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Voxelwise-based Brain Function 
Network using Multi-Graph Model
Zhongyang Wang2, Junchang Xin1,3, Xinlei Wang1, Zhiqiong Wang2,4, Yue Zhao2 & Wei Qian5

In the research of the fMRI based brain functional network, the pairwise correlation between vertices 
usually means the similarity between BOLD signals. Our analysis found that the low (0:01–0:06 Hz), 
intermediate (0:06–0:15 Hz), and high (0:15–0:2 Hz) bands of the BOLD signal are not synchronous. 
Therefore, this paper presents a voxelwise based multi-frequency band brain functional network 
model, called Multi-graph brain functional network. First, our analysis found the low-frequency 
information on the BOLD signal of the brain functional network obscures the other information 
because of its high intensity. Then, a low-, intermediate-, and high-band brain functional networks 
were constructed by dividing the BOLD signals. After that, using complex network analysis, we found 
that different frequency bands have different properties; the modulation in low-frequency is higher 
than that of the intermediate and high frequency. The power distributions of different frequency 
bands were also significantly different, and the ‘hub’ vertices under all frequency bands are evenly 
distributed. Compared to a full-frequency network, the multi-graph model enhances the accuracy of the 
classification of Alzheimer’s disease.

In recent years, the number of patients suffering from neurodegenerative diseases such as Alzheimer, Parkinson, 
Mild Cognitive Impairment, and mental disorders such as Depression, Anxiety Neurosis, and Schizophrenia has 
increased dramatically. Researchers have discovered that using complex network analysis such as small-world1, 
scale-free2 and so on can reveal the topological structure of brain functional networks3–5. In brain diseases, 
network topological structures will have different degrees of abnormal changes. Therefore, the study of brain 
function network based on functional magnetic resonance (fMRI) can not only provide a new perspective on 
understanding the pathological mechanism of neuropsychiatric diseases but also is helpful for the early diagnosis 
and treatment evaluation of diseases6.

In 2005, Salvador et al.7 constructed a brain atlas functional network of normal control subjects in a rest-
ing state. For the first time, the brain is divided into 90 regions of interest by anatomical automatic labeling 
(AAL). Most of the later studies of brain function networks have focused on the functional connectivity of brain 
regions8–10. As the atlas-level brain function network takes the mean values of all voxel blood oxygenation level 
dependent (BOLD) signals in the brain atlas, it will mask the differences in the details between the internal 
voxels of the atlas. Voxel-wise based brain function network emerges as a more detailed mapping of signals is 
required11–13.

In the study of voxel-wise based functional networks, the pairwise correlation between nodes (vertices) is 
usually established by using voxel BOLD signal similarity matching in order to obtain correlation matrices of 
the networks. At present, this similarity is usually a match in the time domain, which is usually matching the 
full-band information after filtering and removing noise.

In order to increase BOLD weighting, a common feature of most rs-fMRI ICA studies is the use of a relatively 
long time of repetitions (TRs). The TRs are usually between 2 and 3 s14, and the scan durations mostly between 5 
and 10 min15, limiting the fluctuations that can occur to the frequency ranging between 0.001–0.25 Hz. In most 
studies, the frequency range is generally controlled between 0.01–0.14 Hz16. However, Achard et al.17 applied 
discrete wavelet transforms to fMRI time series and they found that in the frequency range of 0.007 to 0.45 Hz, 
the ‘small-world’ properties of the brain functional networks of different frequency bands all have significant dif-
ferences. The small-world properties in 0.007–0.01 Hz and 0.23–0.45 Hz are lower than those in other frequency 
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bands, and the small-world properties in 0.01–0.03 Hz and 0.03–0.06 Hz are similar. Compared to the elderly, 
young people’s brain function network of the frequency band of 0.06–0.1 Hz shows stabler small-world attributes 
and high local efficiency and global efficiency18.

In our experimental analysis, it was found that when the BOLD signal is in the range of 0.06–0.2 Hz, the signal 
intensity is insignificant when the signal is in the range of 0.06 to 0.15 Hz, and the signal intensity is increased 
when the signal is greater than 0.15 Hz. Therefore, we split the signal into low (0.01–0.06 Hz), intermediate 
(0.06–0.15 Hz), and high (0.15–0.2 Hz) frequency bands. Comparing the results of experiment after we split the 
signal, there are no consistent similarities in different frequency bands. It can be concluded that in the process of 
brain work, the communication state to vary from with the function and the establishment of a brain functional 
network model integrating multiple frequency bands will contribute to the study of brain function patterns.

In order to better to describe the similarities and differences between structures of all frequency bands of the 
brain functional network; this paper proposes a voxel-wise based resting state multi-frequencies brain functional 
network structure, called the multi-graph brain functional network. Different from the traditional brain network 
model, a multi-graph-based crossover network model uses the sub-graph under each frequency band as a change 
of the brain functional network model19,20. The acquired voxel BOLD signal is divided into low, intermediate 
and high frequency bands to keep as much information as possible. The voxels in the fMRI data are used as 
vertices, and the matching information on vertices in different frequency bands is used as the multi-graph edges 
to describe the entire model structure. Through analysis, we found that this model can retain more relevant 
information that can be used to characterize the brain function structure while retaining the nature of the brain 
network of the previous frequency ranges.

