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Abstract

Motivation: Understanding functions of proteins in specific human tissues is essential for insights

into disease diagnostics and therapeutics, yet prediction of tissue-specific cellular function remains

a critical challenge for biomedicine.

Results: Here, we present OhmNet, a hierarchy-aware unsupervised node feature learning ap-

proach for multi-layer networks. We build a multi-layer network, where each layer represents mo-

lecular interactions in a different human tissue. OhmNet then automatically learns a mapping of

proteins, represented as nodes, to a neural embedding-based low-dimensional space of features.

OhmNet encourages sharing of similar features among proteins with similar network neighbor-

hoods and among proteins activated in similar tissues. The algorithm generalizes prior work, which

generally ignores relationships between tissues, by modeling tissue organization with a rich multi-

scale tissue hierarchy. We use OhmNet to study multicellular function in a multi-layer protein inter-

action network of 107 human tissues. In 48 tissues with known tissue-specific cellular functions,

OhmNet provides more accurate predictions of cellular function than alternative approaches, and

also generates more accurate hypotheses about tissue-specific protein actions. We show that tak-

ing into account the tissue hierarchy leads to improved predictive power. Remarkably, we also

demonstrate that it is possible to leverage the tissue hierarchy in order to effectively transfer cellu-

lar functions to a functionally uncharacterized tissue. Overall, OhmNet moves from flat networks to

multiscale models able to predict a range of phenotypes spanning cellular subsystems.

Availability and implementation: Source code and datasets are available at http://snap.stanford.

edu/ohmnet.

Contact: jure@cs.stanford.edu

1 Introduction

A unified view of human diseases and cellular functions across a

broad range of human tissues is essential, not only for understanding

basic biology but also for interpreting genetic variation and develop-

ing therapeutic strategies (Greene et al., 2015; GTEx et al., 2015;

Okabe and Medzhitov, 2014; Yeger-Lotem and Sharan, 2015). In

particular, the precise functions of proteins frequently depend on the

tissue, and different proteins can have different cellular functions in

different tissues (Fagerberg et al., 2014; Guan et al., 2012; Hu et al.,

2016; Lois et al., 2002; Magger et al., 2012; Rakyan et al., 2008;

Yeger-Lotem and Sharan, 2015).

While our view of the human protein–protein interaction (PPI)

network as a key source for studying protein function is constantly

expanding, much less is known about networks that form in bio-

logically important environments such as within distinct tissues or in

specific diseases (Yeger-Lotem and Sharan, 2015). Although incred-

ibly influential, current computational methods for extracting

functional information from protein interaction networks lack tissue

specificity as they assume that cellular function is constant across

organs and tissues (Barutcuoglu et al., 2006; Kramer et al., 2014;

Mostafavi et al., 2008; Radivojac et al., 2013; Stojanova et al.,

2013; �Zitnik and Zupan, 2015). In other words, cellular functions

in heart are assumed to be the same as functions in skin. The meth-

ods are, hence, less successful in constructing accurate maps of both

where and how proteins act. In particular, existing network-based

methods are probably not the ultimate representation of human tis-

sues for three reasons. (1) First, current methods for cellular func-

tion prediction on networks (Mostafavi and Morris, 2009;

Radivojac et al., 2013; Vidulin et al., 2016; �Zitnik and Zupan,

2015) do not model networks with regards to patterns that span tis-

sues, organs, and cellular systems. This means that a complex tissue

involving a multiscale hierarchy of cellular subsystems is not readily

captured by current models (Carvunis and Ideker, 2014; Dutkowski

et al., 2012). (2) Second, many genome-scale functional maps
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(Costanzo et al., 2016; Kitsak et al., 2016; Kotlyar et al., 2015;

Lopes et al., 2011; Rolland et al., 2014; Wang et al., 2016b) are de-

scriptive maps of physical or functional protein connectivity that do

not, by themselves, predict cellular function. (3) Third, only few

computational approaches (Antanaviciute et al., 2015; Ganegoda

et al., 2014; Guan et al., 2012; Magger et al., 2012) used tissue-

specific information to identify novel genes and relationships be-

tween genes. However, their focus was to leverage tissue specificity

to improve prediction of global cellular functions and global gene-

disease associations. As such, these approaches account for tissue

specificity, but they do not resolve the challenge of predicting gene–

function relationships that might be specific to a particular tissue.

To be able to predict a range of tissue-specific functions one needs

to design scalable multiscale models that can relate tissues to each

other, extract rich feature representations for proteins in each tissue-

specific network, and then use the extracted features for tissue-

specific cellular function prediction.

1.1 Present work
We present OhmNet, an algorithm for hierarchy-aware unsuper-

vised feature learning in multi-layer networks. Our focus is on learn-

ing features of proteins in different tissues. We represent each tissue

as a network, where nodes represent proteins. Tissue networks act

as layers in a multi-layer network, where we use a hierarchy to

model dependencies between the layers (i.e. tissues) (Fig. 1). We

then develop a computational framework that learns features of

each node (i.e. protein) by taking into consideration connections be-

tween the nodes within each layer, together with inter-layer relation-

ships between proteins active on different layers. More precisely,

our approach embeds each protein in each tissue in a d-dimensional

feature space such that proteins with similar network neighborhoods

in similar tissues are embedded closely together.

