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A B S T R A C T   

The main challenge in treating stomach adenocarcinoma (STAD) is chemotherapy resistance, 
which is characterized by changes in the immune microenvironment. Disulfidptosis, a novel form 
of programmed cell death, is involved in STAD but its mechanism is not fully understood. Long 
non-coding RNAs (LncRNAs) may play a role in regulating disulfidptosis and influencing the 
immune microenvironment and chemotherapy resistance in STAD. This study aims to establish 
disulfidptosis-related lncRNA (DRL) features and explore their significance in the immune 
microenvironment and chemotherapy resistance in STAD patients. By analyzing RNA sequencing 
and clinical data from STAD patients and extracting disulfidptosis-related genes, we identified 
DRLs through co-expression, single-factor and multi-factor Cox regression, and Lasso regression 
analyses. We also investigated differences in the immune microenvironment, immune function, 
immune checkpoint gene expression, and chemotherapy resistance between different risk groups 
using various algorithms. A prognostic risk model consisting of 2 DRLs was constructed, with a 
strong predictive value for patient survival, outperforming other clinical-pathological factors in 
predicting 3-year and 5-year survival. Immune-related analysis revealed a strong positive cor-
relation between T cell CD4+ cells and risk score across all algorithms, and higher expression of 
immune checkpoint genes in the high-risk group. In addition, high-risk patients showed better 
sensitivity to Erlotinib, Oxaliplatin, and Gefitinib. Furthermore, three novel molecular subtypes of 
STAD were identified based on the 2-DRLs features, with evaluation of the immune microenvi-
ronment and chemotherapy drug sensitivity for each subgroup, which holds significant impli-
cations for achieving precise treatment in STAD. Overall, our 2-DRLs prognostic model 
demonstrates high predictive value for patient survival in STAD, potentially providing new tar-
gets for individualized immune and chemical therapy.  
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1. Introduction 

Gastric cancer, or stomach cancer, specifically stomach adenocarcinoma (STAD), poses a significant public health risk [1,2]. It is 
the fifth most common cancer worldwide and the third leading cause of cancer-related deaths [3]. In 2018, there were over 1,000,000 
new cases and an estimated 783,000 deaths. Chemotherapy remains the primary treatment for postoperative or advanced gastric 
cancer, as it can reduce recurrence, prolong survival, and improve quality of life [4]. However, the increasing resistance to chemo-
therapy greatly limits its effectiveness and may lead to treatment failure [1]. Therefore, there is an urgent need to study the specific 
mechanisms of drug resistance and find solutions in a clinical setting. 

Disulfides are stable compounds that maintain protein structure through inter- and intra-subunit crosslinking [5]. Excessive 
accumulation of disulfides can lead to a form of programmed cell death called “disulfide catastrophe” [6]. High expression of SLC7A11 
in glucose-deprived conditions triggers disulfide stress and cell death [7]. This form of cell death is distinct from apoptosis and fer-
roptosis, and can be enhanced by thiol oxidizing agents like disulfiram [5]. Disulfide catastrophe may offer new avenues for tumor 
treatment and can influence immune infiltration [5]. Further research is needed to identify biomarkers and explore the underlying 
mechanisms and therapeutic implications. 

Recent findings show a close link between disulfide metabolism and cancer. Disruption of disulfide metabolism in cancer cells 
affects survival, proliferation, drug resistance, metastasis, and immune evasion [8–10]. Disulfide catastrophe, a form of programmed 
cell death, may be related to tumor immune response. It activates tumor-specific T cell immune response and enhances cancer 
treatment efficacy [5]. However, the relationship between disulfide catastrophe and gastric cancer, particularly in chemotherapy 
resistance and immune microenvironment modulation, requires further investigation. Identification of biomarkers and understanding 
the connection between disulfide metabolism and gastric cancer is needed. 

Significant progress has been made in recent years in optimizing delivery strategies and chemical modification technologies for 
targeting lncRNAs, including the utilization of polymers, lipid nanoparticles, and extracellular vesicles (EXs) [11,12]. These ap-
proaches for lncRNA targeting have proven to be more accessible and efficient compared to the development of specific protein 
binding inhibitors [11,12]. Therefore, the discovery of lncRNA biomarkers in gastric cancer holds even greater potential, as it can 
easily translate into effective targets for clinical application. 

