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Abstract

Objective

To apply biclustering, a methodology originally developed for analysis of gene expression

data, to simultaneously cluster observations and clinical features to explore candidate phe-

notypes of knee osteoarthritis (KOA) for the first time.

Methods

Data from the baseline Osteoarthritis Initiative (OAI) visit were cleaned, transformed, and

standardized as indicated (leaving 6461 knees with 86 features). Biclustering produced sub-

matrices of the overall data matrix, representing similar observations across a subset of vari-

ables. Statistical validation was determined using the novel SigClust procedure. After

identifying biclusters, relationships with key outcome measures were assessed, including

progression of radiographic KOA, total knee arthroplasty, loss of joint space width, and

worsening Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC)

scores, over 96 months of follow-up.

Results

The final analytic set included 6461 knees from 3330 individuals (mean age 61 years, mean

body mass index 28 kg/m2, 57% women and 86% White). We identified 6 mutually exclusive

biclusters characterized by different feature profiles at baseline, particularly related to symp-

toms and function. Biclusters represented overall better (#1), similar (#2, 3, 6), and poorer

(#4, 5) prognosis compared to the overall cohort of knees, respectively. In general, knees in

biclusters #4 and 5 had more structural progression (based on Kellgren-Lawrence grade,

total knee arthroplasty, and loss of joint space width) but tended to have an improvement in

WOMAC pain scores over time. In contrast, knees in bicluster #1 had less incident and
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progressive KOA, fewer total knee arthroplasties, less loss of joint space width, and stable

pain scores compared with the overall cohort.

Significance

We identified six biclusters within the baseline OAI dataset which have varying relationships

with key outcomes in KOA. Such biclusters represent potential phenotypes within the larger

cohort and may suggest subgroups at greater or lesser risk of progression over time.

Introduction

Osteoarthritis (OA) is the most common joint disease, affecting more than 1 in 5 adults in the

United States, with 1 in 10 reporting limitations in function related to their arthritis [1]. Osteo-

arthritis (OA) is by far the most common type of arthritis, particularly knee OA (KOA) which

can significantly affect mobility and is a major contributor to disability and eventual need for

joint replacement [2]. In recent years, greater attention has been given to the likelihood of dif-

ferent phenotypes of OA, which can be considered a syndrome rather than a single disease, as

it is characterized by similar signs and symptoms across patients, but these are due to differing

causes and manifestations [3, 4]. The common risk factors for OA, such as aging, increased

body weight, joint injury, genetics, and biomechanical factors are quite diverse. Therefore,

clinical studies that do not account for this heterogeneity are inherently limited. Combining

individuals with later stage features like pain and radiographic changes will mask the range of

important potential pathways leading to the OA syndrome in each individual, limiting the

ability of researchers to stratify risk and target treatments [5]. A range of phenotypes have

been proposed, including age and cellular senescence [6], post-injury OA in younger adults

[7], inflammatory predominant [8], and obesity/metabolic syndrome-associated [9], among

others [10, 11]. It is apparent that pain mechanisms vary among individuals with OA [12] and

therefore defining differences in pain manifestations in the various OA phenotypes [13, 14]

will likely also be necessary. Identification of individuals with the greatest risk of progression

could help to optimize clinical trials designed to slow or stop structural progression.

A variety of machine learning methodologies initially utilized primarily for image analysis

in OA [15] are being increasingly applied to large datasets for the purpose of identifying

important OA subgroups such as those mentioned above [16]. The Osteoarthritis Initiative

(OAI) [17], as a publicly available rich data source, is frequently utilized in such work, which

often seeks to identify patterns in magnetic resonance imaging (MRI) or radiographic images

[18, 19] with or without clinical data aspects [16, 20, 21]. Novel methodologies originally devel-

oped for other large datasets, such as array or genetic data, are also increasingly being applied

to large clinical datasets to explore potential phenotypes. In this paper, we used such a method-

ology, called biclustering [22], originally developed for analysis of gene expression data, to

simultaneously cluster observations and clinical features to explore candidate phenotypes of

KOA within the OAI dataset. We subsequently characterized the identified groups by impor-

tant outcomes to explore relationships with structural and symptomatic progression.