First, our analysis found that the low-frequency information in the BOLD signal of the brain functional net-
work obscures the other information because of its high intensity. Secondly, a low-, intermediate-, and high-band 
voxel-wise based brain functional network are constructed by the dividing BOLD signals based on frequency. 
Then, using complex network analysis, we found that different frequency bands have different properties, the 
comparison shows that the low-frequency and non-frequency-division networks (full frequency band networks) 
are similar, while the intermediate-high networks have significant differences with non-frequency-division net-
works. Under different frequency bands, the small-world attributes are well preserved. The low-frequency mod-
ulation is higher than that of the intermediate and high frequency, and power distribution of different frequency 
bands was also significantly different, and the ‘hub’ vertices under all frequency bands are evenly distributed. 
The multi-graph model can enhance the accuracy of the classification of Alzheimer’s disease compared with no 
frequency division model.

The contributions of this paper can be summarized as follows.

•	 The study of brain functional networks using frequency division method found that the BOLD signal similar-
ity matching of voxels in different frequency bands are different.

•	 A multi-graph-based brain functional network model is proposed. Using the multi-graph model to establish 
a voxel-wise brain functional network with the combination of low, intermediate, and high-band signals, and 
a multi-band study of brain function signals is implemented.

•	 The analysis of the proposed model shows that the topological characteristics of the voxel-wise based brain 
functional network in the low, intermediate, and high-band signals of the model have obvious differences, 
which further demonstrates the effectiveness of the crossover network model.

The rest of the paper is organized as follows. In the section: Statistical analysis of pairwise correlation we intro-
duce the experiment and statistics. The details of the proposed multi-graph model are introduced in the section: 
Multi-graph brain functional network model. The model analysis section shows the model properties which were 
used in the experiment. Finally, we conclude this paper in the Section: Conclusion.

Statistical Analysis of Pairwise Correlation
In this section, the data sources and preprocessing is introduced first, and then the similarity of voxel BOLD sig-
nals in different frequency bands are discussed.

Functional magnetic resonance imaging data.  The experimental data.  fMRI data were obtained from 
the open access NITRC21: 1000 Functional Connectomes Project (https://www.nitrc.org/). 662 subjects were used as 
shown in Table 1. Ethical statements are present in the NITRC, and we confirmed that all experiments were performed 
in accordance with relevant guidelines and regulations of the access. We also confirmed that all experimental protocols 
were approved by Sino-Dutch Biomedical & Information Engineering School, Northeastern University, China.

Preprocessing.  For each subject, the first 7 volumes of the functional images were discarded for signal equilib-
rium and to allow the participant to adapt to the experiment, leaving rest volumes for next steps. Standard pre-
processing was applied on rs-fMRI dataset of all patients using Data Processing Assistant for Resting State fMRI 
(DPARSF) toolbox22 and Statistical Parametric Mapping Software Package package (SPM12) (http://www.fil.ion.
ucl.ac.uk/spm)23. Slice-timing correction to the last slice was also performed. fMRI time-series realigned using a 
six-parameter rigid-body spatial transformation to compensate for head movement effects. Then all images were 
normalized into the Montreal Neurological Institute (MNI) space and re-sampled to 3–mm isotropic voxels. A 
band-pass filtered (0.01–0.2 Hz) was used to retain the relevant information.

Pairwise correlation between vertices.  In the establishment of a voxel-wise brain functional network, the simi-
larity of voxel BOLD signals is usually used as the pairwise correlation between vertices, and the signal is usually 
regarded as a full frequency band signal (filtered image). First, Fourier transform is used to transform voxel 
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signals into frequency domain. Second, the frequency domain signal is split into low, intermediate and high 
ranges. Third, the frequency ranges is restored to the same time domain signal with the same length through 
inverse Fourier Transform, which is the corresponding frequency band signals, the brain functional networks are 
established according to the correlation between these separated band signals.

Two voxels in the same frequency band are represented as x(x1, x2, …, xn) and y(y1, y2, …, yn). The similarity of 
the BOLD signal variation sequence is calculated by Euclidean Distance proposed by Muldoon et al.1, and we can 
get the correlation by setting the threshold in the equation below.

Euclidean distance between vertex x and y is defined as

∑= −d x y x y( , ) ( )
(1)

n

n n
1

2

When the d(x, y) is smaller than the threshold d(x, y) <λ, then we can say that there is a functional connec-
tion, i.e. the pairwise correlation.

Statistical analysis of similarity of BOLD signal in different frequency bands.  In the study of 
BOLD signal in brain voxel, the low frequency range shows a very high signal intensity, which is difficult to see in 
other frequency domain, displayed in Fig. 1(a). When the low frequency range is removed, and when the signal 
is larger than 0.15 Hz, the waveform has an upward trend in the interception signal ranges, shown in Fig. 1(b). in 
the study of Achard17, the small world properties in 0.01–0.06 Hz frequency are similar, and the small world prop-
erties in 0.06–0.23 Hz frequency are falling, and the changes in the amplitude around 0.06–0.15 Hz and 0.15–0.2 
Hz are different from our experiments, as shown in Fig. 1(c,d).