Our focus was to investigate the role of disulfidptosis in STAD and its relationship with chemotherapy resistance and the immune 
microenvironment. Through co-expression, single-factor and multi-factor Cox regression, and Lasso regression analyses, we identified 
disulfidptosis-related lncRNAs (DRLs). We evaluated the immune microenvironment and drug resistance in different risk groups. 
Furthermore, using the 2-DRLs model, we classified STAD samples into three molecular subtypes to assist clinicians in making 
personalized treatment decisions. Our study suggests that DRLs hold promise as effective targets for the diagnosis and treatment of 
STAD. The risk prognostic model and gene subtypes provide new perspectives for precision immune therapy and clinical decision- 
making in STAD. 

2. Materials and methods 

2.1. Data collection and preprocessing 

We have acquired the TCGA-STAD dataset, encompassing transcriptomic data from 408 patients diagnosed with gastric cancer, 
which used for differential analysis. Out of these patients, 371 samples possess complete survival information for subsequent survival 
and clinical analysis. The transcriptomic data underwent log2 transformation in order to standardize the gene expression data within 
each sample [13]. By utilizing Ensembl’s annotation file, we successfully extracted the expression levels of both mRNA and lncRNA 
genes. This study strictly adheres to all guidelines outlined by TCGA. Moreover, we meticulously handpicked previous published 
experimental studies [6,7,14] to summarize 24 significant genes associated with disulfidptosis (refer to Table S1). Employing Pearson 
correlation analysis, we further employed stringent criteria (correlation coefficient >0.5 and p-value <0.001) to narrow down the pool 
of disulfidptosis-related lncRNAs (DRLs). 

2.2. Visualization of differentially expressed DRLs in STAD 

The analysis of differentially expressed DRLs between gastric cancer and its corresponding normal tissues (n = 32) was carried out 
utilizing the limma package [13]. DRLs that exhibited a notable distinction in expression levels within gastric cancer were identified 
employing a cutoff of |logFC| ≥ 1 and false discovery rate (FDR) adjusted p-value <0.05. To visually represent the differential 
expression patterns of lncRNAs, a heatmap and a volcano plot were generated. 

2.3. Construction and Validation of prognostic-related DRLs model in STAD 

Within the scope of this study, the STAD cohort was randomly divided into two sets, namely a training set and a validation set, 
maintaining a balanced 1:1 ratio. Univariate and multivariate Cox regression analyses were conducted to identify potential prognostic- 
related DRLs (long non-coding RNAs) in STAD [15]. DRLs exhibiting a p-value <0.05 were considered as candidate prognostic lncRNAs 
and subjected to subsequent analysis. Furthermore, lasso regression analysis using the glmSparseNet package [16] was performed to 
address any issues related to overfitting. The final risk model was defined by the equation riskscore = 0.576686042623288 * 
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IL10RB-DT expression +0.682432842250547 * AL139147.1 expression. Utilizing this novel 2-DRLs risk score model, the risk score 
was calculated for each sample within the STAD cohort. Based on a cut-off value of 1:1, the TCGA-STAD samples were divided into 
low-risk and high-risk groups. To assess the predictive efficacy and accuracy of this model for STAD prognosis, Kaplan-Meier survival 
analysis and Receiver Operating Characteristic (ROC) analysis were conducted. Furthermore, the prognostic evaluation of the 2-DRLs 
model was validated using both the validation dataset and the entire dataset. 

2.4. Differential expression analysis and functional enrichment analysis between high-risk and low-risk groups 

To perform differential expression analysis between the high-risk and low-risk subgroups in STAD, the limma package [13] can be 
utilized. A threshold of |logFC| > 1 and FDR adjusted p-value <0.05 can be employed to select differentially expressed genes (DEGs) 
among the subgroups. The results of the differential expression analysis can be visually represented using volcano plots and cluster 
heatmaps. 