Methodology

Data source

This research used fully anonymized and publicly available data from the OAI cohort: https://

nda.nih.gov/oai with an approved data use agreement. The OAI is a multicenter, longitudinal,
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prospective observational study, designed to identify risk factors for the development and pro-

gression of symptomatic KOA. The study design has been previously reported [17]. In short,

4,796 participants were recruited between 2004 and 2006 from four clinical centers and were

invited to annual follow-up visits for up to 8 years. At baseline, 1,389 participants were in the

progression cohort (symptomatic tibiofemoral KOA with osteophytes and frequent symptoms

in one or both knees), 3,285 in the incidence cohort (no symptomatic KOA in either knee),

and 122 were healthy controls (no KOA, no symptoms, and no risk factors). The starting data

for these analyses, included baseline data from the OAI (n = 9592 knees), including 116 clinical

and demographic features (S1 Table, https://nda.nih.gov/study.html?id=911; doi: 10.15154/

1519056).

Preparation of the baseline dataset

First, the data were downloaded, compiled, and examined in detail. We chose to treat each

knee as an experimental unit, instead of each person, because it is feasible that a person’s two

knees could express different phenotypes of OA. People with a total knee arthroplasty (TKA)

in one knee at baseline therefore only have their other non-TKA knee in the dataset. We con-

sidered skewness, kurtosis, scaling issues, outliers, and other data characteristics using mar-

ginal distribution plots [23]. To prevent the analysis from depending on measurement scale,

we transformed continuous variables to have mean 0 and standard deviation 1, and because

many procedures are sensitive to skewness and non-normality, we transformed them to more

closely match normality. We combined transformations in a single step as previously

described [24].

We removed certain variables from the dataset before analysis. In particular, we removed

medication measurements for medications that are known to be unrelated to OA. We also

removed variables that are redundant: for example, “WOMAC Total” is the sum of the

WOMAC variables from all three subscales of pain, stiffness, and function, and “White” is

redundant after including race. Three variables—"P01HRSR”, “P01HRSL”, and

“V00HIPFX”—were excluded because they were only collected among a small subset of partic-

ipants. Unordered categorical variables were encoded using an indicator variable for each

level. Ordered categorical variables were encoded as integers 1, 2, 3, etc. The above processing

left 86 variables.

As the final preparation step, we removed knees with any missing values, because bicluster-

ing cannot handle those. This left 6461 knees. The prepared dataset was then entered into the

biclustering algorithm detailed below.

Biclustering procedure and rationale

A natural way to identify candidate phenotypes of a disease from a dataset is to use clustering,

an important type of unsupervised learning algorithm (i.e., there is no outcome variable),

which assigns observations to groups according to a chosen measure of similarity. We sought

to define knee phenotypes by clustering knees according to various measures in the OAI, such

as demographics, clinical features, symptoms, and function. However, the OAI database con-

tains many variables for each knee, many of which may be uninformative for that knee’s phe-

notype. On one hand, such uninformative variables can hinder clustering algorithms from

producing useful phenotypes, but on the other may provide crucial information for other phe-

notypes, and so cannot be completely discarded.

Biclustering, a procedure introduced to analyze gene expression data [22], can address this

problem by clustering both observations and variables simultaneously. In contrast to standard

clustering, which can be applied to either columns (i.e., clinical features) or rows (i.e., knees)
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of a data matrix and produces unassociated subsets (the clusters), biclustering allows simulta-
neous clustering of both the rows and columns. It produces submatrices of the overall data

matrix, which represent observations that are similar across a particular subset of the variables

[25]. Since its introduction in 2000, there have been many modifications to biclustering for dif-

ferent applications [25, 26], but the original procedure [22] remains best suited to the current

data, so this algorithm was applied without modification. In this paper, biclustering was used

for phenotype identification, in the sense that knees of a given phenotype should be similar on

clinical features associated with this particular phenotype, but allowed to be diverse on other

variables. Thus, this two-dimensional algorithm will allow clustering of knees and clinical fea-

tures simultaneously, capturing homogeneous subsets of knees with a coherent pattern across

subsets of clinical features.

The quality of a bicluster may be measured by mean square residue (MSR) (16), which rep-

resents the average (squared) departure of the submatrix entries from their expected values for

the bicluster. Cheng and Church’s procedure [22] iteratively finds the largest biclusters (i.e.,

those with the most rows and columns) that achieve a MSR below a user-supplied threshold.

The MSR threshold can vary from 0 to a maximum set by considering the entire dataset as a

single large bicluster (in this case, 0.41). In the current analysis, an MSR threshold of 0.2 pro-

vided a balance between the size of the identified biclusters and strength of fit.

A high quality bicluster can also be viewed as a submatrix that is well-fit by two-way

ANOVA [27], which can be represented by an R2 value (i.e., the proportion of variance

explained by membership in the bicluster) and is more readily interpreted than MSR.

