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In multilevel populations, there are two types of population means of an out-
come variable ie, the average of all individual outcomes ignoring cluster mem-
bership and the average of cluster-specific means. To estimate the first mean,
individuals can be sampled directly with simple random sampling or with
two-stage sampling (TSS), that is, sampling clusters first, and then individuals
within the sampled clusters. When cluster size varies in the population, three
TSS schemes can be considered, ie, sampling clusters with probability propor-
tional to cluster size and then sampling the same number of individuals per
cluster; sampling clusters with equal probability and then sampling the same
percentage of individuals per cluster; and sampling clusters with equal proba-
bility and then sampling the same number of individuals per cluster. Unbiased
estimation of the average of all individual outcomes is discussed under each sam-
pling scheme assuming cluster size to be informative. Furthermore, the three
TSS schemes are compared in terms of efficiency with each other and with
simple random sampling under the constraint of a fixed total sample size. The
relative efficiency of the sampling schemes is shown to vary across different
cluster size distributions. However, sampling clusters with probability propor-
tional to size is the most efficient TSS scheme for many cluster size distributions.
Model-based and design-based inference are compared and are shown to give
similar results. The results are applied to the distribution of high school size in
Italy and the distribution of patient list size for general practices in England.
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1 INTRODUCTION

Hierarchical or multilevel populations arise when individuals or micro-units are nested within clusters or macro-units.1,2

Considering, for the sake of simplicity, only populations with two levels of nesting, examples include patients clustered
in general practices, elderly people nested in nursing homes, and students grouped in schools. In these populations, the
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overall mean of an outcome variable (eg, cholesterol level, blood pressure, body mass index) can be defined in two ways,
ie, as the mean of all individuals in the population ignoring cluster membership (ie, first, pooling all patients from all
clusters in the population, and then computing the average cholesterol level); or as the mean of all cluster-specific means
(ie, first, computing the mean cholesterol level within each cluster, and then averaging all the cluster-specific means).
These two definitions coincide only under special conditions, as will be seen later, but this paper focuses on the first
definition only. Related to these two definitions is the concept of informative cluster size.

When clusters vary in size in the population (eg, small versus large general practices), cluster sizes can be seen as real-
izations of a random variable,3 and the outcome variable of interest may be related to cluster size (eg, surgeons operating
on many patients might have better performances than those operating on fewer patients4). If this is the case, then cluster
size is said to be informative.5 Nevalainen et al6 describe and give practical examples of three data-generating mechanisms
that can lead to informative cluster size. Briefly, a latent variable (eg, the competence of the surgeon) influences cluster
size (eg, the number of patients) and the outcome variable (eg, success of the operation) at the same time; or cluster size
affects the outcome variable (eg, surgeons become better by practice); or vice versa, the outcome variable affects cluster
size (eg, better surgeons get more referrals). In relation, Seaman et al5 point out that the standard methods to analyze clus-
tered data, namely, generalized linear mixed models (GLMMs) and generalized estimating equations (GEEs), implicitly
assume that cluster size is unrelated to the outcome variable, and discuss different methods to handle informative cluster
size for cluster-specific inference with GLMM and population-average inference with GEE.

The topic of this paper is the unbiased and efficient estimation of the population mean in the presence of informative
cluster size. To estimate the population mean, individuals can be sampled either with simple random sampling (SRS),
that is, directly from the population, or with two-stage sampling (TSS), that is, sampling first clusters and then individuals
within the sampled clusters.7-9 Given cluster size variation in the population, at least three alternative TSS schemes can
be considered.

1. Sampling clusters with probability proportional to cluster size and then sampling the same number of individuals
from each sampled cluster.

2. Sampling clusters with equal probability and then sampling per sampled cluster a number of individuals proportional
to cluster size.

3. Sampling clusters with equal probability and then sampling the same number of individuals per cluster.

In order to evaluate each sampling scheme in terms of unbiasedness and efficiency of mean estimation, it is useful to
distinguish two approaches to inference in survey sampling literature10: the design-based paradigm7-9 and the model-based
approach.11-13 In the design-based approach, the outcome value for each unit (eg, patient) in the population is assumed to
be a fixed unknown quantity. The random variable is then the inclusion indicator, that is, the variable that states whether or
not a unit is included into the sample. Thus, inference is based on the distribution of the inclusion indicator over repeated
samples with a probability sampling design. In contrast, the model-based approach assumes that the outcome value in
the real finite population is a realization of a stochastic model, representing a hypothetical infinite population. Inference
is then based on the probabilistic model. As long as the assumptions of the model are met, model-based inference can
then ignore the sampling scheme and condition on the observed sample.8,10,12,13 However, if the model residuals (ie, the
stochastic part) are correlated with the variables which determine the sampling probabilities (and then with the sampling
probabilities themselves), the sampling design is said to be informative.2(p222),10,13-16 When this is the case, model-based
analysis is biased, unless the sampling design is taken into account.2(p237) In the multilevel modeling literature, many
authors have investigated unbiased estimation when TSS with unequal sampling probabilities is informative, but they
assumed noninformative cluster size.16-20 In this paper, this sampling scheme is informative due to the cluster size being
informative.

