSD.

Table 7 | Prior specification for organ volumes and flows of an adult male

population as used in Allen et al. (2007).

Parameter Distribution Bounding Interval

Body Weight (BW) (kg) LN(log(67.77), log(1.603)) (30.81, 139.9)

Cardiac Output (L/hr) N(20, 10) (6.8, 33.2)

TISSUE VOLUME (AS FRACTION OF BW)

Liver volume N(0.026, 0.013) (0.006, 0.046)

Kidney volume N(0.004, 0.002) (0.0004, 0.008)

Brain volume N(0.02, 0.01) (0.002, 0.038)

Intestine volume N(0.014, 0.007) (0.001, 0.027)

Gut volume N(0.017, 0.0085) (0.009, 0.025)

Richly perfused tissue volume N(0.10, 0.05) (0.01, 0.190)

Slowly perfused tissue volume N(0.35, 0.175) (0.18, 0.52)

Adipose volume N(0.273, 0.14) (0.076, 0.47)

Remainder (non-perfused) N(0.122, 0.061) (0.012,0.23)

PLASMA FLOW (AS FRACTION OF CARDIAC OUTPUT)

Liver flow N(0.046, 0.023) (0.01, 0.090)

Kidney flow N(0.175, 0.0875) (0.018,0.333)

Brain flow N(0.114, 0.057) (0.011, 0.217)

Gut flow N(0.181, 0.0905) (0.002, 0.360)

Richly perfused tissue flow N(0.183, 0.0915) (0.018, 0.348)

Slowly perfused tissue flow N(0.249, 0.1245) (0.025, 0.473)

Adipose flow N(0.052, 0.0256) (0.0052, 0.099)

Upper and lower bounds taken from Clewell et al. (1999).

mass of the blood whereas the plasma and red blood cells were
independently modeled in Allen et al. (2007). To enable a like-
for-like comparison a blood mass of 4.1 kg was assumed and the
weight fraction of the blood was subtracted from all our tissues
masses based upon reference values (ICRP, 2003). Ten thousand
samples were drawn using our model and the priors of Allen et al.
(2007).

In both examples described above each virtual member
of the population was compared against the PopGen output
generated to build the statistical models to assess for a physically
realistic physiology: PopGen itself is informed by cadaver studies
(Willmann et al., 2007). Individuals with any organ mass (or
amalgamated compartment) outside the absolute bounds of the
PopGen output were classed as physically unrealistic. Virtual
individuals with a cardiac output outside of the PopGen range
were also classified as physically unrealistic.

Bounding Information
Earlier we described how exact information removes the need
for a probabilistic representation for age, height, and weight.
In this comparison we demonstrate how bounding information
can provide a similar quality of contextual information and
result in a substantial increase in the precision of the prior
specification.

Prior distributions were generated for a UK Caucasian male.
Additional contextual information was that this individual was
aged between 50 and 55 years, between 1.71 and 1.75m in height,
and between 75 and 80 kg in body weight. Bounding information
of this type would typically be obtained from tick box survey
responses. In the first instance the contextual information was
not utilized, however the contextual information about this
individual was sequentially fed into the prior specification.
Information on age, height, and mass were each used in isolation
before all three pieces of information were utilized. Prior
distributions for these five distinct cases were generated and
compared.

Results

Populations
Figure 2 shows the (arithmetic) mean heights and (geometric)
mean weights for a working age (16–65 years) male and female
population from the HSE database. Figure 3 shows a similar plot
for a US population from the NHANESIII database. In both
figures the distinct trends for the main ethnicities within the
respective UK and US populations can be distinguished.

These population databases show that the heights of US
black and Caucasian populations have plateaued whereas the US
Hispanic population continues to increase in height with each
successive generation. In comparison only a plateau in heights
can be seen within the Caucasian population in the UK with
heights in the Asian and Black population still increasing. All
populations (Figures 2, 3) show that individuals at the upper
end of the age range have smaller heights. In comparison all
populations show a substantial increase in body weight even after
physical maturity is reached; in some populations body weights
are lower at the upper end of the age range. The relationship
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between age and size (height and body mass) is clearly both
gender and ethnicity dependent.

The differing relationships (Tables 3, 4A–C, 5C) that relate
organ masses to age, height and body weight for each of the
studied populations reflect the gender and ethnicity differences
in the relationships between age and size. The largest differences
between populations are in the relationships between age and
the adipose and skeletal muscle masses. Large increases in the
adipose mass after maturity are seen in all populations. Trends
in the adipose mass closely follow the trends in body weights
(Figures 2, 3).