Statistical validation of biclusters

Clustering algorithms will readily identify candidate clusters in large datasets, but it is often

unclear whether the identified clusters represent important underlying structure or are merely

artifacts of natural sampling variation. Although several methods have been developed to

address this statistical issue in biclustering [28–30], there are no methods that, to our knowl-

edge, both align with our data setup and have procedures for determining statistical signifi-

cance. Therefore, we additionally applied the SigClust procedure developed by Marron and

colleagues for validating clusters [31]. SigClust tests whether clusters reflect a true separation

in the data following a testing procedure. First, null Gaussian parameters are estimated using

original OAI data to simulate a proxy for unclustered data from a single null Gaussian distribu-

tion. To test whether the data sample has stronger clusters than clusters from proxy data with a

single cluster, the SigClust uses the cluster index, defined as the ratio of the within-cluster vari-

ation to the total variation. Tight, well-separated clusters have a low cluster index, while loose,

overlapping clusters have a high cluster index. Since SigClust can only test two clusters at a

time, we tested each pair of biclusters iteratively following the approach taken by Verhaak

et al. [32]. SigClust produces a z-score quantifying the strength of evidence against the null

hypothesis of a single Gaussian distribution (a proxy for unclustered data). Although z-scores

can be converted to p-values (e.g., z-scores less than -2 correspond to one-sided p-values less

than 0.023), we elected to present the z-scores to provide a better sense of the relative separa-

tion of various pairs of clusters in this exploratory analysis. In the following, a pair of clusters

is considered “significantly different” when their SigClust z-score is less than -2.

Preparation of the follow-up dataset

After identifying biclusters using only baseline data, we examined their relationships with out-

come measures over 96 months of follow-up (Table 1). Kellgren Lawrence grade (KLG) pro-

gression and TKA receipt were based on available data. Calculation of quantitative joint space
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width (qJSW) loss and Western Ontario and McMaster Universities OA Index (WOMAC

[33]) trajectories are described below.

Quantitative joint space width loss. QJSW is a continuous measure determined using an

automated method as previously described [34]. We first fitted the linear regression models

with qJSW at the medial (0.25 mm) and lateral (0.725 mm) locations as the dependent vari-

ables and time in months as an independent variable. Then, for each location, the fitted values

from the regressions were used to define the progressive structural damage outcome as per-

centage decrease from baseline to 96 months (i.e., baseline minus current qJSW divided by

baseline, to give percentage loss).

WOMAC pain trajectories. Group-based latent trajectory (GBLT) modeling was used to

identify knees with different WOMAC pain trajectories, via PROC TRAJ (in SAS version 9.4),

which fits a semiparametric mixture model to longitudinal data via maximum likelihood [35].

PROC TRAJ calculates the probability of each subject belonging to each latent trajectory

group and assigns each subject to the group with the largest probability. We modeled the

change from baseline (at 12, 24, 36, 48, 72, and 96 months) to reduce the effect of the variability

in intercepts. The Bayesian Information Criterion (BIC) and conceptual clarity were used to

determine the number of groups; shapes of the trajectories were determined based on the sig-

nificance of polynomial terms. Due to attrition, especially after the 48th month, we included

the dropout statement extension in the TRAJ procedure to account for missing data [36].

Table 1. Summary of outcomes over 96 months of follow-up in the OAI�.

Outcome Level Description of each level

Incident or progressive radiographic OA (rOA) 1 Baseline KLG = 0–1, no follow up data (n = 0)

2 Baseline KLG = 0–1, no incident rOA

(n = 3127)

3 Baseline KLG = 0–1, developed incident rOA

(n = 557)

4 Baseline KLG = 2+, no follow up data (n = 0)

5 Baseline KLG = 2+, no progressive rOA

(n = 2191)

6 Baseline KLG = 2+, developed progressive

rOA (n = 583)

7 Baseline TKA (n = 0)

999 No baseline and no followup KLG (n = 3)

Provision of total knee arthroplasty (TKA) 0 No TKA (n = 6060)

1 Received TKA (n = 401)

Progressive structural damage, as quantitative joint space

width [qJSW] loss‡
% loss of qJSW‡, in medial and lateral aspects

Progressive WOMAC† pain 1 Accelerated decrease in WOMAC pain from

baseline

2 No change in WOMAC pain over time

3 Gradual worsening in WOMAC pain over

time

4 Increase then decrease in WOMAC pain

�Available at: https://nda.nih.gov/oai/outcomes, Outcome99; KLG = Kellgren-Lawrence Grade;
†WOMAC: Western Ontario and McMaster Universities OA Index; Groups 1–4 defined by Group-based Trajectory

modeling;
‡Loss of qJSW = difference in qJSW from baseline to current divided by baseline in mm, expressed as a percentage