In OhmNet, we define an objective function that is independent of

the downstream prediction task, meaning that the feature representa-

tions are learned in a purely unsupervised way. This results in task-

independent features, that, as we show, outperform task-specific

approaches in predictive accuracy. Furthermore, since our features

are not designed for a specific downstream prediction task, they gen-

eralize across a wide variety of tasks and tissues. For example, we use

the learned features to study protein functions across different cellular

systems (e.g. cell types, tissues, organs and organ systems).

OhmNet builds on recent success of unsupervised representation

learning methods based on neural architectures (Grover and

Leskovec, 2016; Mikolov et al., 2013). In particular, we develop a

new form of structured regularization, which makes OhmNet espe-

cially suitable for multi-layer interdependent networks. Our key

contribution lies in modeling the tissue taxonomy constraints by

encoding relationships between the tissues in a tissue hierarchy and

then using the structured regularization with the tissue hierarchy

(Fig. 1). This way OhmNet effectively learns multiscale feature rep-

resentations for proteins that are consistent with the tissue

hierarchy.

Our experiments focus on three tasks defined on a multi-layer

tissue network: (1) a multi-label node classification task, where

every protein is assigned zero, one or more tissue-specific cellular

functions; (ii) a transfer learning task, where we predict cellular

functions for a protein in one tissue based on classifiers trained on

features from other tissues; and (iii) a network-embedding visualiza-

tion task, where we create meaningful tissue-specific visualizations

that lay out proteins on a 2D space. Since the multiscale protein fea-

ture vectors returned by OhmNet are task-independent, we use

OhmNet one time only to learn the features for proteins in every tis-

sue and at every scale of the tissue hierarchy. We can then solve the

cellular function prediction task for any tissue using the appropriate

tissue-specific protein features.

We contrast OhmNet’s performance with that of state-of-the-art

approaches for feature learning (Cannistraci et al., 2013; Grover

and Leskovec, 2016; Nickel et al., 2011; Tang et al., 2015;),

approaches for tissue-independent cellular function prediction

(Mostafavi et al., 2008; Zuberi et al., 2013), and approaches for pri-

oritization of disease-causing genes in tissue-specific protein inter-

action networks (Guan et al., 2012; Magger et al., 2012), which we

adapted for the cellular function prediction task. We experiment

with a multi-layer network having 107 genome-wide tissue-specific

protein interaction layers, and we consider a tissue hierarchy

describing 219 cellular systems in the human body. Experiments

demonstrate that tissue-specific protein interaction layers provide

the necessary protein and tissue context for predicting cellular func-

tion. OhmNet outperforms alternative approaches by up to 14.9%

on multi-label classification and up to 20.3% on transfer learning.

Another notable finding is that OhmNet outperforms alternative

approaches, which are based on non-hierarchical versions of the

same dataset, alluding to the benefits of modeling hierarchical tissue

organization. We observe that neglecting the existence of tissues or

aggregating tissue-specific interaction networks into a single net-

work discards important biological information and affects per-

formance on multi-label classification and transfer learning tasks.

Finally, we exemplify the utility of OhmNet for exploring the multi-

scale structure of tissues. In a case study on nine brain tissue net-

works, we show that OhmNet’s features inherently encode a

multiscale brain organization.

The rest of the article is organized as follows. In Section 2, we

briefly survey related work in feature learning for networks. We pre-

sent the technical details of OhmNet in Section 3. In Section 4, we

describe the multi-layer tissue network and the tissue hierarchy. We

empirically evaluate OhmNet in Section 5 and conclude with direc-

tions for future work in Section 6.

2 Related work

We have seen in Section 1 that despite the abundance of methods for

cellular function prediction, only a few, if any, take into account

Fig. 1. A multi-layer network with four layers, where each layer represents a

tissue-specific PPI network. The hierarchy M encodes biological similarities

between the tissues at multiple scales. OhmNet embeds each node in a d-di-

mensional feature space, which we use for tissue-specific protein function

prediction. For example, layers Gi, Gj, Gk and Gl, might represent brain tissue-

specific interaction networks in cerebrum, hypothalamus, tegmentum and

medulla
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biologically important contexts given by human tissues. We now

turn our focus to the problem of feature learning in networks.

Most approaches for automatic (i.e. non-hand-engineered) fea-

ture learning in networks can be categorized into matrix factoriza-

tion and neural network embedding-based approaches. In matrix

factorization, a network is expressed as a data matrix where the

entries represent relationships. The data matrix is projected to a

low-dimensional space using linear techniques based on SVD (Tang

et al., 2012), or nonlinear techniques based on multi-dimensional

scaling (Belkin and Niyogi, 2001; Hou et al., 2014; Tenenbaum

et al., 2000). These methods have two important drawbacks. First,

they do not account for important structures typically exhibited in

networks such as high sparsity and skewed degree distribution.

Second, matrix factorization methods perform a global factorization

of the data matrix while a local-centric method might often yield

more useful feature representations (Kramer et al., 2014).

Limitations of matrix factorization are overcome by neural net-

work embeddings. Recent studies focused on embedding nodes into

low-dimensional vector spaces by first using random walks to con-

struct the network neighborhood of every node in the graph, and

then optimizing an objective function with network neighborhoods

as input (Grover and Leskovec, 2016; Perozzi et al., 2014; Tang

et al., 2015). The objective function is carefully designed to preserve

both the local and global network structures. A state-of-the-art neu-

ral network embedding algorithm is the Node2vec algorithm

(Grover and Leskovec, 2016), which learns feature representations

as follows: it scans over the nodes in a network, and for every node

it aims to embed it such that the node’s features can predict nearby

nodes, that is, node’s feature predict which other nodes are part of

its network neighborhood. Node2vec can explore different network

neighborhoods to embed nodes based on the principles of homo-

phily (i.e. network communities) as well as structural equivalence

(i.e. structural roles of nodes).