Figure 4 shows a comparison of the relationships between age
and (arithmetic) mean cardiac output for a UK Caucasian male
and female population. Very prominent age dependencies can be
seen with a difference in the trend for males and females between
the ages of 16 and 25. The gender trends for males and females
shown in Figure 4 are similar for other ethnicities.

Comparisons
An Adult Male Population
A comparison of the masses and flows from our probability
distributions and those of Sohn et al. (2004) (Table 6) are made in
Figures 5, 6, respectively. A comparison of the rapidly perfused,
slowly perfused, adipose and liver tissue masses is made in
Figure 5. A similar comparison of regional flows is made in
Figure 6; note the total liver flow incorporates the regional flows
from all tissues draining into the portal vein.

It is clear that for both masses and flows our distributions
have much tighter limits with some differences in central
tendency. While the prior distributions of Sohn et al. (2004)

FIGURE 4 | The relationship between mean cardiac output and age for

a UK Caucasian population. The trends are based on heights of 180 and

160 cm for males and female, respectively.

were sufficiently wide that they captured all reasonable human
variability, a large proportion of all simulations resulted inmasses
and flows for individual compartments that were unrealistically
large or small. Our analysis indicated that less than 1% of all
generated physiologies using the prior distributions specified in
Sohn et al. (2004) were consistent with human physiology.

Sohn et al. (2004) drew samples from their specified
prior distributions and ran these parameter sets through
the PBPK model. They noted huge variability (Figure 2
of Sohn et al., 2004) in their temporal forecasts of TCE
concentrations in venous blood. Whilst it should be noted
that partition coefficients, metabolic parameters, and three
parameters describing exposure were also varied in their model,
it is likely that excessive non-physical variability in human
physiology made an important contribution to this very large
variability in model forecasts.

A Female Population of Child Bearing Age
A comparison of summary statistics (median and a 95% interval)
for the organs and tissue masses (kg) and regional flows (L
min−1) for a 16 year old Hispanic woman and a 49 year old
Caucasian woman is made in Table 8. Summary statistics based
upon the priors of Allen et al. (2007) are also provided.

These specific populations were chosen as they represent
the bounding physiologies, a young woman of small stature
and an older woman with larger stature, of the child bearing
population defined in Allen et al. (2007). The summary statistics
inTable 8 are based uponwomenwith a BMI of between 17.5 and
32.5. Approximately 5 and 20% of the Hispanic and Caucasian
populations respectively have a BMI in excess of 32.5 therefore
we note these summaries are not representative of the wider
populations, however the link between obesity and infertility
has been well studied (Norman et al., 2004). The truncated
populations considered here are reasonable surrogates for a child
bearing sub-population.

There are some key physiological differences between the two
simulated populations, which are relevant for the PBPK model
for methylmercury. Cardiac output is greater for the 16 years
old Hispanic woman since this peaks during female adolescence
and subsequently declines (ICRP, 2003). As a consequence the
regional blood flows, in particular those to the brain, kidneys
and liver are lower in the 49 year old Caucasian. In terms of
masses there is a large difference (approximately 10 kg) in the
body weights of the two studied populations, which in part
reflects the larger stature of the Caucasian population, but also
accounts for the substantial gain in adipose tissue throughout
adulthood (Table 8). The age related decline in brain mass can
also be seen in summary statistics. There is of course a continuum
between these two bounding cases but the example demonstrates
how similar exposures might result in a different response in the
different sub-populations. Note that in a simple comparison of
the marginal distributions of individual organs the dependencies
between organs (through age, height, and body weight) are not
obvious.

Although truncated, the masses simulated from Allen et al.
(2007) have greater variability than is seen in the general
population; we would argue this range of masses represents
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FIGURE 5 | A comparison of the prior distributions for the masses of rapidly and slowly perfused aggregated compartments and the adipose and liver

masses from Sohn et al. (2004) (red) and based on PopGen (blue).

unrealistically large variation in a child bearing population. The
central values for organ masses were generally very close to
ours, however for all organ masses, except the adipose mass, the
simulated ranges from Allen et al. (2007) were unrealistically
large, with 5th and 95th percentiles (Table 8) for each organ mass
outside a physically realistic range. The variation in both cardiac
output and in regional flows is well outside a physically realistic
range.

