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Abstract

Background: A recently identified genetic polymorphism located in the 5' region of the HLA-C
gene is associated with individual variations in HIV-1 viral load and with differences in HLA-C
expression levels. HLA-C has the potential to restrict HIV-1 by presenting epitopes to cytotoxic T
cells but it is also a potent inhibitor of NK cells. In addition, HLA-C molecules incorporated within
the HIV-1 envelope have been shown to bind to the envelope glycoprotein gp120 and enhance viral
infectivity. We investigated this last property in cell fusion assays where the expression of HLA-C
was silenced by small interfering RNA sequences. Syncytia formation was analyzed by co-cultivating
cell lines expressing HIV-1 gp120/gp41 from different laboratory and primary isolates with target
cells expressing different HIV-1 co-receptors. Virus infectivity was analyzed using pseudoviruses.
Molecular complexes generated during cell fusion (fusion complexes) were purified and analyzed
for their HLA-C content.

Results: HLA-C positive cells co-expressing HIV-1 gp120/gp4| fused more rapidly and produced
larger syncytia than HLA-C negative cells. Transient transfection of gpl20/gp4| from different
primary isolates in HLA-C positive cells resulted in a significant cell fusion increase. Fusion efficiency
was reduced in HLA-C silenced cells compared to non-silenced cells when co-cultivated with
different target cell lines expressing HIV-1 co-receptors. Similarly, pseudoviruses produced from
HLA-C silenced cells were significantly less infectious. HLA-C was co-purified with gp 120 from cells
before and after fusion and was associated with the fusion complex.

Conclusion: Virionic HLA-C molecules associate to Env and increase the infectivity of both R5
and X4 viruses. Genetic polymorphisms associated to variations in HLA-C expression levels may
therefore influence the individual viral set point not only by means of a regulation of the virus-
specific immune response but also via a direct effect on the virus replicative capacity. These findings
have implications for the understanding of the HIV-1 entry mechanism and of the role of Env
conformational modifications induced by virion-associated host proteins.
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Background

A whole-genome association study of major genetic deter-
minants for host control of HIV-1 has identified two pol-
ymorphisms that explain nearly 15% of the variation
among individuals in viral load during the asymptomatic
set-point period of infection. One of these polymor-
phisms is located in the 5' region of the HLA-C gene, 35
kb away from transcription initiation and has been
reported to be associated with differences in HLA-C
expression levels [1]. As a classical MHC class I gene, HLA-
C has the potential to restrict HIV-1 by presenting
epitopes to cytotoxic T cells (CTLs) [2,3], resulting in the
destruction of infected cells. However, the potential abil-
ity of HLA-C to present epitopes to CTLs is severely lim-
ited by its poor expression at the cell surface (10-fold
lower than either HLA-A or -B) [4] and its tendency to
accumulate as free heavy chains or heavy chains associ-
ated with B,-microglobulin but free of peptides as a result
of poor assembly [5]. HLA-C has also the least diversity of
the three classical MHC class I loci. Accordingly, an anal-
ysis of the class I restricted CD8+T cell responses against
HIV-1 revealed that variation in viral set-point and abso-
lute T cell count is strongly associated with particular
HLA-B, but not HLA-A or HLA-C allele expression [6]. In
addition, HLA-Cw4/+ heterozygosity promotes rapid pro-
gression to AIDS illness, as does HLA-Cw4/Cw4 homozy-
gosity [7]. Interestingly, the virus has evolved a strategy to
selectively down-regulate HLA-A and -B but not HLA-C,
via the regulatory protein Nef [8]. The immunity of HLA-
C to Nef-mediated down modulation confers to the virus
the capacity to escape NK cell attack since HLA-C is a dom-
inant inhibitory ligand of NK cells [9]. Thus, the overall
trade-off of high HLA-C expression might be favourable to
the virus, and not to the host. The relative importance of
CTLs and NK cells in vivo is still unclear and the interpre-
tation of genetic studies showing association to viral set-
point is particularly complex.

Like other MHC class I and II molecules, HLA-C is selec-
tively incorporated into the HIV-1 envelope [10,11]. A
study previously reported by our group [12] demonstrated
that virion-associated HLA-C molecules have a profound
influence on the infectivity of HIV-1. MHC class I negative
cell lines were non permissive for the replication of pri-
mary HIV-1 isolates and only partially permissive for the
replication of T cell line adapted viruses. Transfection of
HLA-Cw4 into these cell lines restored their capacity to
support viral replication. The increased infectivity of
viruses grown in the presence of HLA-Cw4 was associated
with changes in viral envelope protein conformation,
which included an enhanced expression of epitopes not
normally exposed upon CD4 binding.

Here we further investigate this phenomenon in a differ-
ent experimental system where the expression of HLA-C
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was selectively silenced by small interfering RNA
sequences (siRNA) and the infectivity-enhancement effect
evaluated in fusion assays with cells expressing CCR5
and/or CXCR4 co-receptors. To overcome unknown
effects of other viral gene products on viral infectivity,
pseudotyped viruses expressing the same viral genome
backbone, but different env, were used. The association of
HLA-C with Env was tested using our previously reported
technique for the detection of molecular complexes
formed at the surface of cells during the fusion process
(fusion complexes) [13].