Since there are obvious differences in different frequency ranges, it is necessary to study the differences of 
BOLD signals in the frequency bands. We found that there are many situations that are similar in a matching of 
functional signals on different frequency bands. The voxels with different signal situations were sampled by the 
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Figure 1.  Typical examples BOLD signal decomposed. (a) BOLD signal in frequency domain (0.01–0.2 Hz). 
(b) BOLD signal interception by removal of low frequency range (0.06–0.2 Hz). (c) Intermediate frequency 
interception range signal (0.06–0.15 Hz). (d) High frequency interception range signal (0.15–0.2 Hz).

Dataset Abbr. Subjects Ages TR Slices Timepoints

Baltimore Bal 23 [8M/15F] 20–40 2.5 47 123

Bangor Ban 20 [20M/0F] 19–38 2 34 265

Beijing Zang BeZ 198 [76M/122F] 18–26 2 33 265

Berlin Margulies BeM 26 [13M/13F] 23–44 2.3 34 195

Cambridge Buckner CaB 198 [75M/123F] 18–30 3 47 119

Cleveland Cle 31 [11M/20F] 24–60 2.8 31 127

Dallas Dal 24 [12M/12F] 20–71 2 36 115

ICBM Icb 86 [41M/45F] 19–85 2 23 195

Leipzig Lei 37 [16M/21F] 20–42 2.3 34 195

Newark New 19 [9M/10F] 21–39 2 32 135

Table 1.  Experimental data.
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voxel’s BOLD signal of brain network. In each situation, the two voxels were represented by red and blue in Fig. 2. 
As shown in Figure 2(a)I–III, signal matches in the full frequency band signal, when the two voxels of brain are 
matched at low, intermediate and high frequencies respectively. We can also see that the signal also matches in the 
full frequency band, that is shown in Fig. 2(a)IV.

Meanwhile, we also found that some voxels have another state, as shown in Fig. 2(b), two BOLD signals are 
not similar in the full frequency band. However, after the signals are separated by low, intermediate and high fre-
quency band, their signals similar in all three bands. We also found that when some signals are similar in the full 
frequency band, the signals are not similar at low, intermediate and high frequency bands and results are shown 
in Fig. 2(c). In the study, there are also quite a few signals which are not similar under the low frequency band, but 
are similar in intermediate and high frequency band, the results show high similarity, and it also shows similarity 
in full frequency band signal as shown in Fig. 2(d).

Therefore, it is necessary to consider the effect of this BOLD signals similarity difference on the pairwise corre-
lation in functional networks. In order to summarize and analyze the problems found in the experiment, the brain 
functional networks about 14000 vertices are established at low, intermediate, high frequencies and full frequency 
bands respectively under the same threshold λ. The low frequency network correlation matrice is represented as 
HL, the intermediate frequency network is represented as HI, the high frequency network is represented as HH, 
and the full frequency bands network is represented as HFull.

The results displayed in the Table 2 are the number of pairwise correlations (i.e. edges) between vertices in the 
brain network mentioned above. First, as shown from rows 1 to 4 in Table 2, the edges contained in HL, HI and HH 
is different from HFull, which shows the difference of connectivity patterns in different frequency bands. Secondly, 
from rows 5–15, we can determine that there is a large number of overlaps at the edges of the network in different 
frequency bands. Especially when compared with HFull, HL covers 96.91% of the edges of HFull. The intersection 
ratios of HI and HH are 13.18% and 15.63% respectively. From the results above, we can determine that the impact 
of low frequency information of the signal in HFull is more obvious.

When we assemble different frequency bands together, the coverage ratio is also different. The intersection ratio 
of HL and HI covers 12.24% of HFull, and intersection ratio of HL and HH is 15.1%. These two situations are higher 
than those of HI and HH, who has an intersection ratio of 3.54%. It can be seen that the influence of high frequency 
signal on the full frequency band signal is higher than intermediate frequency signal on full frequency band signal.
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Figure 2.  Two voxels with different signal patterns are sampled by the voxel’s BOLD signal of brain network, 
which are represented by red and blue lines respectively. (a) Voxel signals are similar in low, intermediate, 
high frequency band, and are similar in all frequency bands. (b) Voxel signals are similar in low, intermediate 
and high frequency band, and are dissimilar in full frequency band. (c) Voxel signals are dissimilar in low, 
intermediate and high frequency band, and are similar in full frequency band. (d) Voxel signals are dissimilar in 
low frequency band, and are similar in the intermediate, high frequency and full frequency band.
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As indicated in |E(HL ∩ HI ∩ HFull)|, |E(HL ∩ HH ∩ HFull)| and |E(HI ∩ HH ∩ HFull)|, most of the edges in the inter-
section |E(HL ∩ HI)| and |E(HL ∩ HH)| of HI, HL and HH exist in HFull. But there is only 11.98% edges of the inter-
section |E(HI ∩ HH)| belong to HFull. You can see that the low and high frequency components are the main factors 
affecting HFull.