To explore the molecular mechanisms underlying the differences between the high-risk and low-risk subgroups, Gene Ontology 
(GO) analysis [17], including GO Biological Process (GO BP), GO Cellular Component (GO CC), and GO Molecular Function (GO MF), 
as well as KEGG pathway analysis [18], can be performed utilizing the clusterProfiler package [19] in R. The enrichment analysis 
results can be visualized using bubble plots to display the top 30 enriched terms. 

Additionally, Gene Set Enrichment Analysis (GSEA) [20] can be conducted to assess potential biological functional changes be-
tween the high-risk and low-risk subgroups. A significance threshold of an absolute value of normalized enrichment score (NES) > 1 
and a nominal p-value <0.05 can be applied.By performing these analyses, differentially expressed genes and enriched pathway-
s/processes can be identified, aiding in the elucidation of potential molecular mechanisms associated with the risk stratification in 
STAD. 

2.5. The development and validation of the nomogram 

We the survival [16], regplot [16] and rms [16] packages to develope a nomogram for predicting the 3-year and 5-year overall 
survival (OS) of STAD patients based on risk scores and other clinical indicators. 

2.6. Evaluate the role of DRL properties in the STAD immune microenvironment 

In order to predict the relative levels of tumor-infiltrating immune cells (TIIC) in the two risk groups based on DRLs features, several 
algorithms were utilized, including single-sample GSEA (ssGSEA) [21], TIMER [21], QUANTISEQ [21], MCP Counter [21], Estimation 
[21], EPIC [21], and CIBERSORT [21]. Heatmaps were used to visualize the differences in TIIC concentrations under these different 
algorithms. Additionally, TIMER was employed to assess the correlation between LMR-lncRNA features and TIIC abundance, aiming to 
determine the potential impact of DRLs features on immune characteristics. This analysis helps to understand how the identified DRLs 
may influence the composition of immune cells within the tumor microenvironment, providing insights into the potential role of these 
features in modulating immune responses in STAD. 

2.7. Evaluate the role of DRLs characteristics in STAD chemotherapy drug sensitivity 

In R, the pRRophetic [16] and ggplot2 [16] packages can be utilized to perform the Wilcoxon signed-rank test, which is useful for 
evaluating the drug sensitivity of several anticancer drugs recommended for STAD treatment [22]. 

2.8. Identification of STAD subtypes in risk prediction models 

To identify subtypes of STAD in a risk prediction model, the ConsensusClusterPlus package can be utilized for unsupervised 
consensus clustering [23]. Using this package, we can set the number of iterations to 50 and the resampling rate to 80%. The consensus 
cumulative distribution function (CDF) plot, consensus matrix (CM), and consensus heatmap generated by the ConsensusClusterPlus 
package can be helpful in determining the optimal number of clusters for STAD subtyping. The CDF plot provides information about 
the stability of the clustering results for different numbers of clusters. The CM shows the consensus clustering results as a matrix, 
indicating how often pairs of samples are grouped together across iterations. The consensus heatmap provides a visualization of the 
consensus matrix, allowing for better interpretation of the clustering results. By analyzing these outputs, we can determine the optimal 
number of clusters for subtyping STAD based on the risk prediction model. 

2.9. Statistical analysis 

All statistical analyses were performed using R programming language v4.2.1 [24]. To compare the differences in patient survival 
rates between two risk groups, KM analysis was conducted in conjunction with the log-rank test from the “survival” package in R. Cox 
proportional hazards regression models were used for both multivariate and univariate analyses to determine the prognostic signif-
icance of DRLs features. GSEA analysis was performed to differentiate the two risk groups based on functional annotation. The kruskal 
test was used to examine differences in immune scores, immune checkpoint gene expression and drug sensitivity in different clusters. 
Statistical tests were two-sided, and FDR adjusted p-value <0.05 was considered statistically significant. 
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Fig. 1. Identification of prognostic-related DRLs A) Our detailed process flowchart depicts the step-by-step screening and identification of differ-
entially regulated genes (DRLs) that are directly associated with prognosis. B) The visually compelling volcano plot effectively captures and il-
lustrates the distribution of differentially expressed DRLs, enabling a clear representation of their significance. Red: logFC >1, FDR adjusted p <
0.05; green: logFC <1, FDR adjusted p < 0.05. C) The informative heatmap provides a visual representation of the expression levels of the identified 
differential DRLs across various samples, allowing for easy comparison and identification of patterns. D) The comprehensive forest plot displays the 
hazard coefficients of the prognosis-related DRLs, offering a concise and organized overview of their impact on prognosis. E) The heatmap further 
enhances our understanding by representing the expression levels of the identified prognosis-related DRLs specifically in each individual sample, 
revealing unique expression profiles. F, G) Through the use of Lasso regression, we are able to effectively demonstrate the potential overfitting 
situation, showcasing the impact of varying gene counts and highlighting the extent of overfitting within our model. This analysis allows for a better 
selection and understanding of the most informative genes in relation to the desired outcome. 
*p < 0.05, **p < 0.01, ***p < 0.001. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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(caption on next page) 