Results

Effects of HLA-C on the HIV-driven fusion process

To assess the role of HLA-C in the fusion process we used
a cell fusion assay between CHO cells expressing gp120/
gp41, either alone or in combination with HLA-C and
CHO cells expressing CD4-CCR5 (Table 1) [13]. When
CHO-gp120-HLA-C cells were co-cultivated with CHO-
CD4-CCR5 cells, a dramatic increase (p < 0.05) in the
number and size of syncytia, as compared to those
obtained with the same cells not expressing HLA-C, was
observed (Fig. 1A). The increased fusion efficiency was
not due to a higher expression level of gp120/gp41 in
CHO-gp120-HLA-C cells, since they express on average
27% less gp120/gp41 than CHO-gp120/gp41 cells, when
analyzed in ELISA using HIV-1 positive human sera (Fig.
1B).

Similar results were obtained in a different cell fusion
assay where CHO and CHO-HLA-C cells, transiently
transfected with gp120/gp41 from different primary and
laboratory HIV-1 isolates, were fused with TZM-bl cells
and fusion quantified by luciferase transactivation. All
gp120/gp41 tested (93MW9G5, 91US005, 92UG024)
showed higher fusion efficiency when co-cultivated with
TZM-bl cells if co-expressed with human HLA-C (Fig. 2).
Only two X4-tropic isolates (J500 and NDK) failed to
show a statistically significant fusion increase.

HLA-C silencing of cells expressing gp120/gp41

Hela cells constitutively express HLA-C and HLA-A and,
at lower levels, HLA-B [14]. Various HeLa-derived cell
lines, constitutively expressing HIV-1 Env, were silenced
by HLA-C specific siRNAs (Table 1). The expression of
gp120 in HeLa-ADA, -LAI and -NDXK, as well as that of §3,-
microglobulin and GAPDH genes was not affected.

There was no unwanted off-target silencing of non HLA-C
genes (Fig. 3A). The expression of HLA-C protein on
HeLa-ADA and 293T cells was undetectable at 72 hours
from siRNA transfection (Fig. 3B). Fusion efficiency,
determined by counting the number of syncytia formed,
was significantly lower (p < 0.01) when HLA-C silenced
cells expressing HIV-1 gp120/gp41 of the LAI strain were
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Fusion efficiency of CHO cells expressing HLA-C and HIV-1 Env. Panel A: Syncytia formation after co-cultivation of
effector CHO cells expressing gp120/gp41 and HLA-C, or CHO cells expressing only gp120/gp41, with target CHO-CD4-
CCRS5 cells. The number and the extent of syncytia is significantly higher (p < 0.05) when effector cells express HLA-C. Panel
B: ELISA analysis of Env expression. CHO, negative control; CHO-gp |20, cells stably expressing the Env gene of the R5 tropic
HIV-I isolate 91US005; CHO-gp 120-HLA-C: CHO-gp 120 cells stably expressing HLA-Cw4; gp120: positive control, consisting
of a mixture of five different gp120s. The higher fusion efficiency of CHO-gp120-HLA-C cells is not due to an increased level of
Env expression, since they express 27% less gp120 than CHO-gp 120 cells.

co-cultivated with HelLa P4.2 cells as target cells (Fig. 4).
Fusion efficiency of HeLa-NDK cells was less affected by
HLA-C silencing, confirming that the NDK gp120/gp41
has a lower sensitivity to the presence of HLA-C [12].
When silencing was performed with siRNAs specific for
HLA-C or with a pool of siRNAs silencing also HLA-A and
-B, similar levels of reduction in fusion efficiency were
observed.

Syncytia formation using CCR5 or CXCR4 co-receptors

To test the role of HLA-C in the fusion process with cells
expressing CCR5 or CXCR4 co-receptors, we measured the
fusion index in co-cultures of HelLa-ADA and
3T3.T4.CCR5 cells or HeLa-LAI and 3T3.T4.CXCR4 cells
with or without siRNA silencing of HLA-C. In both cul-
tures, the fusion index was significantly lower (p < 0.01)
in HLA-C-silenced cells than in the corresponding non-

silenced controls (Fig. 5) showing that HLA-C increases
the fusion efficiency of both CCR5 and CXCR4 tropic
viruses.

3T3.T4.CXCR4 cells express 2-3 times more CXCR4 than
HeLa-P4.2 and TZM-bl cells. Similarly, 3T3.T4.CCR5 cells
express about 10 times more CCR5 as compared to TZM-
bl cells (data not shown). We observed that these cells
allowed the fusion with cells expressing Envs with a differ-
ent co-receptor tropism, although at lower level. The use
of the heterologous co-receptor, already evident [15]
using pseudotyped viruses, is increased in fusion assays
with Env-expressing cell lines, in particular for longer co-
cultivation times. Under these experimental conditions,
we investigated the role of HLA-C in modulating fusion
efficiency in the presence of the heterologous co-receptor.
We observed that the R5-tropic gp120/gp41 ADA was sen-
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Table I: Summary of the HIV-1 envelopes tested in the different experimental models.