(continuous).

https://doi.org/10.1371/journal.pone.0266964.t001
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Joints with missing longitudinal data were included if they had the baseline measurement. The

knees were classified according to a specific trajectory based on the maximum estimated prob-

ability of assignment. We considered a probability of 0.8 or higher as a good fit. Knees with

estimated probability of 0.8 and higher were used to create bar plots showing the percentages

of knees from a particular bicluster within the trajectory groups (the spaghetti plots of the raw

trajectory data for the four groups are available in S1 Fig).

Results

After exclusion of uninformative variables and features/knees with missing data, we included

86 features from 3330 people (6461 knees) for these analyses. Sample characteristics of partici-

pants who were included in the analysis are summarized in Table 2.

Overall biclusters

We found 6 biclusters among the knees we analyzed (Table 3, Fig 1). These included biclusters

with better (#1), similar (#2, 3, 6), and poorer (#4, 5) prognosis compared with the overall

cohort (n = 6461) of knees. No knees were placed in more than one bicluster, and only 115

knees were not placed in a bicluster.

Bicluster #1 included 1425 knees from 960 individuals and 80 features, with an R2 of 0.37

(Table 3). Knees in this bicluster had a lower frequency of TKR and progressive rOA compared

with the full cohort and were less likely to develop rOA. These knees were less symptomatic,

Table 2. Characteristics of included individuals from the OAI baseline cohort (n = 3330).

Characteristics Mean ± SD� or n (%)

Age, years (mean ± SD) 61.4 ± 9.1

BMI, kg/m2 (mean ± SD) 28.4 ± 4.7

Women 1910 (57.4%)

White 2866 (86.1%)

Annual income > $50,000 2069 (64.0%)

Currently employed 2073 (62.4%)

Incidence cohort 2411 (72.4%)

Progression cohort 895 (26.9%)

Healthy cohort 24 (0.7%)

�SD = standard deviation.

https://doi.org/10.1371/journal.pone.0266964.t002

Table 3. Summary of identified biclusters, number of knees and features included, and prognosis.

Bicluster n (knees) N (people) D (features) R2 Prognosis�

1 1425 960 80 0.37 Better for bicluster

2 2415 1649 69 0.30 Similar

3 1822 1294 63 0.31 Similar

4 188 147 70 0.64 Poorer for bicluster

5 238 191 64 0.53 Poorer for bicluster

6 258 194 63 0.31 Similar

�Summary prognosis for those knees in each bicluster compared to the full cohort of knees, based on outcomes shown in Table 1, including knees without radiographic

OA (rOA), knees developing incident rOA (baseline KLG = 0–1 increasing to 2+), knees with prevalent rOA (baseline KLG = 2+ without progression), knees with

progressive rOA (baseline KLG = 2+ with worsening KLG), and the proportion of knees undergoing TKR over 96 months.

https://doi.org/10.1371/journal.pone.0266964.t003
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with higher KOOS pain and symptoms, and lower WOMAC scores (all scales). Knees in the

bicluster were from individuals with better SF-12 physical summary scale scores and faster

20-meter walk speeds. Other features characterizing this bicluster included fewer depressive

symptoms, fewer comorbidities, slightly higher income, and greater employment.

Biclusters #2, 3, and 6 had overall similar prognosis compared to the full cohort, but each

included different knees and sets of features. The R2 for these biclusters was around 0.3.

Fig 1. Summary of 6 biclusters in overall data (all knees). This heatmap shows all included variables on the y-axis, and knees on the x-axis.

Biclusters are indicated across the top by number. The color scale indicates the direction of the variable on a standardized scale. Features/knees in

gray are not included in the bicluster; na indicates that this group of knees were not included in any bicluster.

https://doi.org/10.1371/journal.pone.0266964.g001

PLOS ONE Biclustering reveals knee OA phenotypes

PLOS ONE | https://doi.org/10.1371/journal.pone.0266964 May 24, 2022 7 / 20

https://doi.org/10.1371/journal.pone.0266964.g001
https://doi.org/10.1371/journal.pone.0266964


Bicluster #2 included 2415 knees (from 1649 individuals) and 69 features with minimal dif-

ferences compared to the full cohort. Bicluster #3 included 1822 knees (from 1294 individuals)

and 63 features. The knees in the bicluster, compared with the overall cohort, were from indi-

viduals with slightly more depressive symptoms and slightly slower 400-meter walk times.