However, a challenging problem for neural network embedding-

based methods is to learn features in multi-layer networks. Existing

methods can learn features in multi-layer networks either by treating

each layer independently of other layers, or by aggregating the layers

into a single (weighted) network. However, neglecting the existence

of multiple layers or aggregating the layers into a single network,

alters topological properties of the system as well as the importance

of individual nodes with respect to the entire network structure (De

Domenico et al., 2016). This is a major shortcoming of prior work

that can lead to a wrong identification of the most versatile nodes

(De Domenico et al., 2015) and overestimation of the importance of

more marginal nodes (De Domenico et al., 2014). As we shall show,

this shortcoming also affects predictive accuracy of the learned fea-

tures. Our approach OhmNet overcomes this limitation since it

learns features in a multi-layer network in the context of the entire

system structure, bridging together different layers and generalizing

methods developed for learning features in single-layer networks.

In biological domains, measures based on similarities of nodes’

extended network neighborhoods are well established for predicting

protein functions. Several approaches use graphlets (Pr�zulj, 2007) to

systematically describe network structure around each node. This is

done by counting how many instances of small subgraph patterns

occur in the network neighborhood of a given node. Graphlet-based

methods, such as graphlet degree vectors (Hayes et al., 2013), can

thus be seen as an alternative approach for extracting feature repre-

sentations for nodes. In contrast to neural embedding-based meth-

ods, such as OhmNet, which learn continuous feature

representations, graphlet-based methods return discrete counts of

motif occurrences. Further, graphlet-based methods in their current

form cannot be applied to multi-layer networks without collapsing

the network layers into one network.

Finally, there exists recent work for task-dependent feature

learning based on graph-specific deep network architectures (Li

et al., 2015; Xiaoyi et al., 2014; Wang et al., 2016a; Zhai and

Zhang, 2015). Our approach differs from those approaches in two

important ways. First, those architectures are task-dependent, mean-

ing they directly optimize the objective function for a downstream

prediction task, such as cellular function prediction in a particular

tissue, using several layers of nonlinear transformations. Second,

those architectures do not model rich graph structures, such as

multi-layer networks with hierarchies.

3 Feature learning in multi-layer networks

We formulate feature learning in multi-layer networks as a max-

imum likelihood optimization problem. Let V be a given set of N

nodes (e.g. proteins) fu1; u2; . . . ; uNg; and let there be K types of

edges (e.g. protein interactions in different tissues) between pairs of

nodes u1; u2; . . . ; uN. A multi-layer network is a general system in

which each biological context is represented by a distinct layer i

(where i ¼ 1; 2; . . . ;K) of a system (Fig. 1). We use the term single-

layer network (layer) for the network Gi ¼ ðVi;EiÞ that indicates the

edges Ei between nodes Vi � V within the same layer i. Our analysis

is general and applies to any (un)directed, (un)weighted multi-layer

network.

We take into account the possibility that a node uk from layer i

can be related to any other node uh in any other layer j. We encode

information about the dependencies between layers in a hierarchical

manner that we use in the learning process. Let the hierarchy be a

directed treeM defined over a set M of elements by the parent-child

relationships given by p : M!M; where pðiÞ is the parent of elem-

ent i in the hierarchy (Fig. 1). Let T �M be the set of all leaves in

the hierarchy. Let Ti be the set of all leaves in the sub-hierarchy

rooted at i. We assume that each layer Gi is attached to one leaf in

the hierarchy. As a result, the hierarchyM has exactly K leaves. For

convenience, let Ci denote the set of all children of element i in the

hierarchy.

The problem of feature learning in a multi-layer network is to

learn functions f1; f2; . . . ; fK, such that each function fi : Vi ! R
d

maps nodes in Vi to feature representations in R
d. Here, d is a par-

ameter specifying the number of dimensions in the feature represen-

tation of one node. Equivalently, fi is a matrix of jVij � d

parameters.

We proceed by describing OhmNet, our approach for feature

learning in multi-layer networks. OhmNet has two components:

• single-layer network objectives, in which nodes with similar net-

work neighborhoods in each layer are embedded close together,
• hierarchical dependency objectives, in which nodes in nearby

layers in the hierarchy are encouraged to share similar features.

We start by describing the model that considers the layers independ-

ently of each other. We then extend the model to encourage nodes

which are nearby in the hierarchy to have similar features.

3.1 Single-layer network objectives
We start by formalizing the intuition that nodes with similar net-

work neighborhoods in each layer should share similar features. For

that, we specify one objective for each layer in a given multi-layer

network. We shall later discuss how OhmNet incorporates the

dependencies between different layers.
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Our goal is to take layer Gi and learn fi which embeds nodes

from similar network regions, or nodes with similar structural roles,

closely together. In OhmNet, we aim to achieve this goal by specify-

ing the following objective function for each layer Gi. Given a node

u 2 Vi, the objective function xi seeks to predict, which nodes are

members of u’s network neighborhood NiðuÞ based on the learned

node features fi:

xiðuÞ ¼ log PrðNiðuÞjfiðuÞÞ; (1)

where the conditional likelihood of every node-neighborhood

node pair is modeled independently as PrðNiðuÞjfiðuÞÞ ¼Q
v2NiðuÞ PrðvjfiðuÞÞ. The conditional likelihood is a softmax unit

parameterized by a dot product of nodes’ features, which corres-

ponds to a single-layer feed-forward neural network: PrðvjfiðuÞÞ ¼
exp ðfiðvÞfiðuÞÞ=

P
z2Vi

exp ðfiðzÞfiðuÞÞ. Given a node u, maximiza-

tion of xiðuÞ tries to maximize classification of nodes in u’s network

neighborhood based on u’s learned representation.