J. Li et al.                                                                                                                                                                                                                



Heliyon 10 (2024) e29005

6

3. Results 

3.1. Identifying differences in DRLs in the evaluation of STAD 

Using the workflow shown in Fig. 1A, we analyzed transcriptomic data from 408 STAD patients’ gastric cancer samples. We applied 
Ensembl’s annotation file to annotate and extract mRNA and lncRNA expression. Following previous studies, we extracted expression 
data for 24 disulfidptosis-related genes (DRGs). Through correlation analysis, we identified 693 disulfidptosis-related lncRNAs (DRLs) 
with significant expression (r > 0.5, p < 0.001). We then extracted 89 downregulated and 136 upregulated genes in STAD based on 
their differential expression compared to paired adjacent tissues (|logFC| > 1, FDR adjusted p < 0.05), as shown in Fig. 1B. The top 50 
genes with the largest |logFC| values were visualized in a heatmap (Fig. 1C). 

3.2. Construction and validation of a prognostic model for STAD based on DRLs 

To predict the prognosis of STAD using 225 DRLs, we divided 371 STAD patients with complete survival information into a training 
set (n = 186) and a testing set (n = 185) in a 1:1 ratio. In the training set, we performed univariate Cox regression analysis and 
identified four DRLs associated with prognosis. The relative risk coefficients and expression levels of each DRL in STAD samples are 
shown in Fig. 1D and E. Next, we used lasso regression to confirm that these four DRLs were included in the prognostic model without 
overfitting (Fig. 1F and G). 

Furthermore, the four DRLs screened based on lasso regression were further subjected to multivariate Cox regression analysis, and 
we identified two independent prognostic DRLs (IL10RB-DT and AL139147.1) to construct the final STAD prognostic model (Fig. S1). 
The riskscore was calculated as follows: riskscore = 0.576686042623288 * IL10RB-DT expression +0.682432842250547 * 
AL139147.1 expression. Based on the riskscore, the training set was divided into high or low-risk groups. Fig. 2A shows the expression 
levels of different DRLs in the high or low-risk groups, while Fig. 2B and C display the distribution and survival status of STAD patients 

Fig. 2. Construction and Validation of DRLs Prognostic Model A) Distribution of risk scores and outcomes in the training set. B) Distribution of risk 
scores, survival time, and survival status in the training set. C) Expression distribution of five DRL models in patients of the training set. D) Survival 
curves for patients with different risk scores in the training set. E) ROC curves and area under the curve (AUC) for models in the training set. F) 
Distribution of risk scores and outcomes in the test set. G) Distribution of risk scores, survival time, and survival status in the test set. H) Expression 
distribution of five DRL models in patients of the test set. I) Survival curves for patients with different risk scores in the test set. J) ROC curves and 
AUC for models in the test set. K) Distribution of risk scores and outcomes in all patients. L) Distribution of risk scores, survival time, and survival 
status in all patients. M) Expression distribution of five DRL models in all patients. N) Survival curves for patients with different risk scores in all 
patients. O) ROC curves and AUC for models in all patients. 
*p < 0.05, **p < 0.01, ***p < 0.001. 