We note there were two inconsistencies in our results which
indicate potential errors in the specification of Allen et al.
(2007). Whilst both gut and intestine masses are specified in
Table 8, the summary statistics suggest the intestine mass is also
accounted for within the gut. Additionally both the mass and
regional flow to the rapidly perfused tissue appears to contain
contributions from discretely defined organs and tissues. Even
without these irregularities our work suggests that less than 1% of
the physiologies generated using the priors of Allen et al. (2007)
are within a physically realistic range.

Bounding Information
There were modest although statistically significant changes in all
the organmasses resulting from the contextual information being
input into the prior specification. However, sensitivity analysis
(McNally et al., 2014) has demonstrated that even relatively
modest changes to physiology can have an important impact
on the pharmacokinetics of chemicals. The results are shown in
Figure 7 for the skeletal muscle and adipose masses; these are the
two largest tissue masses and also those with the greatest change
as a result of the contextual information. Results for cardiac
output are also shown.

Figure 7 shows there were changes in both the peak and
dispersion of adipose mass as age and height information were
utilized. The weight information had the greatest impact as this
provided an upper bound on the adipose mass. Changes to the
skeletal muscle were smaller than those for the adipose mass but
the central estimate and dispersion of the distribution changed
as the contextual information was input. The fully conditioned
distributions were much narrower than the unconditioned
distributions.

The marginal distribution for the cardiac output was
particularly sensitive to age and height information. A much
tighter distribution was obtained after incorporating all three
pieces of contextual information. The changes to regional blood
flows followed the same trends of cardiac output.

Discussion

We noted in the introduction that there in an inconsistency
in how human variability is specified in reverse dosimetry
applications in the literature, in both the general approach
adopted, and in the probability distributions that are specified.
These varied approaches all define a potentially large proportion
of parameter space that is inconsistent with human physiology.
Our calculations in Sections Populations and Comparisons
indicated that less than 1% of the physiologies generated using
the prior distributions of Sohn et al. (2004) (Table 6) and Allen
et al. (2007) (Table 7) were consistent with human physiology.
These examples were chosen since the respective PBPK models
encoded different levels of biological detail, and differed in
the mathematical structure of the prior distributions. It is
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FIGURE 6 | A comparison of the prior distributions for the regional flows of rapidly and slowly perfused aggregated compartments, the adipose and

the total liver flow (incorporating all flows discharging into the portal vein) from Sohn et al. (2004) (red) and based on PopGen (blue).

Table 8 | Summary statistics (median values and 95% interval) for the physiology of a 16 year old Hispanic woman and a 49 year Caucasian women and

corresponding summary statistics from the prior distributions of Allen et al. (2007).

Parameter Hispanic, aged 16 Caucasian, aged 49 Allen et al. (2007)

Body weight (kg) 57.6 (41.9, 80.2) 68.2 (46.9, 89.5) 67.4 (34.0, 129.4)

Liver mass 1.49 (0.70, 2.42) 1.49 (0.67, 2.40) 1.67 (0.46, 4.31)

Kidney mass 0.32 (0.15, 0.50) 0.32 (0.15, 0.51) 0.26 (0.05, 0.70)

Brain mass 1.29 (1.18, 1.41) 1.21 (1.11, 1.35) 1.26 (0.27, 3.40)

Intestine mass 0.87 (0.68, 1.09) 0.87 (0.68, 1.09) 0.89 (0.16, 2.37)

Gut mass 0.12 (0.08, 0.16) 0.12 (0.08, 0.16) 1.12 (0.45, 2.57)

Rapidly perfuseda tissue mass 1.09 (0.61, 1.93) 1.09 (0.61, 1.93) 6.43 (1.23, 16.97)

Slowly perfusedb tissue mass 21.45 (12.91, 32.26) 21.0 (11.91, 32.40) 22.69 (9.18, 53.16)

Adipose mass 18.2 (6.34, 43.20) 29.4 (10.60, 54.50) 17.8 (4.30, 52.64)

Remainder (non-perfused) 8.70 (8.15, 9.3) 8.85 (8.31, 9.40) 7.8 (1.60, 21.0)

Cardiac Output (l/min) 5.90 (5.55, 6.25) 5.10 (4.75, 5.45) 7.6 (2.73, 16.3)

Liver flow 0.41 (0.37, 0.45) 0.35 (0.31, 0.39) 0.32 (0.076, 0.96)

Kidney flow 1.17 (1.08, 1.27) 1.02 (0.92, 1.11) 1.23 (0.22, 1.23)