The objective Xi is defined for each layer i:

Xi ¼
X
u2Vi

xiðuÞ; for i ¼ 1;2; . . . ;K: (2)

The objective is inspired by the intuition that nodes with similar net-

work neighborhoods tend to have similar meanings, or roles, in a

network. It formalizes this intuition by encouraging nodes in similar

network neighborhoods to share similar features.

We found that a flexible notion of a network neighborhood Ni is

crucial to achieve excellent predictive accuracy on a downstream

cellular function prediction task (Grover and Leskovec, 2016). For

that reason, we use a randomized procedure to sample many differ-

ent neighborhoods of a given node u. Technically, the network

neighborhood NiðuÞ is a set of nodes that appear in an appropriately

biased random walk defined on layer Gi and started at node u

(Grover and Leskovec, 2016). The neighborhoods NiðuÞ are not re-

stricted to just immediate neighbors but can have vastly different

structures depending on the sampling strategy.

Next, we expand OhmNet’s single-layer network objectives to

leverage information provided by the tissue taxonomy and this way

inform embeddings across different layers.

3.2 Hierarchical dependency objectives
So far, we specified K layer-by-layer objectives each of which estimates

node features in its layer independently of node features in other layers.

This means that nodes in different layers representing the same entity

have features that are learned independently of each other.

To harness the dependencies between the layers, we expand

OhmNet with terms that encourage sharing of protein features be-

tween the layers. Our approach is based on the assumption that

nearby layers in the hierarchy are semantically close to each other

and hence proteins/nodes in them should share similar features. For

example, in the tissue multi-layer network, we model the fact that

the “medulla” layer is part of the “brainstem” layer, which is, in

turn, part of the “brain” layer. We use the dependencies among the

layers to define a joint objective for regularization of the learned fea-

tures of proteins.

We propose to use the hierarchy in the learning process by incorpo-

rating a recursive structure into the regularization term for every elem-

ent in the hierarchyM. Specifically, we propose the following form of

regularization for node u that resides in element i of the hierarchyM:

ciðuÞ ¼
1

2
jjfiðuÞ � fpðiÞðuÞjj22: (3)

This recursive form of regularization enforces the features of node u

in the hierarchy i to be similar to the features of node u in i’s parent

pðiÞ under the Euclidean norm. When regularizing features of all

nodes across all elements of the hierarchy, we obtain:

Ci ¼
X
u2Li

ciðuÞ; where Li ¼ [j2Ti
Vj (4)

In words, we specify the features for both leaf as well as internal, i.e.

non-leaf, elements in the hierarchy, and we regularize the features of

sibling (i.e. sharing the same parent) hierarchy elements toward fea-

tures in the common parent element in the hierarchy.

3.2.1 Node features at multiple scales

It is important to notice that OhmNet’s structured regularization

allows us to learn feature representations at multiple scales. For ex-

ample, consider a multi-layer network in Figure 2, consisting of four

layers that are interrelated by a two-level hierarchy. OhmNet learns

the mappings fi, fj, fk and fl that map nodes in each layer into a d-di-

mensional feature space. In addition, OhmNet also learns the map-

ping f2 representing features for nodes appearing in the hierarchy

leaves T2, i.e. Vi [ Vj, at an intermediate scale, and the mapping f1
representing features for nodes appearing in the hierarchy leaves T1,

i.e. Vi [ Vj [ Vk [ Vl, at the highest scale.

The modeling of relationships between layers in a multi-layer

network has several implications:

• First, the model encourages nodes which are in nearby layers in

the hierarchy to share similar features.
• Second, the model shares statistical strength across the hierarchy

as nodes in different layers representing the same protein share

features through ancestors in the hierarchy.
• Third, this model is more efficient than the fully pairwise model.

In the fully pairwise model, the dependencies between layers are

modeled by pairwise comparisons of nodes across all pairs of

layers, which takes OðK2NÞ time, where K is the number of

layers and N is the number of nodes. In contrast, OhmNet mod-

els inter-layer dependencies according to the parent-child rela-

tionships specified by the hierarchy, which takes only OðjMjNÞ
time. Since OhmNet’s hierarchy is a tree, it holds that jMj � K2,

meaning that the proposed model scales more easily to large

multi-layer networks than the fully pairwise model.
• Finally, the hierarchy is a natural way to represent and model bio-

logical systems spanning many different biological scales

(Carvunis and Ideker, 2014; Greene et al., 2015; Yu et al., 2016).

3.3 Full OhmNet model
Given a multi-layer network consisting of layers G1;G2; . . . ;GK,

and a hierarchy encoding relationships between the layers, the

Fig. 2. A multi-layer network with four layers. Relationships between the

layers are encoded by a two-level hierarchy M. Leaves of the hierarchy cor-

respond to the network layers. Given networks Gi and hierarchyM, OhmNet

learns node embeddings captured by functions fi
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OhmNet’s goal is to learn the functions f1; f2; . . . ; fK that map from

nodes in each layer to feature representations. OhmNet achieves

this goal by fitting its feature learning model to a given multi-layer

network and a given hierarchy, i.e. by finding the mapping functions

f1; f2; . . . ; fK that maximize the data likelihood.