Fig. 3. Association of Prognostic Models and Clinical Factors A) Univariate Cox regression demonstrates the impact of riskscore and other clinical 
factors on STAD prognosis. B) Multivariate Cox regression evaluates whether riskscore and other clinical factors can serve as independent prognostic 
factors for STAD. C) Multivariate ROC curves assess the predictive accuracy of riskscore and other clinical factors for STAD prognosis. D) Nomogram 
establishes specific scoring criteria for evaluating STAD prognosis. E) The C-index curve evaluates the effectiveness of the forest plot. 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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in these groups. The high-risk group demonstrated worse prognosis in survival analysis compared to the low-risk group (Fig. 2D). The 
ROC curve of the 2-DRLs model exhibited mediocre efficacy with AUC values of 0.637 and 0.731 for 3 and 5 years, respectively 
(Fig. 2E). Validation using the testing set and the entire STAD dataset yielded similar results in terms of DRL expression, survival 
analysis, and ROC curve (Fig. 2F-O). 

3.3. Clinical correlation analysis of the 2-DRL model 

To assess the clinical value of the 2-DRL model, we assumed the riskscore as a prognostic factor for STAD and performed univariate 
Cox regression analysis with clinical features. We found that only age, stage, T stage, N stage, and riskscore could serve as prognostic 
factors for STAD (HR > 1, p < 0.05) (Fig. 3A). Subsequently, we conducted multivariate Cox regression analysis with these significant 
prognostic factors, and age, stage, and riskscore demonstrated independent prognostic properties (Fig. 3B). Moreover, when 
combining these main clinical factors for ROC analysis, riskscore showed the strongest efficacy (Fig. 3C). 

Additionally, we constructed nomogram using the meaningful prognostic factors obtained from multivariate Cox regression 
analysis to assist clinical decision-making (Fig. 3D). The column charts displayed high accuracy and credibility (Fig. 3E). Furthermore, 
we performed subgroup analyses based on major clinical factors. We found that riskscore had good predictive efficacy for the prognosis 
of STAD patients, regardless of age (≤65 or >65) [16], early or advanced stage based on grade and stage, and in female patients 
(Fig. 4A–H). While there was a trend of high riskscore associated with poor prognosis for male patients, it did not reach statistical 
significance (p = 0.17) (Fig. 4C). 

3.4. Enrichment analysis and pathway analysis of the high-risk and low-risk groups 

To investigate the possible mechanisms underlying the poor prognosis of the high-risk group, we conducted differential analysis 
and identified 1316 differentially expressed genes (|logFC| > 1, FDR adjusted p < 0.05) between the high-risk and low-risk groups 
(Fig. 5A). A heatmap generated by clustering analysis visualized the top 50 genes with the highest logFC values (Fig. 5B). KEGG 
enrichment analysis revealed enrichment of multiple cancer-related pathways in the high-risk group, including the PI3K-Akt signaling 
pathway, cGMP-PKG signaling pathway, and Rap1 signaling pathway (Fig. 5C). GO enrichment analysis showed significant changes in 
cell essential structures such as extracellular matrix organization and membrane microdomain in the high-risk group (Fig. 5D and E). 
Furthermore, based on the riskscore of each sample, gene set enrichment analysis (GSEA) identified enrichment of the CALCIUM_-
SIGNALING_PATHWAY in the high-risk group, while the low-risk group showed enrichment of KEGG_GLYCEROLIPID_METABOLISM 
(Fig. 5F and G). This suggests that calcium signaling pathway dysregulation and altered glycerolipid metabolism may play a role in the 
respective prognosis groups. 

3.5. Assessment of the immune microenvironment in the high-risk and low-risk groups 

The occurrence of STAD is closely correlated with the immune microenvironment. We performed calculations for ESTIMATE score, 
ImmuneScore, and StromalScore in each STAD sample and observed consistent higher values in the high-risk group (Fig. 6A–C). 
Additionally, the analysis of immune cell infiltration and immune function using single-sample gene set enrichment analysis (ssGSEA) 