Experimental model Host cell Env
(HLA-C allele) (tropism/subtype)
HLA-C siRNA silencing and cell Hela (Cwl2) ADA (R5/B)
fusion assays LAl (X4/B)
NDK (X4/D)

gp120/gp4| transient transfection
and cell fusion assays

93MW965 (R5/C)
91US005 (R5/B)
92UG024 (X4/D)
NDK (X4/D)
1500 (X4/B)

CHO-HLA-C (Cw4)

Pseudovirus transductions

293T (Cw7) pRHPA4259.7 (R5/B)
6535.3 (R5/B)
NDK (X4/D)

m7NDK (X4/D)

HLA-C silencing was conducted on human cells (HeLa-derived) physiologically expressing HLA-C and stably expressing Env of different strains

(ADA, LAI, NDK).

Transient transfections experiments with plasmids encoding different Envs were conducted on non-human CHO cells stably expressing HLA-C to
directly compare the effect of HLA-C in the absence of other human MHC class | molecules.

Pseudoviruses were produced in HLA-C silenced 293T cells since this human cell line is the election host for efficient and quantitative production
of pseudotyped virus particle. The Envs tested belong to a standard reference panel (NIBSC EVA CFAR ARP2066) except NDK.

sitive to HLA-C presence when fusing with 3T3.T4.CXCR4
cells whereas the X4-tropic LAI was not affected by HLA-C
presence when fusing with 3T3.T4.CCR5 cells (Fig. 5).
Also in these experiments, the NDK gp120/gp41 was
found to fuse with the same efficiency with
3T3.T4.CXCR4 and, at lower levels, with 3T3.T4.CCR5
cells, when using HLA-C silenced or non-silenced HelLa-
NDK cells (Fig. 5).

Pseudovirus infection assay

Pseudoviruses produced on normal and HLA-C silenced
293T cells were quantified for p24 content and used in
transduction assays (Table 1). Pseudoviruses bearing sub-
type B 6535.3 and pRHPA4259.7 HIV-1 env genes showed
a statistically significant reduction in infectivity when pro-
duced in HLA-C silenced 293T cells. Conversely, no signif-
icant differences were observed with either NDK subtype
D env gene or control virus pseudotyped with the VSV-G
protein (Fig. 6A).

When the HLA-C insensitive NDK-pseudovirus was used
at infectious doses that were 1/3 and 1/10 of the original
inoculum, a significant infectivity difference between
pseudoviruses produced in HLA-C silenced and non-
silenced cells was noted. The HLA-C sensitive pseudovirus
pRHPA4259.7 maintained its sensitivity to HLA-C also at
lower m.o.i. (1/10 of the original inoculum, data not
shown). When the m.o.i. of the pRHPA4259.7 pseudovi-
rus was increased, the infectivity levels of pseudoviruses
produced on normal and HLA-C silenced 293T cells was
kept significantly different (Fig. 6B).

HLA-Clgp 120 association on cells before and after fusion

In the previous study we provided evidence of a specific
association between virionic HLA-C molecules and gp120
by co-immunoprecipitating the two molecules with the
HLA-C-specific monoclonal antibody 131 and a gp120-
specific antibody [12]. In this work we looked for addi-
tional evidence of HLA-C-gp120 association occurring on
cells taken after fusion using a previously described
method that allows the isolation of CD4-CCR5-gp120/
gp41 fusion complexes after fixation with paraformalde-
hyde or DTSSP and purification with Galanthus nivalis
(GN) lectin, which specifically binds to gp120 [13]. The
presence of HLA-C molecules within the fusion com-
plexes could be tested by dot blot with the antibody L31
which also recognizes the denatured protein [16]. Fig. 7
panel A shows a dot-blot with antibody L31 of total cell
lysates or proteins eluted from GN lectin columns. L31-
reactive molecules were detected in total cell lysates of
CHO-HLA-C (lane ¢) and CHO-gp120-HLA-C cells (lane
d) but not in the HLA-C negative CHO cell line (lane a)
and the CHO-CD4-CCRS5 fusion partner (lane b). The elu-
ate of GN lectin columns loaded with a mixed extract of
CHO-gp120-HLA-C and CHO-CD4-CCR5 cells which
had been fixed before fusion, displayed a significant
amount of L31 reactive molecules (lane g), showing that
a specific association between HLA-C and gp120 occurred
in cells co-expressing the two molecules, as previously
described in LAl-infected 221-Cw4 cells [12]. When the
same cells were allowed to fuse before being fixed, the elu-
ate of GN lectin purified cell extract displayed an
increased amount of L3 1-reactive molecules (lane h) indi-
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Figure 2

Transient transfections of CHO cells expressing human HLA-C with different env sequences. CHO (-, grey bars)
and CHO-HLA-C (+, black bars) cells transiently transfected with plasmids encoding Tat, Rev and Env from different primary
and laboratory HIV-I isolates and co-cultivated for 6 hours with TZM-bl target cells. After Tat driven transactivation of firefly
luciferase expression, fusion efficiency was quantified and expressed as counts per second (CPS). Each value represents the
average of four replicates. The gp120/gp4| of primary isolates 93MW965 (R5), 91US005 (R5) and 92UG024 (X4) are HLA-C
sensitive (p < 0.05) while isolates J500 (X4) and NDK (X4) are less sensitive to the presence of HLA-C (p not significant).

cating that during the process of cell fusion additional
HLA-C molecules are recruited within the fusion com-
plexes. The lack of L31-reactive molecules in the eluate of
GN lectin purified CHO-HLA-C cells (lane f) demon-
strates that in this experimental setting HLA-C molecules
are purified via their specific binding to gp120.