Given the data, OhmNet aims to solve the following maximum

likelihood optimization problem:

max
f1 ;f2 ;...;fjMj

X
i2T

Xi � k
X
j2M

Cj; (5)

which includes the single-layer network objectives for all network

layers, and the hierarchical dependency objectives for all hierarchy

elements. In Equation (5), parameter k is a user-specified parameter

representing the regularization strength. While the optimization

problem in Equation (5) is non-convex due to the non-convexity of

the single-layer objective (Grover and Leskovec, 2016), stochastic

gradient with negative sampling can be used to efficiently solve the

problem.

One appealing property of OhmNet is that by solving the prob-

lem in Equation (5) we obtain estimates for functions f1; f2; . . . ; fK

located in the leaf elements of the hierarchy (i.e. layers of a given

multi-layer network), as well as estimates for functions fKþ1; fKþ2;

. . . ; fjMj located in the internal elements of the hierarchy.

3.4 The OhmNet algorithm
The pseudocode for OhmNet is given in Algorithm 1.

In the first phase, OhmNet applies the Node2vec’s algorithm

(Grover and Leskovec, 2016) to construct network neighborhoods

for each node in every layer. Given a layer Gi and a node u 2 Vi, the

algorithm simulates a user-defined number of fixed length random

walks started at node u (step 4 in Algorithm 1).

In the second phase, OhmNet uses an iterative approach in

which features associated with each object in the hierarchy are itera-

tively updated by fixing the rest of the features. The iterative

approach has the advantage that it can easily incorporate the closed-

form updates developed for the internal objects of the hierarchy

(step 11 in Algorithm 1), thereby accelerating the convergence of

OhmNet algorithm. For each leaf object i, OhmNet isolates the

terms in the optimization problem in Equation (5) that depend on

the model parameters defining function fi. OhmNet then optimizes

Equation (5) by performing one epoch of stochastic gradient descent

(SGD1) over fi’s model parameters (step 15 in Algorithm 1).

The two phases of OhmNet are executed sequentially. The

OhmNet algorithm scales to large multi-layer networks because

each phase is parallelizable and executed asynchronously. The

choice to model the dependencies between network layers using the

hierarchical model requires OðjMjNÞ time instead of the fully pair-

wise model, which requires OðK2NÞ time.

4 Tissue-specific interactome data

To construct the human PPI network, tissue-specific network layers,

tissue hierarchy and tissue-specific gene–function relationships, we

downloaded and used standard protein, tissue and function informa-

tion from various reputable data sources.

4.1 Tissue hierarchy
We retrieved the mapping of tissues in the Human Protein Reference

Database (HPRD) (Prasad et al., 2009) to tissues in the BRENDA

Tissue Ontology (Chang et al., 2014) from Greene et al. (2015). The

data is provided as a supplementary dataset in Greene et al. (2015).

The hierarchical relationships between tissues were then determined

by the directed acyclic graph structure of the BRENDA Tissue

Ontology. Examples of tissues included: muscle, adrenal cortex,

bone marrow and spleen (Fig. 3).

4.2 Tissue-specific interaction networks
We took the gene-to-tissue mapping compiled by Greene et al.

(2015). Greene et al. mapped genes to HPRD tissues based on low-

throughput tissue-specific gene expression data. The gene-to-tissue

mapping was then combined with the human PPI network. The re-

sulting multi-layer tissue network had 107 layers, each layer corres-

ponded to a PPI network specific to a particular tissue. Details are

provided next.

Fig. 3. The tissue hierarchy considered in this study. The tissue hierarchy is a

directed tree defined over jMj ¼ 219 tissue terms from the BRENDA Tissue

Ontology. Edges in the tree point from children to parents based on onto-

logical relationships: “develops_from”, “is_a”, “part_of” and “related_to”.

The K¼107 tissues with tissue-specific protein interaction networks are the

blue leaves in the tree

Algorithm 1. The OhmNet algorithm

Input: Multi-layer network, ðG1;G2; . . . ;GKÞ with Gi ¼ ðVi;EiÞ,
Hierarchy, M, Feature representation size, d, Network neigh-

borhood strategy, S, Regularization strength, k
1: for i 2 T do

2: for u 2 Vi do

3: NiðuÞ ¼ Node2vecWalkðGi; u; SÞ (Grover and

Leskovec, 2016)

4: end for

5: end for

6: while f1; f2; . . . ; fjMj not converged do

7: for i 2M do

8: if i 2 T then

9: for u 2 Vi do

10: fiðuÞ ¼ SGD1ðNiðuÞ; d; kÞ by Equation (5)

11: end for

12: else

13: for u 2 [j2Ti
Vj do

14: fiðuÞ ¼ 1
jCi jþ1 fpðiÞðuÞ þ

P
c2Ci

fcðuÞ
��

15: end for

16: end if

17: end for

18: end while

19: return f1; f2; . . . ; fjMj
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The human PPI network was collected from Orchard et al.

(2013), Rolland et al. (2014), Chatr-Aryamontri et al. (2015),

Prasad et al. (2009), Ruepp et al. (2010) and Menche et al. (2015).