There was a higher frequency of prior injury in bicluster #2 compared with the full cohort, and

knees were less often from women. Bicluster #6 included 258 knees from 194 people and 63

features. Included knees had lower WOMAC scores (all scales), higher KOOS pain scores,

lower knee symptoms, and less patellar pain. The BMI of included participants was slightly

lower than the full cohort. Similar to bicluster #3, there was a higher frequency of prior injury

in the bicluster compared with the full cohort, and knees were less often from women.

Biclusters #4 and 5 were characterized by poorer outcomes. Bicluster #4 contained 188

knees (from 147 people) and 70 features and was characterized by greater frequency of both

progressive rOA and TKA. Bicluster #4 also had the highest R2 value of any of the 6 biclusters,

at 0.64. Features that were higher among the knees in bicluster #4 versus the overall population

of knees included knee symptoms, WOMAC scores, 400-meter walk time, knee tenderness on

exam, patellar quadriceps tendinitis, inability to work for health reasons, presence of patellar

grind, and knee flexion pain. In contrast, knees included in the bicluster had lower values for

KOOS (to be expected as the coding is opposite that of WOMAC), SF-12 physical summary

scale, 20-meter walk speed, and maximal isometric flexion strength (Fig 2). These knees were

less likely to be from Hispanic or Asian participants, individuals who were separated (versus

any other marital status), and less frequently reported intra-articular corticosteroids in the last

30 days.

Similarly, bicluster #5 included 238 knees from 191 people and 64 features, with an R2 of

0.53. Knees included in this bicluster were more likely to have knee rOA at baseline, and more

likely to experience radiographic progression, as well as to undergo TKA over the course of the

study. Knees included in the bicluster were characterized by higher WOMAC scores (all

scales), lower KOOS pain and symptoms, more knee symptoms, lower SF-12 physical sum-

mary scale scores, and greater pain with knee flexion and extension. Included knees were from

individuals who were more likely not working due to health issues, more likely using narcotics

(and medications in general), more frequently Black, and less likely to have income over

$50,000 per year.

Bicluster comparison by baseline measures

To compare biclusters on key variables, we generated a boxplot for continuous variables (Fig

3) and a bar plot for categorical variables (Fig 4). As an example, the leftmost set of boxplots

describes the distribution of Physical Health Summary within each bicluster. The variables

have been standardized by the procedure described above (page 5), such that 0 denotes the

sample mean and the box in each boxplot marks the middle 50% of the values. The interquar-

tile range (IQR) for bicluster #1 (red) stretches from about 0 to 1, indicating that the middle

50% of knees in bicluster #1 have Physical Health Summary values between 0 and 1 standard

deviations above the sample mean. Biclusters #4 (cyan) and #5 (blue) have their middle 50% of

knees between 0.5 and 1.5 standard deviations below the mean. Biclusters 3 and 6 do not incor-

porate the Physical Health Summary variable, so there is no boxplot for those biclusters.

The U-shaped pattern (over biclusters) observed for Physical Health Summary is also noted

in the KOOS and WOMAC variables: bicluster #1 tends to be the least symptomatic/impaired,

while biclusters #4 and 5 are the most symptomatic or impaired in these variables. Unlike the

physical health summary and KOOS variables, the WOMAC variables use high numbers to

indicate worse health, so we plotted the negative standardized values of the WOMAC variables
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to visualize this pattern. This pattern is also partially visible in the variables on the right side of

the visualization: bicluster #1 shows faster, stronger knees in the 400m walk time, 20m walk

pace, and force variables, bicluster #2 reflects the cohort, and bicluster #4 has slower, weaker

knees. Biclusters #5 and 6 did not contain these variables.

Among binary variables (Fig 4), similar patterns are seen, where bicluster #1 is character-

ized by less pain and higher socioeconomic status (SES), bicluster #2 reflects the cohort, and

biclusters #4 and 5 demonstrate more pain and lower SES. The binary variables are not

Fig 2. Distribution of top features for bicluster 4 (all knees). Marginal plots of key features for bicluster 4 are shown,

with the distribution for the overall cohort of knees in gray and the distribution of each feature in bicluster #4 shown in

red; vertical lines indicate the mean value for each group.

https://doi.org/10.1371/journal.pone.0266964.g002
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standardized (e.g., the value of the red bar in the Works for pay variable is about 0.7 and indi-

cates that about 70% of observations in bicluster #1 work for pay). The grouped bars in this

plot form three basic shapes: a U shape in the first three variables, a mound shape in variables

from Bone frax age 45+ (i.e., bone fracture over age 45 years) to Back pain last 30 days, and a

much sharper mound shape for the variables from Race: Black or African American to Pat-fem
crepitus (i.e., patellofemoral crepitus). This last set of variables indicates relatively large differ-

ences between bicluster #1 and biclusters #4 and 5, while the remaining biclusters reflect the

overall cohort.