To gain further evidence of the association between HLA-
C and gp120, the same protein samples, after fixation
with DTSSP and purification on GN lectin columns, were
chemically reduced, separated on SDS-PAGE and blotted
with L31 antibody which revealed a 45 kDa band corre-
sponding to the HLA-C heavy chain. Also in this experi-
ment a relatively higher amount of HLA-C was co-purified
from cells which were allowed to fuse before fixation
(fusion complex), as compared to non-fused cells (no
fusion complex) (Fig. 7B). These results provide further
evidence that HLA-C is associated to gp120 on the cell
membrane and suggest that additional HLA-C is recruited
within the fusion complex during cell fusion.

Sequence analysis of HLA-insensitive Envs

The sequence of the env gene of the HLA-C insensitive pri-
mary isolate J500 (clade B) was determined. When this
was compared to the sequence of the other HLA-C insen-
sitive isolate NDK (clade D), and to the sequences of the
HLA-C sensitive Envs tested (93MW965, 91US005,
92UG024, ADA, LAI 6535.3 and pRHPA4259.7), three
identical aminoacid substitutions (N297K, N298Y and
[318T, relative to the LAI env sequence) were identified in
the V3 loop. Env sequence analysis of the Los Alamos HIV
Reference Database showed that the I318T mutation is
relatively uncommon, occurring in 92 out of the 1603 env
sequences available (5.7%). Mutations N297K and
N298Y are extremely rare, occurring only in 2 isolates
reported in the database. In addition, the combination of
these 3 mutations was found only in a single env sequence
(isolate D.TZ.87.87TZ4622). Position 297 is associated
with a potential N-glycosilation site [17].

Discussion

This work demonstrates that virion-associated HLA-C
molecules, when present on cells expressing gp120/gp41,
significantly enhance fusion efficiency and pseudovirus
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Specific silencing of HLA-C in human cell lines. Panel A: off-target effect analysis by RT-PCR in HLA-C silenced (+) and
non-silenced (-) Hela cells expressing HIV-1 gp120/gp4| (ADA). PCR was performed with primers specific for HLA (A, B, C),
gp 120, B,-microglobulin and GAPDH. M: molecular weight marker. No off-target effect due to HLA-C mRNA silencing is
affecting the mRNA levels of the other MHC class | genes, as well as 3,-microglobulin, HIV-1 gp120 or the housekeeping con-
trol gene GAPDH. Panel B: western-blot analysis of HLA-C protein expression. After 72 hours from siRNAs transfection,

HLA-C is undetectable both in HeLa-ADA and in 293T cells.

transduction. Our conclusions are supported by the fol-
lowing findings: a) CHO cells co-expressing HIV-1 gp120/
gp41 and human HLA-C fuse more rapidly and produce
larger syncytia than the original CHO-gp120/gp41 cells
from which they are derived; b) transient transfection of
gp120/gp41 from different primary isolates in CHO cells
co-expressing HLA-C results in a significant increase in
fusion; c) silencing of HLA-C in human cell lines express-
ing HIV-1 gp120/gp41 of R5 and X4 tropic strains, signif-
icantly suppresses fusion, d) pseudoviruses produced in
HLA-C silenced 293T cells display a significant reduction
of infectivity; e) the fusion enhancement property of HLA-
C is specific for HIV-1 Env, since a virus pseudotyped with
the G envelope protein of VSV is not influenced by the
presence of HLA-C.

The effect of HLA-C on fusion was observed with both
exogenous HLA-C transfected into CHO cells and endog-
enous HLA-C after its silencing with siRNA in human
cells.

Some of the data point to the existence of HLA-C "insen-
sitive" or "less-sensitive" variants since the fusogenic
capacity of gp120/gp41 from two isolates, NDK and J500,
was not different in HLA-C-silenced and non-silenced
cells. However, we observed that HLA-C insensitivity is
not an absolute feature, since there was a small difference,
although not statistically significant, in the fusion effi-
ciency of NDK and J500 in silenced and non-silenced
cells. In addition, a relationship between the infectious
dose and the HLA-C sensitivity of pseudoviruses was
observed since when infections were performed at low
infectivity ratios, the HLA-C insensitive NDK pseudovirus
became HLA-C sensitive. Conversely, when high titers of
an HLA-C sensitive pseudovirus were used, its infectivity
remained dependant on the presence of HLA-C. The rela-
tive insensitivity of NDK to the presence of HLA-C could
contribute to its reported higher cytopathicity and infec-
tivity [18] and could be the result of a variable infectivity
degree of Env [12] or of a lower level of incorporation of
HLA-C [10].
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Cell fusion of HLA-C silenced HeLa-Env cells with HeLa-P4.2 target cells. Analysis of syncytia formation by co-culti-
vating HLA-C silenced (+) and non-silenced (-) HeLa-LAl and HelLa-NDK cells with target HelLa-P4.2 cells, expressing CD4 and
CXCR4. The number of syncytia formed is lower (p < 0.01) using HLA-C silenced Hela-LAl cells. Fusion efficiency of HelLa-

NDK cells is not significantly affected by HLA-C silencing.