Fig. 4. Riskscore-based survival curves in clinical subgroups A-H) Survival curves based on riskscore in different clinical subgroups.  
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revealed increased infiltration of all immune cells and enhanced immune responses in the high-risk group (Fig. 6D and E). Further-
more, we explored the correlation between various immune cell infiltrates and riskscore using algorithms such as ssGSEA, TIMER, 
QUANTISEQ, MCP counter, ESTIMATE, EPIC, and CIBERSORT. T cell CD4+ cells exhibited a robust positive correlation with riskscore 
across all algorithms (Fig. 6F). Concerning the association between immune cell infiltration and STAD prognosis, we found a signif-
icant connection between high levels of macrophage infiltration and poor prognosis in STAD patients (Fig. 6G), while high levels of T 
cell follicular helper cells showed the opposite effect (Fig. 6H). Moreover, we assessed the expression levels of immune checkpoint 
genes in the high-risk and low-risk groups. Surprisingly, nearly all immune checkpoint genes showed high expression in the high-risk 
group (Fig. 6I). These findings suggest that although the high-risk group mobilizes a large number of immune cells, the high expression 
of immune checkpoint genes in their microenvironment inhibits the anti-tumor function of these immune cells, leading to a poor 
prognosis in high-risk group patients. 

3.6. Assessment of chemotherapy drug sensitivity in the high-risk and low-risk groups 

Since chemotherapy is the main treatment modality for gastric cancer, and drug resistance is highly prevalent, we aimed to utilize a 
2-DRL model to guide clinical chemotherapy regimens and improve the cure rate of STAD patients. We employed the pRRophetic 
algorithm to evaluate the chemotherapy drug sensitivity in the high-risk and low-risk groups. Our analysis revealed that patients in the 
high-risk group exhibited better sensitivity to Erlotinib, Oxaliplatin, and Gefitinib (Fig. 6J-L). Targeted therapy with these drugs may 
potentially improve the prognosis of high-risk group patients. 

Fig. 5. Functional enrichment analysis based on risk score A) Distribution of differentially expressed genes between high-risk and low-risk groups. 
Red: logFC >1, FDR adjusted p < 0.05; green: logFC <1, FDR adjusted p < 0.05. B) Expression distribution of differentially expressed genes in high- 
risk or low-risk groups. C) KEGG enrichment analysis reveals enriched KEGG pathways for differentially expressed genes. D) Bubble plot displays 
enriched GO pathways for differentially expressed genes. E) Circos plot visualizes the upregulated or downregulated status of differentially 
expressed genes in GO pathways. F) GSEA analysis showcases highly expressed pathways in the high-risk group. G) GSEA analysis demonstrates 
lowly expressed pathways in the low-risk group. 
*p < 0.05, **p < 0.01, ***p < 0.001. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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3.7. The novel molecular subtyping of STAD based on the 2-DRL model 

We attempted to perform molecular subtyping of STAD using the 2-DRL model. We utilized Consensus Cluster Plus to identify 
different subtypes within the risk model (K = 2–9). Based on the cumulative distribution function (CDF) curves and Delta area display 
(Fig. 7A and B), when k = 2 or 3, the sample clusters showed good stability (Fig. 7C and D). However, when k = 2, the distribution of 
patients in the molecular subtypes was similar to the classification based on risk scoring (Fig. 7E), whereas k = 3 represented a 
completely new molecular subtype (Fig. 7F). PCA and tSNE analysis demonstrated that both the high-risk and low-risk groups, as well 
as the k = 3 molecular subtypes, could effectively differentiate different STAD patients (Fig. 7G–J). Moreover, survival analysis 
revealed that patients in the C2 group had the poorest prognosis, while there was no significant difference between the C1 and C3 
groups (Fig. 7K). 

Immunological microenvironment and chemotherapy resistance evaluation of the new molecular subtypes in STAD. 
Next, we evaluated the immunological microenvironment characteristics of the new molecular subtypes in STAD. We found that 

patients in the C2 group had higher ESTIMATEScore, ImmuneScore, and StromalScore (Fig. 8A–C) and exhibited independent acti-
vation of 12 immune checkpoint genes (Fig. 8D, Fig. S2), which corresponded to the poor prognosis observed in the C2 group (Fig. 7K). 
The clustering heatmap revealed that in terms of immune cell infiltration, patients in the C2 group showed the highest levels of im-
mune cell infiltration, followed by the C1 and C3 groups (Fig. 8E). Regarding chemotherapy drug sensitivity, patients in the C2 group 
demonstrated better sensitivity to Erlotinib, Cisplatin, Oxaliplatin, and Gefitinib. Additionally, the C3 group exhibited good sensitivity 
to Cisplatin. There were no significant differences between the C1 and C3 groups in terms of sensitivity to Erlotinib, Oxaliplatin, and 
Gefitinib (Fig. 8F–I). 