Considered were physical PPIs with supported by experimental evi-

dence. It should be noted that interactions based on gene expression

and evolutionary data were not considered. The global (unweighted)

human PPI network has 21 557 proteins interconnected by 342 353

interactions. The reader is referred to Menche et al. (2015) for a de-

tailed description of the data.

For each of 107 tissues, a tissue-specific human PPI network was

constructed based on the global PPI network. For a given tissue,

every edge in the global PPI network was labeled as specifically co-

expressed in that tissue using the criterion developed by Greene

et al. (2015). Greene et al. labeled each edge as specifically co-

expressed if either both proteins are specific to that tissue or one

protein is tissue-specific and the other is ubiquitous. Lists of specific-

ally co-expressed proteins were retrieved from Greene et al. (2015).

Finally, the PPI network specific to a particular tissue is a subnet-

work of the global PPI network, induced by the set of specifically

co-expressed edges in that tissue.

4.3 Tissue-specific cellular functions and gene

annotations
Associations between tissues and cellular functions were retrieved

from Greene et al. (2015). Greene et al. manually curated biological

processes in the Gene Ontology (GO) (Ashburner et al., 2000) and

mapped them to tissues in the BRENDA Tissue Ontology (Chang

et al., 2014) based on whether a given biological process is specific-

ally active in a given tissue. The data is provided as a supplementar

dataset in Greene et al. (2015). An example of a cellular function-

tissue pair is "low-density lipoprotein particle remodeling" in the

blood plasma tissue.

All gene annotations were propagated along the ontology hier-

archy. Considered are functions with at least 15 annotated proteins

(Guan et al., 2012). In total, there are 584 tissue-specific cellular

functions covering 48 distinct tissues. Each tissue-specific func-

tion is assigned to one or more leaves in the tissue hierarchy

(Section 4.1).

5 Results

The OhmNet’s objective in Equation (5) is independent of any

downstream task. This flexibility offered by OhmNet makes the

learned feature representations suitable for a variety of analytics

tasks discussed below.

5.1 Prediction of tissue-specific cellular functions
5.1.1 Experimental setup

We view the problem of predicting cellular functions as solving a

multi-label node classification task. Here, every node (i.e. protein) is

assigned one or more labels (i.e. cellular functions from the GO)

from a finite set of labels (i.e. all cellular functions in the GO, see

Section 4.3).

We apply OhmNet, which for every node in every layer learns a

separate feature vector in an unsupervised way. Thus, for every layer

and every function we then train a separate one-versus-all linear

classifier using the modified Huber loss with elastic net regulariza-

tion. Using cross validation, we observe 90% of proteins and all

their cellular functions across the layers during the training phase.

The task is then to predict the tissue-specific functions for the re-

maining 10% of proteins.

We evaluate the performance of OhmNet against the following

feature-learning approaches:

• RESCAL tensor decomposition (Nickel et al., 2011): This is a tensor

factorization approach that takes the multi-layer network structure

into account. Given Xi, a normalized Laplacian matrix of layer Gi,

matrix Xi is factorized as: Xi ¼ ARiA
T , for i ¼ 1;2; . . . ;K: Here,

matrix A contains d-dimensional feature representation for nodes.
• Minimum curvilinear embedding (Cannistraci et al., 2013): This

is a non-linear unsupervised framework that embeds nodes in a

low-dimensional space. The approach was originally developed

for protein interaction prediction, aiming to embed protein pairs

representing good candidate interactions closer to each other. It

utilizes a network denoising method as well as structural infor-

mation provided by the PPI network topology.
• LINE (Tang et al., 2015): This approach first learns d=2 dimensions

based on immediate network neighbors of nodes, and then the next

d=2 dimensions based on network neighbors at a 2-hop distance.
• Node2vec (Grover and Leskovec, 2016): This approach learns d-

dimensional features for nodes based on a biased random walk

procedure that flexibly explores network neighborhoods of nodes.

In addition, we evaluate the performance of OhmNet against the

following tissue-specific/agnostic function prediction approaches:

• GeneMania (Zuberi et al., 2013): This is a supervised approach

that takes a multi-layer network as input and directly predicts

cellular functions in two separate phases. In the first phase, it ag-

gregates the layers into one weighted network by weighting the

layers according to their utility for predicting a given function. It

then uses a label propagation algorithm on the weighted network

to predict the function.
• Tissue-specific network propagation (Magger et al., 2012): This ap-

proach assigns a prior score to proteins associated with known func-

tions that are phenotypically similar to the query function. This score

is then propagated through a network in an iterative process. The ap-

proach was developed for tissue-specific disease gene prioritization.
• Network-based tissue-specific support vector machine (SVM)

(Guan et al., 2012): This approach adopts the network-based

candidate gene prediction scheme. Essentially, the connection

weights in a network to all positive examples (i.e. genes already

known to be related to a phenotype) are utilized as features for

linear SVM classification. The approach was developed for

tissue-specific phenotype and disease gene prioritization.

The parameter settings for every approach are determined using in-

ternal cross-validation procedure with a grid search over candidate

parameter values. Specifically, d¼128 is used in all experiments.

Last, we aim to evaluate the benefit of our proposed multi-layer

representation of the tissue networks. To this end we also consider

two additional network representations:

• Independent layers: This approach learns features for nodes in

each layer by running LINE or Node2vec algorithm on one layer

at a time and independently of other layers in the network.
• Collapsed layers: This approach first aggregates the layers into a

single network by connecting nodes representing the same entity

in different layers to each other. It then learns feature for nodes

in the aggregated network.