The comparison of the env sequences of the two unrelated,
HLA-C insensitive gp120/gp41s identified, NDK (clade
D) and J500 (clade B), with the sequences of the HLA-C
sensitive Envs, revealed 3 identical aminoacid substitu-
tions in the V3 loop, which were absent in all other HLA-
C sensitive Envs analyzed. This would suggest an involve-
ment of these mutations in the V3 loop in the acquisition
of the HLA-C insensitive phenotype. We analyzed an
NDK-derived Env mutant, NDKm?7 [19], in which the KY
mutations in position 297-298 reverted to NN. Virus par-
ticles pseudotyped with the NDKm7 env remained HLA-C
insensitive as the original NDK env (data not shown), thus
excluding the involvement of these mutations in reducing
sensitivity to HLA-C presence. It is possible that other
mutations, or their combinations, might directly affect the
sensitivity to HLA-C by changing the pattern of interac-
tion between HLA-C and gp120, as reported by other
authors who studied mutations related to the acquisition
of a CD4-independent tropism within gp120 [19,20].

The data reported in this study confirm the physical asso-
ciation between HIV-1 gp120/gp41 and HLA-C, that was
originally observed in experiments in which HLA-C and
gp120 were co-immunoprecipitated from HIV-1 infected
cells [12]. HLA-C molecules could be co-purified and
detected in fusion complexes in association with gp120/
gp41, CD4 and the co-receptor. Such an association may

induce conformational changes of gp120 favouring the
exposure of cryptic functional epitopes [12]. It has also
been recently reported that viral particles carry more HLA
molecules than gp120/gp41 trimers [21]. The association
between a gp120/gp41 trimer and multiple HLA-C mole-
cules might reduce gp120 shedding, thus keeping more
functional the trimeric gp120/gp41 complexes on the
viral envelope and resulting in increased fusion efficiency.

The increase in fusion and viral infectivity was observed
using CHO cells transfected with HLA-Cw4, as well as
HeLa cells which express constitutively HLA-Cw12 and
pseudoviruses originating from 293T cells which express
HLA-Cw?7 (Table 1). Similar results were obtained with
the HLA-Cw3 allele (L. Lopalco, DIBIT-San Raffaele,
Milan, personal communication). Altogether, the Cw3,
Cw4, Cw7, and Cw12 serological alleles include members
of both groups of the known HLA-C dimorphism [22]
and account for almost 80% of all the common HLA-C
serotypes. Due to the more limited polymorphism of
HLA-C as compared to HLA-A and -B, this limited panel is
inclusive enough to allow us to sample all the HLA-C-dis-
tinctive substitutions and most of the common allelic var-
iations. Remarkably, most of these cluster around the
binding groove, but the co-immunoprecipitation of env
with HLA-C [12] was observed by immunoprecipitating
the complex with antibody 131, that binds on the alpha 1
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Figure 5

Comparison of the fusion efficiency of HLA-C silenced HeLa-Env cells with 3T3.T4.CCRS5 and 3T3.T4.CXCR4
cells. HLA-C silenced (+, grey bars) and non-silenced (-, black bars) Hela cells expressing gp120/gp41 of different HIV-I iso-
lates (ADA, LAI, NDK) co-cultivated with NIH 3T3.T4.CXCR4 and NIH 3T3.T4.CCR5 cells. Fusion efficiency of X4 tropic
gp 120 LAl is significantly lower (p < 0.01) in HLA-C silenced cells when fusing with CXCR4 target cells. Similarly, fusion effi-
ciency of the R5 tropic gp120 ADA is lower (p < 0.01) in HLA-C silenced cells when fusing with CCR5 target cells. The fusion
of ADA gp120 in HLA-C silenced cells with cells expressing CXCR4 is significantly (p < 0.01) less efficient, while that of LAl
gp 120 with cells expressing CCRS5 is similar, irrespective of HLA-C silencing. The NDK gp120 is HLA-C insensitive, when using

either the CXCR4 or the CCR5 co-receptor.

domain alpha helix, e. g. in proximity to the sites at which
essentially all the polymorphic HLA-C positions cluster.
This suggests that HLA-C polymorphism is unlikely to
influence this association, and that the residues important
for co-immunoprecipitation reside within the relatively
invariant HLA-C backbone. In line with this finding, we
have observed the infectivity-enhancement effect with all
the alleles tested so far, suggesting that most HLA-C alleles
bind Env. We cannot however exclude the possibility that
some HLA-C allelic variants may be more efficient than
others in binding Env and enhancing viral infectivity.