Bicluster validation using SigClust

Pairwise SigClust using all features demonstrated a significant difference between biclusters #1

and 4 with a z-score of -10.2, between biclusters #1 and 5 with a z-score of -7.4, and between

Fig 3. Boxplot comparing key continuous variables across the 6 biclusters and the overall population of knees (P).

The y-axis represents standardized values and standard deviations, and the x-axis indicates the features. Boxplots are

colored by bicluster numbers, with P = population in gray indicating the overall cohort mean and distribution.

https://doi.org/10.1371/journal.pone.0266964.g003

Fig 4. Bar plot comparing key binary variables across the 6 biclusters and the overall population of knees (pop). The y-axis indicates the proportion

in each category of the variables (which are shown on the x-axis). Bars are colored by bicluster number, with the overall population of knees (pop) in

gray.

https://doi.org/10.1371/journal.pone.0266964.g004
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biclusters #4 and 6 with a z-score of -3.6. Z-scores between other pairs of biclusters did not

demonstrate statistical significance (Fig 5).

Comparison of biclusters by outcomes

As noted in Table 3, the outcome measures vary substantially for the individual biclusters.

This is demonstrated for radiographic progression (i.e., development or worsening of radio-

graphic OA by Kellgren-Lawrence Grade [KLG]) in Fig 6A and for receipt of TKA by 96

months in Fig 6B.

Fig 5. Pairwise SigClust among each pair of biclusters. Each pair of biclusters is plotted in a two-dimensional scatterplot: the horizontal axis

of each scatterplot is the mean-difference direction (the vector between the centers of the biclusters) and the vertical axis is the orthogonal

principal component to the mean-difference direction. The SigClust z-score for the pair of biclusters is printed on the plot in black, and in red

if it is below -2 (which would demonstrate statistical significance in the absence of multiple comparisons).

https://doi.org/10.1371/journal.pone.0266964.g005
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Incident and worsening rOA are summarized together in Fig 6A, where knees in blue do

not have rOA at baseline and do not develop it over the study period; green indicates rOA at

baseline without progression over the study period. Orange indicates development of new

knee rOA, while red reflects progression of rOA over 96 months. The x-axis shows the 6

biclusters; knees in bicluster #4 and 5 have more prevalent and progressive rOA compared to

the other biclusters. Knees without baseline or new rOA (blue) are more frequent in biclusters

#1–3 and 6. Similarly, biclusters #4 and 5 had the most eventual TKA over the 96 months at

around 16% (Fig 6B), while bicluster 1 had the fewest at only about 3%. Biclusters #2, 3, and 6

had rates between 8–10%.

Fig 6. Structural progression by bicluster over 96 months. A. Progression based on Kellgren-Lawrence Grade (KLG)

from baseline to 96 months; B. Progression based on receipt of a total knee arthroplasty (TKA) by 96 months. The x-

axis indicates each of the six biclusters; the y-axis is the proportion of knees in each category of the legend.

https://doi.org/10.1371/journal.pone.0266964.g006
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When progression was assessed using medial compartment qJSW (Fig 7A), a similar pat-

tern was identified, with biclusters #4 and 5 demonstrating more medial joint space loss,

around 20%, while bicluster #1 had the least loss, with a median loss of less than 10% of the

baseline width. In contrast, less difference in the median % loss was noted in the lateral com-

partment among the biclusters (Fig 7B), although bicluster #5 was noted to have a larger num-

ber of knees losing a higher percentage of lateral qJSW. Estimated medial qJSW loss at 96

months was truncated at 100% when the linear regression resulted in loss >100% (3% of

knees), or if gain was >40% (1% of knees); for lateral qJSW loss, the thresholds were >100%

and gain of>50% (1.6% and 1.2% of knees, respectively).