5.1.2 Experimental results

Table 1 and Figure 4 give the area under the curve (AUC) scores of

tissue-specific protein function prediction.
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From the results, we see how modeling the tissues and their hier-

archy spanning multiple biological scales allows OhmNet to outper-

form other benchmark approaches. OhmNet outperforms

GeneMania (Mostafavi et al., 2008; Zuberi et al., 2013) by 10.7%,

which can be explained by GeneMania’s inability to weight layers in

the tissue network according to a multiscale tissue organization that

is consistent with the tissue taxonomy constraints. We also com-

pared OhmNet with two other methods (Guan et al., 2012; Magger

et al., 2012) that were so far demonstrated as useful for mining

tissue-specific protein relationships. OhmNet has produced more ac-

curate predictions, surpassing other methods by up to 12.0%

(AUROC) and up to 26.8% (AUPRC).

Independent modeling of the layers showed worse performance

than collapsing the layers into one network. We observed that

Collapsed LINE achieved a gain of 3.3% over Independent LINE,

and Collapsed Node2vec achieved a gain of 7.4% over Independent

Node2vec. However, approaches that neglect the existence of tissues

or collapse tissue-specific protein interaction networks into a single

network discard important information about the rich hierarchy of

biological systems, giving OhmNet a 14.0% gain over Collapsed

LINE, and a 8.5% gain over Collapsed Node2vec in AUC scores.

This result is a good illustration of how tissue specificity is related to

specialization of protein function (Greene et al., 2015), and

approaches able to directly profile proteins’ distinct interaction

neighborhoods in different tissues can leverage this specificity to

generate more accurate hypotheses about tissue-specific protein

actions.

5.2 Transfer of cellular functions to a new tissue
5.2.1 Experimental setup

In the transfer learning setting, we attempt to transfer knowledge

learned in one or more source layers and use it for prediction in a

target layer.

As before, we apply OhmNet to obtain a separate feature vector

for every node and every layer in an unsupervised way. We then con-

sider, in turn, every tissue as a target layer and all other tissues as

source layers. For every function and every source layer, we train a

separate classifier using the same classification model as in Section

5.1. We then predict functions for the target layer using only classi-

fiers trained on the source layers. That is, we aim to predict cellular

functions taking place in the target tissue without having access to

any cellular function gene annotation in that tissue, i.e. we pretend

the target tissue has no annotations. Prediction for one node in the

target layer is the weighted average of predictions of the classifiers

trained on source layers. Weights reflect hierarchy-based distances

of source tissues from the target tissue. They are determined by the

closed-form expressions mathematically equivalent to OhmNet’s

regularization (details omitted due to space constraints).

5.2.2 Experimental results

Table 2 shows the classification accuracy results for transfer learn-

ing based on OhmNet. Since transfer tasks are more difficult than

non-transfer tasks (Section 5.1), it is expected that the AUC scores

will decrease on transfer tasks. Results in Table 2 confirm these ex-

pectations; however, we observe a very graceful degradation in per-

formance leading to an only 7% average decrease in the AUC

scores. We get the smallest performance differences for target tissues

with many biologically similar source tissues (i.e. source layers) in

the tissue network. For example, performance difference for the

forebrain is only 5.2%, which is due to the fact that there are nine

other layers in the tissue network closely related to the forebrain,

such as the cerebellum and the midbrain. Considering all 48 tis-

sues with tissue-specific cellular functions, OhmNet outperforms all

comparison methods on most transfer tasks, achieving a gain of up

to 20.3% over the closest benchmark in AUC scores (scores not

shown). Notice that we exclude GeneMania in the comparison be-

cause it is not amenable to transfer learning. This result suggests

Table 1. AUROC and area under precision-recall curve (AUPRC)

scores for tissue-specific cellular function prediction

Approach AUROC AUPRC

Tensor decomposition 0.674 (60.124) 0.235 (60.052)

Minimum curvilinear embedding 0.674 (60.064) 0.248 (60.071)

Independent LINE 0.642 (60.053) 0.261 (60.068)

Collapsed LINE 0.663 (60.047) 0.271 (60.053)

Independent Node2vec 0.649 (60.063) 0.283 (60.052)

Collapsed Node2vec 0.697 (60.085) 0.298 (60.061)

GeneMania 0.683 (60.077) 0.274 (60.094)

Network-based tissue-specific SVM 0.701 (60.091) 0.281 (60.059)

Tissue-specific network propagation 0.675 (60.051) 0.265 (60.083)

OhmNet (Section 3) 0.756 (60.067) 0.336 (60.045)

Values in the brackets are halves of the interquartile distance. OhmNet’s

results are statistically significant with a P-value of< 0.05

Fig. 4. Area under ROC curve (AUROC) scores for tissue-specific cellular func-

tion prediction by OhmNet. Numbers in the brackets are counts of tissue-spe-

cific cellular functions per tissue

Table 2. AUROC scores for transfer learning

Target tissue AUROC (non-transfer) AUROC (transfer)

Natural killer cell 0.834 (60.076) 0.776 (60.063)

Placenta 0.830 (60.082) 0.758 (60.068)

Spleen 0.803 (60.030) 0.779 (60.043)

Liver 0.803 (60.047) 0.741 (60.025)

Forebrain 0.796 (60.036) 0.755 (60.037)

Macrophage 0.789 (60.037) 0.724 (60.024)

Epidermis 0.785 (60.030) 0.749 (60.032)

Hematopoietic stem cell 0.784 (60.035) 0.744 (60.036)

Blood plasma 0.784 (60.027) 0.703 (60.039)

Smooth muscle 0.778 (60.031) 0.729 (60.041)

Average 0.799 0.746

Shown are the scores for ten tissues with best performance on cellular func-

tion prediction task. “Non-transfer”: a classifier is trained on a target tissue

and then used to predict cellular functions in the same tissue (Section 5.1).