As shown in Table 2 from 16–23, after adopting the union of two or more than two kinds of frequency bands 
for analysis, it can be reveal that the union of HL and HI, as |E(HL ∪ HI)|, covers up to 97.85% information of HFull, 
and other union such as |E(HL ∪ HH)| can cover 97.44% of HFull. While the union of three bands can cover 98.15% 
of the HFull information. The union of HI and HH covers less information. Only 25.26%. At the same time, it can be 
seen from the Table 2, a lot of edges cannot be displayed in the HL, HI, HH network. Therefore, due to the coverage 
of low frequency information, the use of full band frequency signals to match nodes will lose a large amount of 
information.

The use of p-values is common in statistical hypothesis testing for significance, the p-values are the proba-
bility, reflecting the probability of an event. According to the p-values obtained by the significance test method, 
p > 0.05 is generally considered to be no statistically significant differences, p < 0.05 is generally considered to 
be statistically significant differences, p < 0.01 is considered to be extremely statistically significant differences. 
Therefore, we use p-values to calculate whether there is a significant difference between networks with different 
frequency bands. In summary, the smaller the p-values, the more significant the result. From Table 3, the differ-
ences between HL and HFull are not obvious, as the p-value is 0.0672. And by the p around 0.01, HL differs signifi-
cantly from HI and HH. There is also a significant difference between HI and HH, but it is lower than HL.

Multi-Graph Brain Functional Network Model
Multi-graph network model.  In order to describe the brain network better, a voxel-wise based brain cross-
over functional network by the multi-graph model is proposed in this paper, in which the low, intermediate and 
high frequency information is integrated. The matching information between vertices is described by multiple 
edges, which form the network model by multi-graph. According to the different working modes, the number of 
edges between different vertices may also be different.

Label Correlation Matrices Pairwise Correlations

1 |E (HL)| 8,987,853

2 |E (HI)| 12,320,070

3 |E (HH)| 12,664,665

4 |E (HFull)| 9,134,745

5 |E (HL ∩ HI)| 1,119,440

6 |E (HL ∩ HH)| 1,382,865

7 |E (HI ∩ HH)| 2,702,296

8 |E (HL ∩ HFull)| 8,852,743

9 |E (HL ∩ HFull)| 1,204,037

10 |E (HH ∩ HFull)| 1,427,283

11 |E (HL ∩ HI ∩ HFull)| 1,118,700

12 |E (HL ∩ HH ∩ HFull)| 1,379,541

13 |E (HI ∩ HH ∩ HFull)| 323,659

14 |E (HL ∩ HI ∩ HH)| 304,544

15 |E (HL ∩ HI ∩ HH ∩ HFull)| 304,481

16 |E (HL ∪ HI)| 20,188,483

17 |E (HL ∪H H)| 20,269,653

18 |E (HI ∪ HH)| 22,282,439

19 |E (HL ∪ HI ∪ HH)| 29,072,531

20 |E (HL ∪ HI ∩ HFull)| 8,938,080

21 |E (HL ∪ HH ∩ HFull)| 8,900,485

22 |E (HI ∪ HH ∩ HFull)| 2,307,661

23 |E (HL ∪ HI ∪ HH ∩ HFull)| 8,966,644

Table 2.  The comparative analysis of low frequency band network HL, intermediate frequency band network 
HI, high frequency band network HH and full frequency band network HFull.

p-value HL HI HH HFull

HL — 0.0158 0.0094 0.0672

HI 0.0158 — 0.0476 0.0149

HH 0.0094 0.0476 — 0.0283

HFull 0.0672 0.0149 0.0283 —

Table 3.  The statistics difference significance test by p-value of networks.
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The multi-graph network model is represented as a network model G = (V, E), V(G) represents the set of 
vertices with all voxels. E(G) represents the set of edges in G. As E(G) = EL ∪ EI ∪ EH, EL, EI, EH are expressed as a 
combination of low, intermediate and high frequency edges. In this model, the connection relation between any 
two vertices can be described by three modes: low, intermediate and high frequency model. The edges between 
two vertices i and j are eij = {eLij, eIij, eHij}.

Under this model, H is defined as a subgraph of G. If V(H) = V(G), and E(H) ⊆ E(G), then Let k be any posi-
tive integer. Let

∪ ∪ ∪= G H H H (2)1 2 k

Namely G will be decomposed into k subgraphs, so that H1, H2, …, Hk are the subgraphs of G. H1, H2, …, Hk 
are pairwise edge disjoint. Using this method we can realize the full coverage of the brain network, and can also 
decompose the multiple possibilities of the brain network operating mode. H1, H2, …, Hk can be used to represent 
different brain activities.

There are two patterns of work when studying the connectivity of brain network vertices.
First pattern is the separation of low, intermediate and high frequency. If eij = eLij, the network is a low fre-

quency network model. The brain function network model is expressed as HL. Similarly, when eij = eIij or eij = eHij, 
the intermediate and high frequency network model is HI, HH. Examples are shown in Fig. 3. Figure 3(a) is the low 
frequency model, the edges between vertices are low frequency bands. Figure 3(b) is the intermediate frequency 
model, the edges between vertices are intermediate frequency bands. Figure 3(c) is the high frequency model, the 
edges between vertices are high frequency bands.