Fig 7. Percentage loss in quantitative joint space width (qJSW) in the medial (A) and lateral (B) compartments for

each of the six biclusters on the x-axis.

https://doi.org/10.1371/journal.pone.0266964.g007
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Comparison of biclusters based on pain outcome. Using GBLT modeling, we identified

four WOMAC pain trajectories over 96 months (Fig 8A). Most knees were on the “stable” tra-

jectory (Group 2), characterized by no change in WOMAC pain over time. Probability of

membership in this group was estimated at 76.4% (95% CI [75.3, 77.5]). Fewer knees (11.2%,

95% CI: [10.5, 11.9]) were on the “improvement” trajectory (Group 1), initially experiencing

more pain, with accelerated decrease over time. Similarly, 9% (95% CI: [8.0, 10.1]) of knees

were on a “worsening” trajectory (Group 3) with an overall steady increase in pain. The small-

est group (3.3%, 95%CI: [2.7, 4.0]) of knees were on an irregular trajectory (Group 4),

experiencing an increase in pain from baseline followed by a decrease to roughly baseline level.

After defining the trajectory groups, we examined how they were represented within each

bicluster (Fig 8B). We found that knees in bicluster #4 and 5 contained relatively more knees

of Group 1 (improvement) than other biclusters. In contrast, knees in bicluster #1 were more

likely to demonstrate stable pain over time (95% of knees in bicluster #1 were assigned to the

stable trajectory, Group 2). Only 4 to 7% of the knees in each bicluster demonstrated a worsen-

ing pain trajectory over time (Group 3), and even fewer (1–4% in each bicluster) were in

Group 4, with initial worsening and later improvement. Although infrequent, these latter two

patterns may be of the greatest interest regarding a future clinical trial targeting these knees as

having the greatest potential for symptomatic improvement.

Discussion

We identified six distinct, non-overlapping biclusters among more than 6000 knees in more

than 3000 OAI participants when examining 86 different features (Table 4). Of these, bicluster

#1 represented a group of generally healthier knees with a lower frequency of OA development

and progression; biclusters #4 and 5 were the least healthy, with more frequent OA and greater

progression, including a greater frequency of TKA. Biclusters #4 and 5 were statistically dis-

tinct from bicluster #1 according to SigClust. The patterns of most features were similar for

biclusters #4 and 5, reflective of greater symptoms and tenderness, poorer physical health, and

slower walking speeds. Contrasting features included reduced isometric flexion strength and

less intra-articular corticosteroid use in bicluster #4, while knees included in bicluster #5 were

more often from Black individuals, those taking narcotics, and with lower incomes. Interest-

ingly, these groups also differed somewhat based on qJSW loss, with more medial qJSW loss

for bicluster #4 and more lateral qJSW loss in bicluster #5.

Our work supports previous research identifying a variety of features associated with KOA

progression, such as more symptoms/tenderness in the knee and other joints, female sex, non-

white race, low income, lack of employment, depression/comorbid conditions, obesity, and

knee injury [37–39]. However, the present work has the added value of finding and quantify-

ing the associations of all these features, in subsets of knees, in a single comprehensive analysis

and choosing the key differentiating features in a data-driven manner.

Some recently published studies highlight the breadth of approaches possible with advanced

methodologies and the rich OAI database, mostly focused on prediction models. For example,

Guan, et al. [40] utilized deep learning (DL) to predict progression of pain (yes/no based on

9-point increase in WOMAC pain) from a baseline knee radiograph, finding that the DL

model alone had a predictive area under the curve (AUC) of 0.77 which increased to 0.81 after

addition of age, sex, race, BMI, WOMAC pain, and KLG to the model; prediction was better

when restricted to knees with baseline rOA. Other groups have sought to predict structural

progression with machine learning models. In one of several works in this area, Jamshidi et al.

[15] used baseline OAI features, including quantitative MRI, to predict cartilage volume loss

and radiographic medial joint space narrowing, finding AUCs of 0.7 to 0.9 for these
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Fig 8. A. Estimated trajectories of WOMAC pain change with 95% confidence intervals (dotted lines) defined by GBTM. Group 1 (red):

11.2% of knees with a mean probability of assignment of 0.94±0.12. Group 2 (green): 76.4% of knees with a mean probability of

assignment of 0.95±0.10. Group 3 (cyan): 9.0% of knees with a mean probability of assignment of 0.83±0.16. Group 4 (pink): 3.3% of

knees with a mean probability of assignment of 0.88±0.15. See also S1 Fig. B. Assignment to the trajectory by bicluster. Each horizontal

bar represents a bicluster. The numbers within the segments of the bar are proportions of knees assigned to a specific trajectory.

https://doi.org/10.1371/journal.pone.0266964.g008
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relationships. These investigators also explored baseline biomarkers as predictors of KOA pro-

gressors [41].