“Transfer”: classifiers are trained on all non-target tissues and then used to

predict cellular functions in the target tissue (Section 5.2).
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that considering the relationships between tissues when learning

features for proteins has a significant impact on transfer performance.

In general, we observed that the transferability of classifiers

decreased when the tree-based distance between the source and the

target tissue in the tissue hierarchy increased, which is consistent with

the empirical evidence in transfer learning (Yosinski et al., 2014). This

also matches our intuition that a source tissue should be most inform-

ative for predicting cellular functions in an anatomically close target

tissue (e.g. source and target tissues are both part of the same organ).

5.3 The multiscale model of brain tissues
We have seen in Section 4.1 that human tissues have a multi-level

hierarchical organization. The tissue hierarchy categorizes tissues

into: cell types, groups of cells with similar structure and function;

organs, groups of tissues that work together to perform a specific ac-

tivity; and organ systems, groups of two or more tissues that work

together for the good of the entire body. We now aim to empirically

demonstrate this fact and show that OhmNet in fact can discover

embeddings that obey this organization.

We first construct a multi-layer brain network by integrating

nine brain-specific protein interaction networks (e.g. the cerebellum,

frontal lobe, brainstem and other brain tissues). Each of nine brain-

specific networks is one layer in the multi-layer network. The layers

are organized according to a two-level hierarchy (Fig. 5A). We run

OhmNet on this multi-layer network to find node features in a

purely unsupervised way. We then map the nodes to the 2D space

based on the learned features. This way we assign every node in

every layer to a point in the two-dimensional space based solely on

the node’s learned features. We then visualize the points and color

them based on the layer they belong to.

Figure 5B shows the example for the brainstem tissues: substan-

tia nigra, pons, midbrain and medulla oblongata. Laying out these

tissue-specific networks is very challenging as the four brainstem tis-

sues are very closely related to each other in the human body.

However, the visualization using OhmNet performs quite well.

Notice how points of the same color are closely distributed, and

how well regions of the same color are separated from each other. In

the brainstem example, this means that OhmNet generates a mean-

ingful layout of the brainstem tissue-specific networks, in which pro-

teins belonging to the same tissues are clustered together.

Figure 5C shows the example for the brain, which is located one

level up from the brainstem in the tissue hierarchy. Again, OhmNet

produces a meaningful layout of the nine brain tissue-specific

networks.

In addition, we repeated this analysis by visualizing protein fea-

tures learned by running principal component analysis (PCA) or

non-negative matrix factorization (NMF) algorithm on the brain-

specific PPI networks. Acknowledging the subjective nature of this

analysis, we observed that visualizations using PCA or NMF were

not very meaningful, as proteins belonging to the same tissue were

not clustered together (data not shown).

OhmNet’s result in Figure 5 is especially appealing because of

two reasons. First, it shows that OhmNet can learn node features

that adhere to a given hierarchy of layers. In the brain example,

OhmNet learns the protein features that expose the multiscale tissue

hierarchy. Second, it shows that OhmNet can generate meaningful

visualizations of network embeddings despite the fact that

OhmNet’s objective is independent of the visualization task.

6 Conclusion

We presented OhmNet, an approach for unsupervised feature learn-

ing in multi-layer networks. We use OhmNet to learn state-of-the-

art task-independent protein features on a multi-layer network with

107 tissues. OhmNet models tissue interdependence up and down a

tissue hierarchy spanning dozens of biological scales. The learned

features achieve excellent accuracy on the cellular function predic-

tion task, allow us to transfer functions to unannotated tissues, and

provide insights into tissues.

There are several directions for future work. Our approach as-

sumes the dependencies between layers are given in the form of a

hierarchy. In several biological scenarios, the dependencies are given

in the form of a graph, and we hope to extend the approach to han-

dle graph-based dependencies. As the learned protein features are in-

dependent of any downstream task, it would be interesting to see

whether our approach performs equally well for gene–disease asso-

ciation prediction and disease pathway detection.

Funding

This research has been supported in part by NSF IIS-1149837, NIH BD2K

U54EB020405, DARPA SIMPLEX N66001 and Chan Zuckerberg Biohub.

Conflict of Interest: none declared.

A B C

Fig. 5. Visualization of the brain tissue-specific protein interaction networks. (A) The two-level brain tissue hierarchy as specified by the BRENDA Tissue Ontology

(Chang et al., 2014) and used in the case study in Section 5.3. Leaves of the hierarchy (in blue) represent nine brain tissues each of which is associated with a tis-

sue-specific protein interaction network. (B) Visualization of the brainstem-specific networks. The proteins are mapped to the 2D space using the t-SNE package

with learned features as input. Color of a node indicates the tissue of the protein. (C) Visualization of the brain-specific networks. The proteins are mapped and

colored using the same procedure as in B
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