Second pattern is the mixed pattern of low, intermediate and high frequency. There are two attended model. 
First, when there are two or more connections in eLij, eIij, eHij, it can be considered as edges existing between two 
nodes. Examples are eij = eLij, eIij, eij = eLij, eHij, eij = eIij, eHij and eij = eLij, eIij, eHij, which is called collaboration 
model. Therefore, low- intermediate frequency, low-high frequency, intermediate-high frequency and 
low-intermediate-high frequency models are expressed as HLI, HLH, HIH, HLIH. Second, if there is any edge in eLij, 
eIij, eHij, then it is considered an edge between two vertices, which are eij = {eLij, eIij, eHij}. This work pattern is rep-
resented as ′H LIH, which called interleaved model. Examples are shown in the Fig. 4. Figure 4(a) is the example of 
collaboration model, there are many edges between vertices in the graph. Figure 4(b) is the example of interleaved 
model, edges with different bands exist simultaneously between vertices in the graph.

Multi-graph model analysis.  According to the multi-graph model mentioned above, H1, H2, …, Hk can be 
used to represent different brain activities, whose organization forms represent different brain network models. 
Therefore, the proposed multi-graph network model based on low, intermediate and high frequency bands HL, 
HI, HH is discussed with full frequency band signal HFull.

Small-world properties.  We can see from the existing research, the brain functional network has small-world 
properties. Therefore, the small world attributes of the low, intermediate and high frequency network will need to 
be analyzed1. In the analysis of small world networks, there are generally two parameters: Clustering coefficient 
and the shortest path. The small world property of human brain network has important function meaning.

•	 Clustering coefficient
According to the graph theory, clustering coefficient C is a coefficient of the vertices aggregation degree in 
a graph1. Clustering coefficient means separation module, that is, the network has the ability of efficient 
modular processing of information. The network that has a higher average clustering coefficient was found 
to have a modular structure in the study. The calculation results are shown in Fig. 5.

•	 The shortest path
The shortest path length L represents the number of edges required by communicating between any two 
vertices in the network1. The length of the shortest path means that there is a fast and efficient information 
transfers function between the cerebral regions within the network, and the ability to transfer information 

Figure 3.  Example of first connection pattern.
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fast lays the foundation for the functional integration of the network. The average shortest paths are shown 
in Fig. 6.

•	 Small-world analysis summary

To diagnose small-world properties, the characteristic path length and clustering coefficient were compared 
with the same metrics estimated in random networks configured with the same number of vertices, mean degree, 
degree distribution as the network of interest. This network is expressed as HL

R, HI
R, HH

R. The clustering coefficient 

Figure 4.  Example of second connection pattern.

Figure 5.  The clustering coefficient ‘C’: CHL
, CHI

, CHH
, CHFull

.

Figure 6.  The shortest path ‘L’: LHL
, LHI

, LHH
, LHFull

.
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is expressed as CL
R, CI

R, CH
R. The shortest path is expressed as LL

R, LI
R, LH

R. Typically, in a small-world network, we 
expect the ratio γ = C/CR > 1 and the ratio λ = L/LR > 1. A scalar summary of small-worldness is therefore the 
ratio σ = γ/λ, which is typically >1.

It can be seen that all subgraphs retain better small world properties under voxel-wise network, as shown in 
Fig. 7.

First, as shown in Figs 5 and 7(a), the low frequency subgraph HL has a higher clustering coefficient than oth-
ers. Due to the higher clustering coefficient, the node connection appears a higher degree of modular distribution, 
which means that brain function network mainly forms a modular structure to complete the work under the 
subgraph HL. The modular connectivity of other subgraphs is less than HL.

Second, the subgraph HI and HH have a lower clustering coefficient than the subgraph HL, which means that 
the modular distribution degree of HI and HH is lower than that of the subgraph HI. Thus it can be seen that the 
network structures are more global under the subgraph HI and HH. The working subgraph of HI and HH will tend 
to be the cooperative model of whole brain vertices.

Finally, the HI has a similar clustering coefficient with the HALL, which is due to the strong low-frequency 
signal, overlapping other signals.

From the Fig. 7(b) the length of the shortest path of the network varies with different network structures. At 
the same time of modular communication in the brain, the vertices maintain a high degree of connectivity, prov-
ing that the brain network is an efficient and integrated whole. Therefore, as shown in Fig. 7(c), we can see that 
low, intermediate and high frequency networks and their combinations have small-world properties.

Scale-free analysis.  Due to the discussion of scale-free properties of brain networks in existing researches, 
scale-free networks have serious heterogeneity. In addition, the connection condition (degree) of each vertex in 
scale-free network has serious uneven distribution: In the network, a few vertices, called Hub vertices, have vast 
connections, and most nodes only have a small number of connections. Therefore, in this paper, the scale-free 
properties of low, intermediate, high frequency band and full frequency band are statistically analyzed. As the 
results of all data sets are similar, only the ‘Cambridge Buckner’ data-set is used as an example for subsequent 
experiments and the results are shown in Fig. 8.