An implication of these findings is that HLA-C may be
selectively involved in protective immunity. A protective
effect was observed in HIV serodiscordant couples with
unmatched HLA-C alleles [23] and anti-HLA antibodies
are frequent in exposed, but seronegative subjects [24,25].
It has also been reported that MHC class I concordance is
associated with an increased risk of mother to child HIV-
1 transmission [26,27]. Since early studies in primates
were suggestive of anti-MHC antibodies being protective

[28], the possibility of using HLA molecules for a HIV-1
vaccine has long been debated [29,30]. Our data point to
an association between HLA-C and Env in mature virions
which may induce the expression of critical conforma-
tional epitopes [12]. Since the few Env that showed lower
sensitivity to HLA-C are X4 tropic, the inclusion of HLA-C
in new immunogenic formulations may help eliciting
broadly neutralizing antibodies that would be important
for the in vivo host control of R5 tropic strains of HIV-1.

Conclusion

HLA-C influences viral replication by at least three distinct
and opposite mechanisms: induction of cytotoxic T cells
(suppression), inhibition of NK cells (enhancement) and
enhancement of virus infectivity. This last effect is associ-
ated to a specific association of virionic HLA-C molecules
to Env. The immunity of HLA-C to the Nef-induced down-
regulation confers to the virus not only the capacity to
escape NK cells control but also a higher replicative capac-
ity suggesting that high HLA-C expression is advantageous
to the virus and not the host.
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Figure 6

Transduction efficiency of pseudoviruses produced in HLA-C silenced cells. Panel A: luciferase reporter gene assay
analysis after transduction with pseudoviruses expressing subtype B HIV-I env (6535.3 and pRHPA4259.7) or subtype D HIV-I
env (NDK), produced in HLA-C silenced (dashed line, open circles) and non silenced (continuous line, close squares) 293T
cells. Each point (expressed as counts per second, CPS) represents average and standard deviation of four replicates. HLA-C
sensitive pseudoviruses 6535.3 and pRHPA4259.7 show a significant lower infectivity (p < 0.0001) when produced on HLA-C
silenced cells. The NDK pseudovirus as well as a virus pseudotyped with the VSV-G envelope protein, do not show significant
differences in infectivity when produced in HLA-C silenced or non silenced 293T cells. Panel B: analysis of the relation between
pseudovirus infectious dose and HLA-C sensitivity. | X, pseudovirus infectious titer giving a luciferase signal (expressed as
counts per second, CPS) of 1000 at 16 hours post infection. When the HLA-C insensitive NDK pseudovirus was analyzed at
lower infectious titers (0.3% and 0.1 %), its infectivity was significantly increased by HLA-C. When the HLA-C sensitive pseudo-
virus pRHPA4259.7 was analyzed at higher infectious doses (3.3%, 10%), it remained sensitive to HLA-C presence.

Methods

Antibodies

W6/32 is a mouse monoclonal antibody specific for HLA-
A, -B and -C trimeric complex [31]. The L31 monoclonal
antibody is specific for the o domain of HLA-C heavy
chain [32-34], not associated to ,-microglobulin. Anti-
gp120 human sera from HIV-positive patients were kindly
provided by Dr. Lucia Lopalco, DIBIT-HSR, Milan, Italy.
IgG were purified using Protein G Sepharose 4 Fast Flow
(GE Healthcare Lifescience, Chalfont St. Giles, UK) fol-
lowing manufacturer's instructions.

Cells

Hela (HLA-Cw12, [35]) and HEK-293T (HLA-Cw0?7,
[35]) cells were obtained from the American Type Culture
Collection (ATCC).

HeLa-derived effector cell lines expressing the HIV-1 env
gene of strains ADA, LAI [36] and NDK [37] and the indi-
cator target cell line HeLa P4.2 [38] were kindly provided
by Dr. Mark Alizon and Dr. Uriel Hazan, Institut Cochin,
Paris, France.

NIH 3T3 cells expressing the HIV-1 receptor CD4 and the
chemokine receptor CCR5 (3T3.T4.CCR5) or CXCR4
(3T3.T4.CXCR4) were obtained from the NIH AIDS
Research & Reference Reagent Program, division of AIDS,
NIAID, Dr. Dan R. Littman [15].

The TZM-bl cell line [39] was from the EU programme
EVA/MRC, CFAR NIBSC, UK. This cell line expresses CD4,
CCR5 and CXCR4 and contains HIV-1 LTR-driven E. coli
B-galactosidase and firefly luciferase reporter cassette that
are activated by HIV-1 Tat expression.

CHO and CHO-gp120/gp41 [13] cells were stably trans-
fected with the vector pZeoSV2(+) (Invitrogen, Carlsbad,
CA, USA) bearing the HLA-Cw4 gene, and the cell lines
obtained were named CHO-HLA-C and CHO-gp120-
HLA-C, respectively.

CHO and CHO-HLA-C cell lines were transiently trans-
fected with HIV-1 env genes from primary and laboratory
isolates NDK, J500 (a primary X4 tropic isolate [40]),
92UG024, 93MW965 and 91US005 [41] cloned in the
expression vector pCDNA3.1 (Invitrogen, Carlsbad, CA,
USA).

