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Introduction
Genome-wide DNA copy number (CN) data are an essential 
aspect of integrative cancer genome analyses directed at iden-
tifying dysregulated pathways in cancer.1 Identification of 
regions and genes of interest in CN data has primarily been 
accomplished through the identification of consensus regions 
of alteration and statistically rationalized with tools such as 
Genomic Identification of Significant Targets in Cancer 
(GISTIC) that identify individual regions of recurrent CN 
alteration.2 While useful, this approach does not address the 
impact of co-associations of distant genetic loci or visualize 
complex interactions clearly.

In contrast, Hi-C methodology maps physical interactions 
between chromosomes at specific loci, allowing the derivation 
of a matrix of chromosomal interactions of great utility in stud-
ies of 3-dimensional chromatin structure.3 Visualizations of 
such a matrix can show hot spots of interactions between 
regions, whereas edge-node graphs and CIRCOS plots can 
become cluttered and nearly uninterpretable. Matrices can dis-
play more interactions per unit area in a clear fashion, and the 
matrix display of interactions shows interaction domains with 
row and column order preserved in the matrix.4

Merging cancer CN data with a matrix-mapping approach 
similar to Hi-C analysis, we have developed methods to analyze 

and interactively display genome-wide interactions from a CN 
data set, with each matrix value representing the strength of the 
interaction between loci. Two current trends tend to encourage 
investigations that benefit from this type of interaction data. 
One is the growing understanding of the topology and specific-
ity of nuclear chromosome territories, and the other is the ever 
more widespread use of whole genome sequencing in cancer 
genomics, which allows unprecedented precision in mapping 
structural variants and local CN. Particularly in cancers with 
extensive genome rearrangements, there is an unmet need for 
tools that facilitate the discovery of genomic aberrations that 
depend on aspects of higher order nuclear organization. Our 
goal has been to develop a method that essentially precomputes 
and visualizes signed correlations between any 2 points in the 
genome using binned segmented CN values from a large set of 
cancer samples. We found that a recursive linear regression 
algorithm produces visually intuitive, interpretable results that 
are consistent with known aspects of chromosome structure and 
genome rearrangement that can also rapidly identify novel 
features.

Here, we report this new methodology, R package, and a 
suite of Web-based tools accessible to the scientific community 
for the exploration of complex CN data sets to generate 
hypotheses connecting CN phenomena and their underlying 
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chromosome aberrations to the pathogenesis of various can-
cers. The package can also accept The Cancer Genome Atlas 
(TCGA) and Therapeutically Applicable Research to Generate 
Effective Treatments (TARGET) data, allowing for analysis of 
a broad range of cancers using existing large cohort studies.5 
We have also provided guidance for the importation of unpub-
lished user data. The R package is highly accessible, combining 
vignettes, documentation, examples, and an animated tutorial.

As an example of the application of CNVScope, we chose a 
sufficiently large publicly available neuroblastoma (NBL) data 
set. This aggressive childhood cancer has known features, nota-
bly the pattern of clustered chromosomal breakpoints in the 
MYCN-NBAS region, occurring with MYCN amplification, 
often consistent with episomal structures such as double 
minutes.5 Visualizing this data set with CNVScope reveals a 
distinctive signature in this region as well as several other intra- 
and interchromosomal features illustrated below.

Methods
Input matrix using NBL data set

From the GDC legacy archive, an NBL data set of 126 samples 
was obtained (see vignette). Data were aggregated into a binned 
sample matrix with 1 Mb bins. Each bin value corresponded to the 
average segmentation value for TCGA or mean relative coverage 
for TARGET for segments that overlapped the bin in that specific 
sample. Row names signified bin genomic position, whereas 
column names represented the sample identifiers. This input 
matrix was then used as the basis for the matrix of log P-values.

Linear regression, postprocessing, and matrix set 
formation

From this input matrix, a matrix of negative ln P-values was 
taken for all combinations of every genomic range bin of aggre-
gated segmentation values against every other bin to form a 
matrix of values denoting the numeric association between 
regions based on segmentation values. The correlation sign was 
multiplied by each value so that those with negative associa-
tions would have a negative value and, after a numeric trans-
form into the [0,1] color space, would be rendered as blue in 
color, whereas those with positive associations would be ren-
dered as red. We also annotated each of the region pairs with 
genes and created 529 smaller matrices (1 for each chr1-X 
chromosomal pair) that could be easily viewed using the plotly 
R toolkit implementation in our shiny application (Figure 1). 
See supplementary methods, R documentation, and vignettes 
for more information. To view the vignettes, type browseVi-
gnettes (“CNVScope”) after installation instructions on the 
site (https://github.com/jamesdalg/CNVScope/) are followed.

Features
The CNVScope app allows the user to quickly identify hot 
spots and large features in a chromosomal interaction plot and 

provides a clear view of the contributing samples to every single 
value in the matrix. Genes and expression transcript levels are 
identified at every combination of genomic loci. COSMIC cen-
sus genes are also noted. The matrix data also can be explored 
using a gene search tool to provide coordinates based on 
ensembl-75 (hg19). With coordinates specified, users can then 
plot the view zoomed directly on their location pair of interest.