The statistics of the power rate characteristics in low, intermediate, high frequency and full frequency band 
network can be seen from the results. During the analysis of scale-free properties of the proposed network, the 
scale free curves shown in full frequency band are similar to those shown in low frequency band, but are not 
strict scale free curves. In the intermediate and high frequency, we can determine that the structure has scale-free 
characteristics, the low-frequency working state of the brain is more prominent, and that the intermediate and 
high frequency band also contains a lot of relevant information. Therefore, in the voxel level multi-graph model, 
the brain network exhibits some scale-free properties.

Similarly, we use the p-value to calculate the significant differences under different frequency bands. As shown 
in Table 4, the degree distributions of scale-free analysis between HL, HI, HH, and HFull are differences. The HL has 

Figure 7.  The ratio of clustering coefficient, path length and small-worldness.
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the significant differences from HI and HH, but there is no significant differences between HL and HFull. And the 
p-value between HI and HH is 0.0773, which shown no difference. Therefore, it can be seen that, through the sta-
tistical test, low frequency and full frequency band have similar degree distribution, intermediate frequency and 
high frequency band have similar degree distribution.

The ‘hub’ vertices.  Due to the voxel network structure defined in the study, the vertices cover all voxels in the 
whole brain. Therefore, it is necessary to analyze the distribution of important vertices (i.e. the ‘hubs’)24,25. In 
order to calculate the importance of vertices, the degree centrality is adopted. Degree centrality is the most direct 
measure of vertex centrality in network analysis. The greater the vertex degree of vertices, the higher the degree 
centrality of the vertex, therefore, the vertex is more important in the network.

In actual research, the most commonly used vertices distribution is the prior brain automated anatomical 
labeling (AAL) distribution structure of 90 cerebral regions used by Salvador7,26,27. Therefore, after extracting 
the vertices with the highest degree centrality as the brain network ‘hub’ vertices in HL, HI, HH, we compare the 
distribution data with AAL as shown in Fig. 9.

In order to show the difference of vertices distribution more intuitively, the distance between the vertex i in 
the obtained network and the central nvertex k in the one of regions of AAL is expressed as dik. Setting the thresh-
old δ. If dik < δ, The node i belongs to the cerebral region k. If dik > δ, vertex i continue to compare with other 
cerebral regions. If there are i, j vertices, and dik < δ, djk < δ, then only one count is retained. After all vertices 
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Figure 8.  Scale free statistical comparison.

p-value HL HI HH HFull

HL — 0.0267 0.0325 0.0761

HI 0.0267 — 0.0773 0.0278

HH 0.0325 0.0773 — 0.0302

HFull 0.0761 0.0278 0.0302 —

Table 4.  The statistics difference significance test by p-value on degree distribution of scale-free analysis.
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are compared, the total number of vertices matching AAL is represented as M. The accuracy of the comparison 
is expressed as A = M/90. Calculating A for HL, HI, HH respectively. The calculation results are shown in Fig. 10.

As seen from the Fig. 10, in the HL, HI and HH, the calculated vertices can cover all the anatomical cerebral 
regions. Among them, the cerebral region of hub vertex is the most dispersed in HL, which is dispersed in dif-
ferent cerebral regions, and the vertices in HI and HH are second. In different frequency bands, the change of the 
working model of the brain network leads to the difference of the position of the central ‘hub’ vertex. This shows 
that nodes tend to work globally in low frequency networks and work more via inter-regional communication in 
intermediate frequency and high frequency networks.

Vertices connection distribution.  In order to investigate the connection patterns among vertices, the connec-
tivity patterns of all vertices in the whole brain are statistically analyzed. First, all vertices are registered into 90 
cerebral region of AAL26. All the vertices are clustered according to the cerebral region. Next, count the number 
of connection edges between the vertices in each cerebral region and the vertices in all other cerebral regions. 
The brightness of each lattice in the matrix reflects the number of relationships between the two cerebral regions, 
shown in Fig. 11(a). The cerebral region corresponding to the number is shown in Fig. 11(b), label 1–45 represent 
the left portion of the brain, and label 46–90 represent the right portion of the brain.

Figure 9.  ‘Hub’ vertices distribution comparison.

Figure 10.  The ‘Hub’ vertices distribution comparison.
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The vertices connection distribution matrixes are also test by p-value, as shown in Table 5. According to the 
table, the vertices connection distribution on full frequency band has no significant difference with the low fre-
quency band by the p = 0.0679. and low-, intermediate-, and high frequency band have the significant differences 
as the p < 0.05.

As shown in Fig. 11(a)I, in the low frequency brain function network, the connectivity of the vertices in the 
cerebral region shows a uniform state. Previous studies have shown that cerebral regions show a higher degree 
of correlation at low frequencies28. Therefore, it can be said that in low frequency brain functional networks, 
the connections between different regions of the brain are mainly low-frequency connections, and this connec-
tions are similar to that of Fig. 11(a)IV. We can concluded that in the whole brain, low frequency connection is 
more significant in the remote cerebral region connection. But in the diagonal dominated region in Fig. 11(a)I, 
the connectivity is stronger. This situation is more obvious in Fig. 11(a)II,III. By comparing Fig. 11(a)I,IV with 
Fig. 11(a)III and Fig. 11(a)III, low frequency and full frequency band functional network show high similar-
ity. Therefore, the brain network constructed with full frequency band covers a large amount of information in 
Fig. 11(a)III and Fig. 11(a)III.