RNA silencing of HLA-C

The HLA-C mRNA [GenBank: NM_002117] target sites
for siRNA were determined by using the Dharmacon siG-
ENOME software and synthesized by Dharmacon (Lafay-
ette, CO, USA). The siRNAs targeted different regions of
the HLA-C mRNA.

In particular, siRNAs J-017513-06 (5'P-UAAUCCAU-
CAACGCUUCAUUU-3") and J-017513-08 (5'P-UUUG-
GAAGGUUCUCAGGUCUU-3") were found to be specific
for HLA-C silencing, while siRNAs J-017513-05 (5'P-
AUAGCGGUGACCACAGCUCUU-3") and J-017513-07
(5'P-ACUUCUAGGAAUUGACUUAUU-3") also silenced
HLA-A and -B mRNAs.

HelLa cells expressing env genes were transfected with 100
nmol/well of siRNA following manufacturer's instruc-
tions, using DharmaFECT 1 reagent (Dharmacon, Lafay-
ette, CO, USA). The silencing of HLA-C protein expression
was verified by Western blot after 72 hours.

The absence of off-target effects was verified both by RT-
PCR of HLA-A, -B, -C, B,-microglobulin, HIV-1 env and
GAPDH, and by ELISA analysis of gp120/gp41 expression
using HIV-1 positive human sera.

TZM-bl reporter gene assays

The fusion process between gp120/gp41 effector cells
(HeLa-ADA, HeLa-LAI, HeLa-NDK) and TZM-bl cells was
assessed by measuring luciferase activity and by X-gal cell
staining.

TZM-bl cells (50.000 per well) were plated in 96 micro-
titer wells (Corning, NY, USA) to an equivalent number of
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Figure 7

Co-purification of fusion complexes containing HLA-C molecules. Panel A: dot-blot analysis of purified fusion com-
plexes for the presence of HLA-C. Lanes a, b, c and d: cell lysates before purification. Lanes e, f, g and h: cell lysates purified on
Galanthus nivalis (GN) lectin columns. Panel B: western blot analysis to detect the presence of HLA-C in purified fusion com-
plexes. Cells were treated with DTSSP, which fixes only proteins present on the cell membrane, and lysates purified on GN
lectin columns. PC: positive control (Hela cells expressing HLA-C); the arrow indicates HLA-C.
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effectors cells for 3 to 6 hours at 37°C. The luciferase activ-
ity resulting from fusion and transactivation was analyzed
using the Brite Lite reagent following manufacturer's
instructions and quantified by using a Victor 3 apparatus
(Perkin Elmer, Waltham, MA, USA). All the assays were
performed in triplicate.

In situ staining of fusing cells for B-galactosidase gene acti-
vation was performed in a 24-well plate format (Corning
Life Sciences, Lowell, MA, USA) as reported [42]. Blue-
stained syncytia were photographed using a Nikon Eclipse
80 i microscope, counted and fusion efficiency deter-
mined by calculating the fusion index [43].

Cell fusion assays

NIH 3T3.T4.CCR5 and 3T3.T4.CXCR4 were stained with
the fluorescent lipophilic dye Vybrant Dil (Invitrogen,
Carlsbad, CA, USA) following manufacturer's instruc-
tions. Cells were plated at 400,000 per well on a six-well
plate (Corning Life Sciences, Lowell, MA, USA) and, 72
hours post siRNA transfection, co-cultivated at 1:1 ratio
with HLA-C silenced and non-silenced Hela-gp120/gp41
cells labeled with the fluorescent lipophilic dye Vybrant
DiO (Invitrogen). After 6 hours, syncytia formation was
analyzed using a fluorescence microscope (Nikon Eclipse
80i) for green and red fluorescence and the double posi-
tive yellow syncytia counted [44,45].

gp 120 ELISA detection assay

Ninety-six well plates (Nunc, Roskilde, Denmark) were
coated with 50 pl/well of a solution of 2 pg/ml of the
D7324 gp120 antibody (Aalto Bioreagents, Dublin, Ire-
land), and a 3 mg/ml solution of total protein from cell
lysate samples was added as described [13]. Positive con-
trols consisted of a 100 ng/ml pool of 5 different gp120s
obtained from EVA/MRC Centralised Facility for AIDS
Reagents, NIBSC, UK (CN54, IIIB, MN, SF2 and W61D).
Plates were washed and incubated with 1:200 diluted
purified human IgG from sera of HIV-1 positive patients
(25 mg/ml), washed and incubated with 1:500 diluted
goat anti-human horseradish peroxidase conjugate (Bio-
Rad). Optical signal was developed with SigmaFast OPD
solution (Sigma, St. Louis, MO, USA).