Brain flow 0.76 (0.69, 0.82) 0.66 (0.59, 0.73) 0.80 (0.15, 2.34)

Gut flowc 1.06 (0.97, 1.14) 0.91 (0.83, 0.99) 1.28 (0.19, 3.84)

Rapidly perfuseda tissue flow 0.67 (0.62, 0.72) 0.58 (0.53, 0.64) 1.28 (0.24, 3.89)

Slowly perfusedb tissue flow 1.00 (0.91, 1.07) 0.86 (0.79, 0.94) 1.77 (0.31, 5.24)

Adipose flow 0.53 (0.48, 0.58) 0.46 (0.41, 0.51) 0.38 (0.05, 1.88)

a Rapidly perfused compartment assumed to comprise of the heart, lung, spleen, pancreas and sexual organs.
b Slowly perfused compartment assumed to comprise of skin and skeletal muscle.
c Comprising of gut and intestine flows.

important to note that the examples were not “cherry picked”: we
believe similar conclusions would be drawn if alternative prior
distributions defined in the literature were subjected to similar
scrutiny.

One important factor that influences the varying approaches
described above is that the structure of a PBPK model is
application specific. The number of organs and tissues explicitly
defined depend upon the route of exposure, dose pattern,
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FIGURE 7 | A comparison of the Skeletal muscle (red) and Adipose masses (dark blue) and Cardiac Output (light blue) as different contextual

information on age, body mass, and height is introduced into the prior specification.

physico-chemical properties of the substance, and any additional
cellular level behavior to be described within target organs. In
contrast the methodology described in the current paper is not
based upon a specific application and proposes distributions for
a large number of tissues: our work can be simplified and adapted
as necessary.

The use of probability to represent variability in the human
population certainly cannot be described as novel, however as far
as the authors are aware the link between population databases
and the literature on physiological changes associated with aging
has not been previously made. Furthermore, whilst differences
between males and females are routinely accounted for in other
studies, we are unaware of previous work that accounts for
either age or ethnicity dependent differences in physiology.
The ethnicity dependent distributions that have been developed
in this work are a further complication, however the trends
highlighted in Figures 1, 2 demonstrate that these are necessary
for accurate population based inferences. However, despite the
additional tier to the model which specifies age height and body
weight, the organs and tissues themselves are all modeled using
truncated normal and log-normal distributions, albeit with some
dependencies.

The novel aspect of this research is in the use of contextual
information. We demonstrated how even a single piece of
contextual information on the age, height, or weight of a
participant might be included to provide tighter bounds on the
physiology of any individual. This feature could be utilized in
population based studies where contextual information about
participants might be available, either estimated by a researcher
or from tick box responses to a survey. Additionally the
probabilistic model can be tuned so that physiologies for a

particular at-risk sub population (for example employees in a
high hazard industry) can be generated.

Whilst the hierarchical approach has been justified there
is room for further refinement in the models for organs and
tissues. A proportion of parameter space defined by our prior
distribution undoubtedly corresponds to physiologies that are
inconsistent with a healthy human population. More precise
relationships between organ masses and age, height, body weight
and BMI and organ masses can be easily accommodated. The
greatest scope for increased precision is offered by a more
appropriate measure of “size.” Height is not a particularly useful
measurement as very large differences in physiology are possible
for individuals of a similar height. The fat free mass of the torso
probably has a closer relationship with the internal organ masses.
In principle, relationships between the length of the torso and
internal organ masses could be established. This would require
an additional tier in the model, linking height to torso length, for
which anthropometric data is available. However, we are unaware
of datasets relating torso length to organ masses; this approach
would therefore need to be largely informed by autopsy data.

There is also the potential to further refine the modeling of
regional blood flows. Mean values for the regional blood flows
are based upon reference values (ICRP, 2003) and draw on
the work of Williams and Leggett (Williams and Leggett, 1989;
Leggett and Williams, 1991, 1995). Only modest variation in
these values was coded. There have been significant advances
in measurement technology since these reviews were conducted
and recent studies of regional blood flow are available (Casey
et al., 2008; Durduran and Yodh, 2014). An up-to-date systematic
review of the recent literature in this area would be a valuable
addition to the literature and could inform on more appropriate
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central estimates and variability for regional blood flow. A
more precise physiology might be achieved by introducing a
dependency between organ masses and flows. At present these
are fully independent however, in principle a modest correlation
could be easily supported, for example by truncating the regional
flow to be strictly greater than average if the organ mass is also
above average. This refinement is only likely to improve models
that require a detailed physiology as the dependencies would be
summed over if organs are aggregated in deriving rapidly and
slowly perfused compartments.