Controls

The application features a gene search tool to get exact gene 
positions, a saturation threshold slider to control the effect of 
outlier pixels, a heatmap height slider, dropdowns for chromo-
somes, and a plot button. We have provided the NBL data in 
complete form along with several clinical subsets. The users are 
also given a choice of relationship metric correlation sign*-
log(P-value) or correlation. Correlation type can be selected, 
with users suggested to use Pearson for linear relationships, 
with Spearman and Kendall able to detect linear or nonlinear 
relationships. A P-value filter has been added, allowing users to 
filter out squares in the matrix that do not have a slope signifi-
cantly different than 0. This P-value filter is based on false dis-
covery rate–corrected P values being less than .05. The Main 
plot is an inter-/intrachromosomal plot of relationship values 
between pairs of region segmentation values. Genes and raw  
P values are shown on hovering, and domains/hotpots can be 
found while exploring the chromosomal interaction pair. Gene 
names can be disabled before plotting, if desired. Upon click-
ing, searchable lists of row/column genes appear. As expected, 
the strongest signal appears as the segment distance approaches 
0 on the diagonal, but the local strength of this signal varies. A 
break in the local correlation is typically observed at cen-
tromeres related to the high frequency of centromeric chromo-
some rearrangements. Domain boundaries detected by image 
segmentation are shown on the edges. The Mini-map provides 
a close view of the main plot to see subtle details. Census Genes 
provides the COSMIC annotated genes (https://cancer.sanger.
ac.uk/census) in the region, along with tumor type, tissue of 
origin, and known roles (eg, oncogene, fusion).6 Sample-level 
information provides 2 histograms overlaid with an opacity 
slider to improve visibility. A regression scatterplot shows indi-
vidual segmentation values for the clicked point of the main 
plot, colored by sample to show the direction of the relation-
ship as well as outliers and sample clusters. Expression Data 
provides access to the NBL expression mean and variance of all 
genes within the region, ordered by the expression variance 
percentile. Whole Genome View shows all chromosomes in a 
static map, labeled by chromosome, with a saturation slider to 
find regions to explore at a chromosomal level in the main plot.

Package vignettes

The package vignettes detail the process to import GDC data 
with images of the requisite steps, perform the relationship 
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mapping using a high-performance computing system, post-
process the matrix, and briefly visualize results. A power analy-
sis vignette is also provided, which suggests a minimum sample 
size of 108 individual CN cases. We also wish to note that sev-
eral other cancer data sets have been demonstrated to work 
with the toolkit, including bladder cancer, prostate cancer, 
acute myeloid leukemia, and melanoma. A brief demonstration 
of the toolkit on these data sets is provided within the GitHub 
package.

Specific Observations in NBL
To understand the information carried by the CNVScope 
main plot, it is useful to examine the whole genome plot aris-
ing from the 126-sample NBL data set (Figure 2A). The 
strong correlation signal (red) on the diagonal represents the 
high probability of CN correlation of adjacent segments 
related to their chromosome topology. Note that the signal is 
not confined to the geometric diagonal but extends variably 
some distance from that line. The simplest example is the X 
chromosome that other than the small clearly delineated 

discontinuities of the pseudoautosomal regions appears as a 
rather uniform block due to the fact that each sample originated 
from either an XX or an XY genotype. Most other chromo-
somes exhibit a more complex pattern, with principal blocks 
often demarcated at the centromeres, consistent with the 
known high frequency of whole chromosome arm rearrange-
ments in cancer. For example, on the chr20 × chr20 plot, inde-
pendent correlation blocks exist for p and q arms, with breaks 
in correlation at the centromere. The 20p arm correlation 
block ends at 26 to 27 Mb, and the p arm block begins at 29 to 
30 Mb, with jointseg calling boundaries at that these loci cor-
responding to the centromeric ends of the alignable sequence 
for each arm. Remarkably, CNVScope allows these boundaries 
to be readily discerned against a background of high correla-
tion for the entirety of chr20, with only 15 of 126 (11.9%) 
samples showing chr20 arm–specific CN aberrations. On the 
other chromosomes, local decreases in cis-association signal 
suggest the presence of focal CN aberrations. For example, on 
chr2 we observe a distinct biological signature (correlation 
dropping sharply off diagonal) precisely at the MYCN locus 

Figure 1.  Workflow from GDC TARGET neuroblastoma CN data to finalized interchromosomal matrices used in the shiny application. Files are converted 

from GDC tab-delimited files with varying bin sizes into an input matrix of even 1 Mb bins and sample identifiers, and then into relationship metrics from 

linear regression (the negative log P-value). Postprocessing then sets the infinites to a high number to allow visualization and adds negative signs in 

regions where the strong relationship is an inverse linear relationship. Finally, the large, postprocessed matrix is converted to many small matrices with 

the ensembl-75 genes mapped to each genomic bin pair.
TARGET indicates Therapeutically Applicable Research to Generate Effective Treatments; CN, copy number; CNV, copy number variant.
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(Figure 3). MYCN amplification has been suggested to be “the 
best characterized genetic marker of risk in neuroblastoma,” 
with approximately 25% of patients exhibiting the MYCN amp
lification associated with risk of poor outcome.7 CNVScope 
provides a new, compelling visualization of CN data illustrat-
ing the domain of the MYCN amplicon. This signature is 
apparent in either correlation or linear regression views on the 
application. Thus, we observe that a known marker of NBL 
shows a clear, visual chromosome interaction signature.