Our work contrasts with prior studies as we used an unsupervised approach, rather than a

supervised one. Therefore, we did not attempt to predict progression, but rather to identify

subgroups within the baseline data and subsequently compare these groups on key outcomes

(including progression). A key strength of the biclustering approach is that it allows simulta-

neous clustering of both observations (e.g., knees) and features, as some features are only

informative for some phenotypes. The presence of variables in the dataset, that are informative

for some phenotypes but not others, is not unique to the OAI and is becoming more common

as new technologies have enabled storing, organizing, and computing with large amounts of

data. Biclustering accounts for this issue and may provide even more value when we integrate

additional data types, such as MRI scores or cartilage maps, biomarkers, etc., that may specifi-

cally relate to only some phenotypes and uninformative for others.

While each knee was only included in one bicluster, and only a few knees were not included

in a bicluster, there were similarities among individuals and among features. This highlights

the significant overlap among phenotypes in knee OA [11], and the lack of clearly separated

clusters as have been seen in cancer [42, 43] and other fields [44]. Of particular interest is a

recent work using RNAseq and multi-omics factor analysis on data from cartilage and

synovial samples of patients undergoing joint replacement [45]. This study identified distinct

and independent subgroups among tissue from low-grade cartilage lesions and from synovial

tissue, all of which were characterized by variations in inflammation, extracellular matrix, and

cell adhesion. No subgroups were seen in tissue from the more severely damaged high grade

cartilage lesions. Their analysis suggested that the variation among groups was along a contin-

uum, the “inflammatory endotype axis of variation,” rather than reflecting discrete clusters.

This conclusion is in line with our work to date, suggesting that subgroups of OA may be

more subtle, and less discrete, than have been found in other disease processes. The identified

biclusters provide a starting point for further work to explore the underpinnings of each, and

further explore potential key features to target for interventions (i.e., in biclusters #4 and 5), to

exclude in clinical trials of progression or to focus on for prevention trials (i.e., features of

bicluster #1).

Table 4. Summary of outcomes by bicluster.

Bicluster # Radiographic OA Arthroplasty Medial narrowing� Lateral narrowing� Symptoms

KLG TKR medial qJSW lateral qJSW WOMAC
1 Less rOA at baseline and less progression 3% TKR 2–18% loss 1–15% loss 95% "stable"

0.1% "improver"

2 Like population 8% TKR 2–28% loss 1–17% loss 83% "stable"
3 Like population 10% TKR 2–32% loss 2–21% loss 80% "stable"
4 Most rOA at baseline, more progression 17% TKR 4–45% loss 0–23% loss 52% "improvers"

4% "worsening"

5 More rOA at baseline, most progression 17% TKR 3–44% loss 3–36% loss 32% "improvers"

7% "worsening"

6 Like population 11% TKR 2–31% loss 1–17% loss 88% "stable"

�25th-75th percentile (IQR); KLG = Kellgren Lawrence Grade; TKR = total knee replacement; qJSW = quantitative joint space width; WOMAC = Western Ontario and

McMaster University Osteoarthritis Index.

https://doi.org/10.1371/journal.pone.0266964.t004
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Strengths and limitations

We have demonstrated the ability to identify phenotypes in the baseline visit of the OAI that

reflect different prognosis over longitudinal follow up. The main strength of this work is in

demonstrating that the central ideas of biclustering are useful for OA subtyping. Our work is

the first application of biclustering in OA, and the first usage of SigClust for testing the signifi-

cance of biclustering results in any field.

Confirmatory analysis applying these biclusters to an independent dataset in a supervised

approach could support the importance of these exploratory findings. A re-design of the

biclustering algorithm could better reflect the structure of this and other clinical datasets in the

future. Additionally, to avoid the extra step of determining significance, if the statistical signifi-

cance step could be directly incorporated into, and optimized for, the biclustering process, it

may result in higher quality biclusters and a streamlined process.

Conclusions

We identified six biclusters (groups of features and knees) within the baseline OAI data with

varying prognoses. Such biclusters may represent potential KOA phenotypes (e.g., progressor

phenotype(s)) within the larger cohort. Novel application of existing methodologies can pro-

vide insights into OA phenotypes and development or progression of disease. Additionally,

the identification of phenotypes with differing prognostic associations may identify groups

that are most likely to respond to specific interventions.
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