A further area for refinement is in the modeling of obese
populations. An upper BMI limit of 32.5 was used in developing
the relationships in the current work although a modest
extrapolation above this value this probably reasonable. Whilst
the threshold BMI was somewhat arbitrary it is clear that a
modification to our probabilistic model would be required for
severely obese individuals. Whilst these modifications have not
been thoroughly researched the anticipated changes that would
be required can be outlined. The skeletal muscle mass would be
generated independently from the adipose tissue with a different
form for the mean and a truncation to the upper tail of the
distribution (since excess mass will not result from the skeletal
muscle); a different form for the skin mass would be required
(probably a log-normal distribution) and a correlation with
adipose mass would need to be coded; an increase in cardiac
output, and increased regional flows to the skin and adipose
tissues would be required.

Finally we note that inter-individual variability in bio-
chemical parameters has not been considered in current research.
Age related variation in metabolism is accounted for by PopGen
and can be easily included in prior specifications (McNally et al.,
2014). We are unaware of work that links human anthropometry
to perfusion rates between the blood and organs.

The application to forward and reverse dosimetry problems
(and other inverse problems such as QIVIVE) is a focus of
current research. Whilst our work has not yet been demonstrated
in conjunction with a PBPKmodel for either forward and reverse
dosimetry applications (although this work is ongoing), the
comparisons made against the prior distributions of Sohn et al.
(2004) and Allen et al. (2007) are promising. A large range or
distribution of external doses may be consistent with observed
biological monitoring data, even when good quality information
is available from a controlled laboratory-based study. This is
the case since measurements only indirectly inform about the
underlying parameters of the PBPKmodel through a comparison
of model predictions and measurements at a number of time
points. Similar forecasts in the time dependent model output
can result from a wide range of exposures (in both dose,
and duration) in combination with changes to the sensitive
physiological parameters in the model. McNally et al. (2012)
noted that with regard to physiological parameters, typically
there is little difference in the marginal posterior distributions
compared with the priors, although the large correlations
between some parameters in the posterior do define a narrower
range of physiologies that are consistent with the data compared
with the prior. A subset of parameter space that is consistent
with measurements will inevitably correspond to an unrealistic
human physiology. The PBPK model, whilst physically based is

ultimately just a model and will return forecasts even when the
physiology defined by the input parameters is grossly inconsistent
with a healthy human. For ill-posed inverse problems of this
nature, the cautious Bayesian approach, of specifying wide
priors which are subsequently refined using measurements, is
flawed due to weak data. Prior specification therefore needs to
discriminate between realistic and unrealistic physiologies. We
do recognize that some physico-chemical parameters could be
highly uncertain and will require conservative limits. Potentially
these limits could be reassessed in a post-hoc analysis.

It was noted in Section Adaption for Inverse Problems that
the aggregation of tissues into rapidly and slowly perfused
compartments is not straight forward for inverse problems
since a sum of normal and log-normal distributions does not
have a closed-form probability distribution: this issue therefore
relates to masses but not flows. In the discussion we focus
on the rapidly perfused compartment although the slowly
perfused tissues are modeled with similar reasoning. Sensitivity
analysis might indicate that perfusion rates for rapidly perfused
tissues are sufficiently similar to warrant an aggregated rapidly
perfused compartment, however simulations will typically be
very sensitive to the mass of the rapidly perfused compartment.
Other authors assume a standard probability distribution for the
mass of the rapidly perfused compartment, either directly or as
a proportion of body weight. Results could be quite sensitive
to this approximation. One solution could be to retain the
(log-normally distributed) lung and spleen and aggregate the
remaining normally distributed tissues. Assuming a common
perfusion rate for all rapidly perfused tissues would introduce
an additional four parameters into the PBPK model for each
individual. A less precise yet computationally cheaper approach
would be to approximate the rapidly perfused compartment
by a suitable probability distribution. This conceptual
problem will be addressed in greater depth in forthcoming
work.

In conclusion we have developed a prior distribution for
human physiology based on information from population
databases and cadaver studies. The contextual information on
age, height, and body mass that can be fed into the prior is unique
and comparisons against published studies indicate our prior
distribution defines much tighter bounds on human physiology.
Until the methodology has been applied to a range of PBPK
models of differing complexity it is unclear to what extent the
prior will influence the precision of reverse dosimetry—this is a
focus of current work.
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