RT-PCR

Total RNA was extracted from 24 hours silenced and non-
silenced cultured cells using the RNeasy Plus mini kit
(Qiagen, Germantown, MD, USA) and treated with
RNase-free DNase I (Sigma). Reverse transcription (RT) of
1 pug of total RNA was performed using the Quantitect
Reverse Transcription kit (Qiagen) and random primers.
For PCR amplification of HLA-A, -B and -C, primers and
conditions were used as previously reported [14]. Primers
used to amplify HIV-1 env gene were: 5'-GGGCCACACAT-
GCCTGTGTA-3' forward and 5'-CTAATTCCATGTGTA-
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CATTGTACTGTG-3' reverse; for [,-microglobulin
amplification 5'-GATGAGTATGCCTGCCGTGTG-3' for-
ward and 5'-CAATCCAAATGCGGCATCT-3' reverse; for
glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
amplification 5'-GCATCCTGGGCTACACTGA-3' forward
and 5'-TGACAAAGTGGTCGTTGAGG-3' reverse. PCR was
performed for 32 cycles at 94°C, 60°C and 72°C for 1
min in each step. PCR products were analyzed on a 1%
agarose gel and stained with Sybr Safe (Molecular Probes,
Eugene, OR, USA). Images were acquired with an Auto-
Chemi System apparatus (UVP, Cambridge, UK). Con-
trols for genomic DNA contaminations consisted in RT
reactions in which the polymerase was omitted.

Western blot analysis

Seventy-two hours after HLA-C siRNA transfection, cells
were lysed, the total protein content of supernantant was
measured using a colorimetric assay (DC protein assay,
BioRad, Hercules, CA, USA) and used for western blot
analysis.

Equal amounts (30 pg/lane) of cell lysates were separated
on 3 to 8% NuPAGE Tris-acetate acrylamide gels (Invitro-
gen, Carlsbad, CA, USA) and transferred onto polyvinyli-
dene difluoride membranes (GE Healthcare Lifescience,
Chalfont St. Giles, UK). Membranes were blocked in a
Tris-buffered saline solution containing 5% non-fat dry
milk and incubated with the L31 monoclonal antibody
(1:200 dilution). Anti-mouse horseradish peroxidase-
conjugated antibody (Dako, Carpinteria, CA, USA) was
used as secondary antibody at 1:2,000 dilution and
immunoreactive bands were visualized with the Opti-
4CN detection kit (BioRad, Hercules, CA, USA).

FACS analysis

Cells were analyzed by immunofluorescent staining and
cytofluorimetry on a FACScanto apparatus (Becton Dick-
inson, San Jose, CA, USA). After incubating 500,000 cells
with the primary anti-HLA monoclonal antibodies W6/32
or L31, these were washed and incubated with a 1:200
dilution of the goat-anti mouse IgG-FITC secondary anti-
body (Becton Dickinson). The analysis was conducted
using the FACSDiva software (Becton Dickinson). For L31
epitope unmasking through f3,-microglobulin stripping,
cells were pre-treated with acidified medium as described
[46] and immediately analysed.

Infectivity of pseudoviruses produced on HLA-C silenced
cells

HLA-C mRNA was silenced in 293T cells as previously
described for HeLa cells. After 24 hours, silenced and non-
silenced 293T cells were co-transfected with backbone
(pSGAenv) and env plasmids (subtype B isolates 6535.3
and pRHPA4259.7, subtype D isolate NDK, and Vescicu-
lar Stomatitis Virus (VSV) envelope protein G), as
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described [47]. Pseudoviruses were collected after 48
hours and quantified for p24 content using a standard
ELISA Kit following manufacturer's instructions
(Innotest-HIV antigen mAb, Innogenetics, Gent, Bel-
gium). Both normal and HLA-C silenced pseudoviruses
were used at a p24 concentration of 150 pg/ml. Infections
of TZM-bl cells were done in quadruplicate and lumines-
cence measured after 4, 8, 24 and 48 hours of incubation
using a Victor 3 luminometer (Perkin Elmer) as previously
described.

Fusion complex analysis

Fusion complexes were fixed with paraformaldehyde,
purified and analyzed as described [13]. Briefly, CHO-
gp120-HLA-C and CHO-CD4-CCRS5 cells were co-culti-
vated 4 hours at 37°C, fixed and lysed. Cell lysates were
passed over a snowdrop Galanthus nivalis lectin column
and eluted in 1 M methyl a-D-mannopyranoside (Sigma).
Fusing cells were also fixed with DTSSP (Pierce Biotech-
nology, Rockford, IL, USA), following manufacturer's
instructions. Fusion complexes were purified and dissoci-
ated using 5% B-mercaptoethanol in SDS-PAGE sample
buffer. Effector and target cells were also separately fixed
prior purification. Paraformaldehyde fixed fusion com-
plexes were analysed for HLA-C co-purification by dot-
blot and DTSSP fixed complexes by Western blot with
HLA-C specific mAb L31.

Statistical analysis

Data were analyzed by ANOVA and unpaired Student's t-
test with Welch's correction, using the software GraphPad
Prism 4.0c (GraphPad Software, Inc., CA, USA).

Sequence analysis

HIV-1 Env sequences (NDK [GenBank: A34828], LAI
[GenBank: AF004394]; ADA [GenBank: AY426119];
92UG024 [GenBank: U43386]; 93MW965 [GenBank:
U08455]: 91US005 [GenBank: U27434]) were aligned
and compared using CLC Sequence Viewer 4.6.2, devel-
oped by CLC bio A/S http://www.clcbio.com for Apple
Mac OSX.
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