Fig. 6. Immune status and drug sensitivity in different risk score groups A-C) STAD tumor microenvironment score. D) Immune function status in 
different risk score groups. E) Immune cell infiltration patterns in different risk score groups. F) Quantitative analysis of immune cell infiltration in 
STAD tissues using various algorithms such as XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and CIBERSORT. G, H) Sur-
vival curves based on different immune cell infiltration scores. I) Expression of immune checkpoints in different risk score groups. J-K) Drug 
sensitivity profiles in different risk score groups. 
*p < 0.05, **p < 0.01, ***p < 0.001. 
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Fig. 7. Classification of STAD subtypes based on DRLs model genes A) Distribution of samples across different number of classifications. B) CDF 
curves for different number of classifications. C) Consensus matrix for 2 classifications. D) Consensus matrix for 3 classifications. E, F) Sankey 
diagram illustrating the correspondence between STAD subtypes and high/low-risk score groups. G)PCA analysis showing the distribution of 
samples across different risk score groups. H)PCA analysis showing the distribution of samples across different STAD subtypes. I)t-SNE analysis 
showing the distribution of samples across different risk score groups. J)t-SNE analysis showing the distribution of samples across different STAD 
subtypes. K)Survival curves for different STAD subtypes. 
*p < 0.05, **p < 0.01, ***p < 0.001. 

Fig. 8. Immune status and drug sensitivity in different STAD subtypes A-C) Estimatescore, stromalscore and immunescore in different STAD 
subtypes. D) Expression of immune checkpoints in different STAD subtypes. E) Quantitative analysis of immune cell infiltration in STAD tissues 
using various algorithms such as XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and CIBERSORT. F) Drug sensitivity profiles 
in different STAD subtypes. 
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4. Discussion 

Cell death, a physiological process crucial for maintaining biological development and internal homeostasis, has become a focus in 
cancer treatment as targeting cell death-related pathways can effectively eliminate cancer cells [25,26]. Recently, a team of re-
searchers made a significant discovery and characterization of a novel form of cell death known as Disulfidptosis. This finding has 
opened up new possibilities for cancer therapy [7]. However, its role in stomach adenocarcinoma (STAD) remains largely unexplored. 
In this study, we aimed to investigate the relevance of Disulfidptosis-related genes (DRLs) in STAD by employing correlation analysis. 
Furthermore, we constructed a 2-DRLs prognostic model utilizing univariate Cox regression, LASSO regression, and multivariate Cox 
regression. Our analysis demonstrated that patients categorized in the high-risk group exhibited significantly shorter overall survival 
compared to those in the low-risk group. Moreover, through the visualization of risk heatmaps, risk curves, receiver operating 
characteristic (ROC) curves, and Kaplan-Meier survival curves, we corroborated the strong predictive efficacy of our risk model, 
surpassing other crucial risk factors in STAD, including age and stage. Notably, similar robust results were obtained in the validation 
set, further validating the reliability and reproducibility of our findings. 

STAD tumors thrive within a complex tumor microenvironment that aids in promoting malignant tumor progression and evading 
immune defenses [27,28]. Recent breakthroughs in immunotherapy have uncovered the potential of targeting immune regulatory cells 
or immune checkpoint factors within the tumor microenvironment to elicit anti-tumor immune responses [29,30]. Notably, Disul-
fidptosis has been shown to have close associations with the tumor immune microenvironment [31]. Additionally, emerging evidence 
suggests that aberrant long non-coding RNAs (lncRNAs) play a significant role as novel markers contributing to anti-tumor immune 
responsiveness [11,32,33]. Therefore, comprehending the tumor immune microenvironment influenced by Disulfidptosis-related 
genes (DRLs) and identifying new markers is crucial for effective risk stratification and target selection in immune therapy. In our 
study, we observed elevated levels of various immune cell infiltrates in the high-risk group, accompanied by higher ESTIMATEScore, 
ImmuneScore, and StromalScore compared to the low-risk group. These findings imply immune tolerance in high-risk STAD patients. 
Consequently, the features of DRLs hold potential as valuable indicators for selecting more efficient anti-tumor immune therapies for 
patients. However, further validation is necessary to fully comprehend the role of these features in predicting the immune treatment 
response of STAD patients. 