By observing Fig. 11(a)II,III, in the intermediate frequency and high frequency brain functional networks, 
the connectivity of the brain network shows a higher local connectivity, which cannot be expressed in the full 
frequency band signal or low frequency signal. In Fig. 11(a)III, we can see that the connectivity structure of the 
cerebral region on the diagonal presents a state of high brightness. In the network, the connectivity of the brain 
is dominated by its own internal communications and the proximity of cerebral regions this can be seen from the 
top right of Fig. 11(a)III. The left cerebral region in the brain corresponds to the right cerebral region in a highly 
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(a) Vertices connection distribution

Label Region (left) Label Region (right)
1 Precentral-L 46 Precentral-R
2 Frontal-Sup-L 47 Frontal-Sup-R
3 Frontal-Sup-Orb-L 48 Frontal-Sup-Orb-R
4 Frontal-Mid-L 49 Frontal-Mid-R
5 Frontal-Mid-Orb-L 50 Frontal-Mid-Orb-R
6 Frontal-Inf-Oper-L 51 Frontal-Inf-Oper-R
7 Frontal-Inf-Tri-L 52 Frontal-Inf-Tri-R
8 Frontal-Inf-Orb-L 53 Frontal-Inf-Orb-R
9 Rolandic-Oper-L 54 Rolandic-Oper-R

10 Supp-Motor-Area-L 55 Supp-Motor-Area-R
11 Olfactory-L 56 Olfactory-R
12 Frontal-Sup-Medial-L 57 Frontal-Sup-Medial-R
13 Frontal-Mid-Orb-L 58 Frontal-Mid-Orb-R
14 Rectus-L 59 Rectus-R
15 Insula-L 60 Insula-R
16 Cingulum-Ant-L 61 Cingulum-Ant-R
17 Cingulum-Mid-L 62 Cingulum-Mid-R
18 Cingulum-Post-L 63 Cingulum-Post-R
19 Hippocampus-L 64 Hippocampus-R
20 ParaHippocampal-L 65 ParaHippocampal-R
21 Amygdala-L 66 Amygdala-R
22 Calcarine-L 67 Calcarine-R
23 Cuneus-L 68 Cuneus-R
24 Lingual-L 69 Lingual-R
25 Occipital-Sup-L 70 Occipital-Sup-R
26 Occipital-Mid-L 71 Occipital-Mid-R
27 Occipital-Inf-L 72 Occipital-Inf-R
28 Fusiform-L 73 Fusiform-R
29 Postcentral-L 74 Postcentral-R
30 Parietal-Sup-L 75 Parietal-Sup-R
31 Parietal-Inf-L 76 Parietal-Inf-R
32 SupraMarginal-L 77 SupraMarginal-R
33 Angular-L 78 Angular-R
34 Precuneus-L 79 Precuneus-R
35 Paracentral-Lobule-L 80 Paracentral-Lobule-R
36 Caudate-L 81 Caudate-R
37 Putamen-L 82 Putamen-R
38 Pallidum-L 83 Pallidum-R
39 Thalamus-L 84 Thalamus-R
40 Heschl-L 85 Heschl-R
41 Temporal-Sup-L 86 Temporal-Sup-R
42 Temporal-Pole-Sup-L 87 Temporal-Pole-Sup-R
43 Temporal-Mid-L 88 Temporal-Mid-R
44 Temporal-Pole-Mid-L 89 Temporal-Pole-Mid-R
45 Temporal-Inf-L 90 Temporal-Inf-R

(b) Cerebral region number

Figure 11.  Vertices connection distribution comparison. (a) Vertices connection distribution of 90 cerebral 
region. I: Low frequencies; II: Intermediate frequency; III: High frequency; IV: Full frequency. (b) Cerebral 
region checklist table.

p-value HL HI HH HFull

HL — 0.0312 0.0285 0.0679

HL 0.0312 — 0.0436 0.0334

HL 0.0285 0.0436 — 0.0452

HL 0.0679 0.0334 0.0452 —

Table 5.  The statistics difference significance test by p-value on vertices connection distribution.
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connected state, which is due to the same or similar function of the left and right corresponding areas in the orig-
inal AAL partition. This situation, as shown in Fig. 11(a)II, is also reflected in the network. From Fig. 11(a)II,III, 
we can see the left and right brain connections show a high intensity distribution on the diagonal on the lower left 
region of the image. It can be concluded that the functional connection between the cerebral region, the adjacent 
cerebral region and the left and right brain is mainly connected by intermediate and high frequency bands.

Therefore, the correlation between voxels and the function of brain regions are taken into account, if only the 
full frequency band signal is used as the main signal of brain network analysis, then a considerable amount of 
information in the research of brain function network will be covered by low frequency signals. Therefore, when 
establishing the brain functional network model, the low frequency, intermediate frequency and high frequency 
information separation analysis can be used to create a larger, multi-pattern network model, which contributes 
significantly towards the study of brain function.

Multi-graph network based Alzheimer’s disease classification.  Brain network alterations in patients with 
Alzheimer’s disease (AD) has been the subject of much research, but the biological mechanisms underlying these 
alterations remain poorly understood29,30. In this section, we verify whether the multi-graph model can be used 
for classification of these patients from healthy control (HC) subjects and whether we can achieve better classifi-
cation accuracy than the no frequency division model.