The G1/S-phase cyclin CCND1 also shows a similar focal 
signature on the diagonal of the chr11 × chr11 plot, within a 
microdomain of 7 Mb delineated by 2 jointseg edges (Figure 4). 
CCND1 has been suggested to have a role in differentiation, 
proliferation, and cell cycle progression in NBL.8 CNVScope 
identifies CCND1 as likely to be important in NBL biology. 
Interestingly, additional information from intrachromosomal 
analysis adds depth to this observation.

From the whole genome plot, there are many off-diagonal 
regions demonstrating significant signal. In particular, 17q and 
11q show strong anticorrelated regions visible in both the whole 
genome and the interchromosomal views as a large block (blue) 
(Figure 2(B)). Histograms validate that these regions have 2 
distinct distributions that are very well separated, and a linear 
regression view of a single sample makes clear the downward 
trend driving the color coding (dark blue) visually displayed in the 
interchromosomal view (Figure 2(C and D)). These features 
allow the user to drill down from the relatively abstract view of 
the main plot to the detailed underlying data and appreciate 
that the genetic phenomenon flagged in CNVScope is the sig-
nificant co-occurrence of 11q loss and 17q gain. This phenom-
enon has been previously reported in NBL.8,9 Remarkably the 
anticorrelated portion of 11q is bounded by a jointseg edge at 71 
to 72 Mb, indicating that 11q loss consistently begins telomeric 
to CCND1 preserving its function as a tumor driver.

Figure 2.  (A) A whole genome interaction view of neuroblastoma copy number (CN) associations (chr1-X). Boxed regions highlight chr2 (enlarged in 

Figure 3), chr11, and the negatively signed off-diagonal association of 11q and 17q. (B) The enlarged chr11-chr17 map illustrates the strong anticorrelated 

regions of 11q-17q. The lowest correlation point is highlighted (r =−0.482, Benjamini-Hochberg adjusted P value is .000117). The number of tests used for 

the adjustment is the number of bin pairs in the whole genome. (C) Representative regression plot of CN values on 11q and 17q illustrates an 

anticorrelation trend as well as the detailed sample-level data on 3 tooltips. (D) The data from the same coordinates as (C) are represented as a histogram 

showing clear separation of CN value distributions on 11q and 17q. These plots support the interpretation that there is a significant association of 11q loss 

with 17q gain.
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Many studies have examined single gene-gene associations 
for CN amplifications and deletions, but CNVScope does this 
on a whole genome scale, providing a survey view and rapid 
access to significant associations while also allowing access to 
the primary data, gene annotations, and other data types that a 

user might wish to integrate with CN data.10-12 In conclusion, 
we have described the methodology, the detailed features, and 
the potential of CNVScope to highlight significant genomic 
events such as those we have described in NBL. We invite oth-
ers to explore the regions and hot spots which may be related 

Figure 3.  (A) Intrachromosomal association plot for chromosome 2. The box highlights a distinct feature on the diagonal indicating narrowing of the 

region of local co-association, and white lines emanating from that region show a reduction in association from the MYCN locus across all loci on the 

chromosome. (B) Enlarged view of the MYCN amplification domain with a break in linear regression signal near MYCN most likely due to amplification of 

MYCN in relatively small, often extrachromosomal, amplicons. The MYCN locus is highlighted.

Figure 4.  CCND1, a focally amplified cell cycle regulator, is located within a distinct association domain in 11q13. In this plot of chr11-chr11, the sharp 

reduction of chr11-chr11 association is likely the result of structural variants leading to CCND1 copy number (CN) gain. False discovery rate P-value 

filtering was applied to this Pearson correlation plot of CN associations on chr11. CCND1 is located precisely at chr11:69455855-69469242.
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to functionally important aspects of NBL genome biology and 
to use CNVScope to explore other cancer genomics projects 
with available CN data.

Limitations
It is important to point out that CNVScope resolution is ulti-
mately limited by the probe density of the input data and the 
bin size selected. A 1-Mb bin size was chosen for the visualiza-
tion tool to allow swift and stable function of the application. 
We feel that this is a reasonable compromise between resolu-
tion and computational limitations. It is also consistent with 
many existing data sets. We also note that the toolkit allows for 
the use of custom data to generate the relationship matrix 
should users with sufficiently high-resolution data wish to cre-
ate an extremely high-resolution view of a selected region. 
Smaller and larger bin sizes have been tested on the NBL data 
set (0.1 and 10 Mb). Both the function and the commands for 
this have been listed in the input matrix vignette. The main 
focus of this work is to facilitate the rapid analysis of CN asso-
ciations in integrative cancer genomics studies through the 
visualization of a precomputed association matrix.
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