Immune checkpoints refers to a series of molecules expressed on immune cells that can regulate the degree of immune activation 
[34]. They play a crucial role in preventing autoimmune responses (abnormal immune function attacking normal cells) [35]. 
Currently, there are many drugs targeting immune checkpoints that have shown promising results in clinical treatment of some STAD 
patients [36]. However, they are still ineffective for many patients [37]. We found that all immune checkpoint genes were upregulated 
in the high-risk group, indicating immune suppression and decreased immune response against tumors in these patients. Regarding 
IL10RB-DT and AL139147.1 in the 2-DRLs prognostic model, it has been reported that IL10RB-DT inhibits CD8+ T cell activation by 
suppressing IFN-γ-JAK-STAT1 signaling and antigen presentation in melanoma and breast cancer cells [38], which may be related to 
the activation of immune checkpoints found in our analysis. As for AL139147.1, it has not been studied yet. Future in-depth research 
on IL10RB-DT and AL139147.1 may lead to effective treatment targets for immune checkpoints. 

Chemotherapy is the main treatment for STAD, and drug resistance is a major challenge in curing gastric cancer [39]. Using the 
pRRophetic algorithm, we evaluated the chemosensitivity of high-risk and low-risk patients and found that high-risk patients have 
better sensitivity to Erlotinib, Oxaliplatin, and Gefitinib, which can help in clinical decision-making and improve patient prognosis. 
Additionally, IL10RB-DT and AL139147.1 may also serve as important targets to improve drug sensitivity in STAD. 

In addition to identifying candidate biomarkers in STAD, finding precise molecular subtypes is also crucial for improving 
personalized treatment [40,41]. Based on the 2-DRLs prognostic model, we were able to classify STAD patients into three molecular 
subtypes (C1, C2, and C3). We then evaluated subtype-specific prognostic values, immune infiltration, and chemosensitivity. Our 
results showed that C1 and C3 patients had the best prognosis, C2 patients had the worst prognosis. In terms of the immune micro-
environment, C2 patients exhibited significant immune infiltration, while C3 patients had less immune cell infiltration, and C1 patients 
were intermediate. Drug sensitivity analysis indicated that C2 patients showed better sensitivity to Alpelisib and Cediranib, C1 patients 
were more suitable for treatment with Erlotinib, Cisplatin, Oxaliplatin, and Gefitinib, while C3 patients were more suitable for 
Erlotinib, Oxaliplatin, and Gefitinib treatment. Our novel STAD molecular subtyping holds significant implications for precise 
treatment of STAD. 

This study still has certain limitations. One of them is that we have not identified the reasons for better prognosis in the C1 group. 
Despite the similarity in patient prognosis between the C1 and C3 groups, there are significant differences in the immune microen-
vironment. These findings suggest that there may be other important factors contributing to the improved prognosis of patients in the 
C1 group, which represents an area for future in-depth research. Another limitation of this study is All the ranges and points of the 
nomogram we constructed are above the 45-degree line, which is an indication that the predicted values have a lower survival 
probability than the observation in reality. This may be due to the smaller overall sample size of STAD, which is needed in the future. 
More data will be collected for nomogram training and optimization. In addition, more evaluation indicators should be tried in 
subsequent work to make it more practical and clinically applicable. The lack of external validation for our 2-DRL model, as we lacked 
a comprehensive survival dataset from external lncRNA datasets. Improving the clinical information in large-scale lncRNA datasets in 
the future can assist us in further validating our model. 

5. Conclusion 

In summary, we analyzed and identified DRLs features in STAD. The 2-DRL model demonstrated satisfactory performance in 
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predicting OS differences and revealed the heterogeneity of the immune microenvironment in STAD patients. Additionally, the 2-DRL 
model can guide precise drug selection for chemotherapy in different molecular subtypes of STAD patients, improving treatment 
effectiveness and overcoming drug resistance. The robust and powerful DRL risk model provides insightful recommendations for 
exploring better treatment decisions and studying the mechanisms of DRLs. 
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