In typical connectivity-networks-based classification approaches, local measures of connectivity networks are 
first extracted from each region-of-interest as network features, which are then concatenated into a vector for sub-
sequent feature selection and classification. However, some useful structural information of network, especially 
global topological information, may be lost in this type of approaches. To address this issue, Jie et al.31 proposed a 
connectivity-networks-based Alzheimer’s classification framework that involves the use of a new recursive feature 
elimination method based on graph kernel to measure directly the topological similarity between connectivity 
networks and use kernel Support Vector Machine (k-SVM) to fuse all features from multiple thresholded net-
works for final classification (namely, RFE-GK).

Jie et al.31 has already demonstrated the advantage of RFE-GK in the classification of Alzheimer’s disease 
compared with other methods. And all the Alzheimer’s disease classification methods (including RFE-GK) in Jie’s 
work are still based on the non-frequency division network model (i.e. Full frequency band network). Therefore 
we only compared the proposed multi-graph model with the RFE-GK.

For the multi-graph model, we also use the method of graph kernel construction proposed by Jie et al.31. 
However, the difference is that the graph kernel we built is based on the multi-graph model. If there are n subjects 
(including AD and HC), for the subgraph χi

m of the subject i under the frequency band m, the graph kernel is 
expressed as

χ χ χ χ χ χ χ χ= …Kernel f f f f( ( , ), ( , ), ( , ), ( , )) (3)i
m
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m m
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where, χ χ( )f ,i
m

j
m  is the similarity between subjects i and subjects j, Kerneli

m represents the graph kernel of 
subject i.

Then a fusion graph kernel is learned through the linear combination of the graph kernels in the all k band.
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where, μm is a non negative weight vector and satisfies the constraint condition μ∑ == 1m
K

m1 .
The accuracy of AD classification is verified by data obtained from ADNI (Alzheimer’s Disease Neuroimaging 

Initiative, http://adni.loni.usc.edu/) database. Ethical statements are present by ADNI, and we confirmed that 
all experiments were performed in accordance with relevant guidelines and regulations of the access. We also 
confirmed that all experimental protocols were approved by Sino-Dutch Biomedical & Information Engineering 
School, Northeastern University, China.

A total of 184 rs-fMRI data subjects were obtained, including 92 AD patients and 92 HC subjects. The details 
of the data are shown in Table 6.

In order to verify the superiority of the proposed model and avoid the influence of classifiers, the classifica-
tion performance was compared with RFE-GK by full frequency band network by the classifiers kernel Extreme 
Learning Machine (k-ELM)32 and kernel Support Vector Machine (k-SVM)33. The result is shown in the Table 7.

It can be seen from the table that the classification performance of the proposed multi-graph models on the 
two classifiers is much better than the contrast model. The proposed model has 82.5% classification accuracy on 
the k-ELM and 77.5% classification accuracy on the k-SVM, while the contrast model has only 70% classification 
accuracy on the k-ELM and 67.5% classification precision on the k-SVM. It also can be seen that the classification 
effect of the two methods on k-ELM is better than that of k-SVM classification. The results show that the pro-
posed multi-graph method can make full use of the hierarchical structure of the brain functional network, thus 
enabling better classifications of AD patients.

Dataset Subjects Ages slices TE TR

AD 92 [M49/F43] 73.6 ± 15 3.31 mm 30 ms 3.0 s

NC 92 [M30/f62] 75.1 ± 13 3.31 mm 30 ms 3.0 s

Table 6.  Details of ADNI data set.

http://adni.loni.usc.edu/
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Second, the ROC curves are compared on k-ELM with better classification effect, shown in Fig. 12.
The superiority of the multi-graph method can be observed on the ROC curve of the above image, and the 

comparison between full frequency network model which has 0.68 AUC values and the multi-graph model hav-
ing 0.81 AUC value through the experiment. It also shows that the brain network can be constructed from multi 
frequency bands angle using the multi-graph model, and the different frequency bands of brain activity are fully 
considered. The frequency domain information preserves the local topology of the brain network under different 
frequency bands, which fully integrates the brain activity information of the multi frequency band, and enhances 
the accuracy of the computer-aided diagnosis of Alzheimer’s disease. Thus, compared with the original full fre-
quency model classification method, the proposed multi-graph model can be helpful to enhance the classification 
accuracy.

Conclusion
A brain functional network model based on multi-graph is proposed in this paper. With the advantage of 
multi-graph, multi-band voxelwise brain network is constructed. As the possibility of the relationship between 
nodes can be described by multi-graph, a network model that can clearly describe the composition of brain 
function network is established. In this model, the components of the low frequency, intermediate frequency and 
high frequency bands in brain network are separated and analyzed, and some properties of them in the analysis of 
the brain network model are discussed. According to the results of network analysis, we can see that multi-graph 
model has important significance for the analysis and research of brain functional network. In our study, it is 
found that the distribution patterns of low-, intermediate- and high- frequency brain functional networks are of 
great significance to the study of the relationship between different cerebral regions.
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