In this paper, cluster size is treated as a random variable and assumed to be informative, but the special case of non-
informative cluster size will also be covered briefly. Furthermore, a simple hierarchical linear model,1,2 for the outcome
variable in the population, is assumed and used to define the parameter of interest (ie, the population mean). We thus
adopt a model-based approach but will also make a comparison with design-based inference. It will be shown that the type
of analysis (ie, unweighted versus weighted analysis) needed for unbiased estimation of the population mean depends
on the chosen sampling scheme. Furthermore, the three aforementioned TSS schemes will be compared with each other
and with SRS in terms of their efficiency under the constraint of a fixed total sample size. It will also be shown that their
relative efficiencies depend on the cluster size distribution.

The rest of this paper is organized as follows. In Section 2, the assumptions on which our findings are based and the
considered sampling schemes are presented in more detail. In Section 3, the population mean is derived under a linear
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mixed model for a two-level hierarchical population with varying and informative cluster size. Furthermore, Section 3
deals with the estimation of the population mean under different sampling schemes, presenting both the expectation
and sampling variance of the estimator under each scheme. In Section 4, the three TSS schemes are compared with each
other and with SRS in terms of efficiency for a given total sample size (number of individuals). In Section 5, the relative
efficiencies of the three TSS schemes are derived under the design-based approach and compared with those obtained
under the model-based framework. The results of this paper are applied in Section 6 to two real populations, ie, high
schools in Italy and general practices in England. Some final remarks are offered in Section 7. The online Supplementary
Material contains part of the derivations of the equations given in this paper as well as additional tables and figures.

2 ASSUMPTIONS AND SAMPLING SCHEMES

The structure of the data is hierarchical with two levels of nesting (eg, pupils are nested within schools, patients within
general practitioners (GPs)). The results of this paper are based on the following assumptions (the notation is summarized
in Table A1 in Appendix A).

Assumption 1. The population is composed of K clusters (eg, schools, GPs) and each cluster j contains Nj individuals
(eg, students, patients), that is, clusters are allowed to have different sizes. The total number of individuals in the
population (ie, the population size) is Npop =

∑K
𝑗=1 N𝑗 .

Assumption 2. Sampling is either SRS of individuals in one stage, or else TSS. In TSS, we first sample k clusters, and
then sample n or nj individuals from each sampled cluster j. In case of TSS, the population is very large relative to the

sample size at each design level, that is, k
K
→ 0 and n

𝜃N
→ 0, where n =

∑k
𝑗=1 n𝑗

k
is the average number of individuals

sampled per sampled cluster and 𝜃N = Npop

K
is the mean cluster size in the population. In case of SRS, Npop is very large

relative to m, the number of individuals sampled (ie, m
Npop

→ 0).

Assumption 3. The outcome variable Yij is quantitative (eg, cholesterol level) and measured at the individual (eg,
patient) level. Furthermore, Yij shows variation at the cluster level as well as at the individual level. Therefore, sam-
pling error occurs at each design level. This is taken into account by assuming the following two-level random intercept
model for the outcome of the ith individual from the jth cluster:

𝑦i𝑗 = 𝛽0 + u𝑗 + 𝜀i𝑗 , (1)

where u𝑗|N𝑗 ∼ N(0, 𝜎2
𝜈 ), 𝜀i𝑗 ∼ N(0, 𝜎2

𝜀 ), uj ⟂ 𝜀ij, and 𝜎2
𝜈 will be defined in the next assumption. Note that multilevel

models, such as Equation (1), are not only a standard procedure for modeling hierarchical populations1,2 but also a
natural way for taking into account the clustering induced by TSS in a model-based approach.*

Assumption 4. The cluster effect uj is allowed to be linearly related to the size of the cluster in the population Nj,
that is, u𝑗 = 𝛼 + 𝛾N𝑗 + 𝜈𝑗 = 𝛾(N𝑗 − 𝜃N) + 𝜈𝑗 , where 𝛼 = −𝛾𝜃N for model identifiability, 𝜈𝑗 ∼ N(0, 𝜎2

𝜈 ), and 𝜈j ⟂ Nj.

In order to deal with cluster size variation and informative cluster size in estimating the population mean (ie, the
average of all individual outcomes), three competing TSS schemes are considered, which will be compared with SRS of
individuals and with each other, under the constraint that all sampling schemes have the same total sample size.

Two-Stage Sampling 1 (TSS1):
Stage 1: Sample k clusters with probability proportional to cluster size Nj, that is, N𝑗∑K

𝑗=1 N𝑗

, is the probability of cluster j

being sampled if one cluster is randomly sampled, and so the inclusion probability for the jth cluster, that is, the probability

that cluster j is sampled given a total of k sampled clusters, is 𝜋𝑗 = 1−
(

1 − N𝑗∑K
𝑗=1 N𝑗

)k

.9(p51) If N𝑗∑K
𝑗=1 N𝑗

→ 0, ∀𝑗 = 1, … ,K,

then 𝜋𝑗 ≈
kN𝑗∑K
𝑗=1 N𝑗

; this approximation will be used.

Stage 2: Sample the same number of individuals n per cluster, so that 𝜋i|𝑗 = n
N𝑗

, where 𝜋i|j denotes the probability of
including the ith individual from cluster j in the sample, given that, at the first stage, the jth cluster is sampled.

*See other works.1(pp212,213),2(pp218,223),8(pp200,262-264),10,11(p256),12(p65),13,21,22
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Note that, under this sampling scheme, all individuals have the same unconditional probability of selection, that is,
𝜋i𝑗 = 𝜋𝑗𝜋i|𝑗 ≈ kN𝑗∑K

𝑗=1 N𝑗

n
N𝑗

= nk
Npop

. A potential drawback of TSS1 is that we must know the sizes of all clusters in the population

to draw the k clusters for the sample.
Two-Stage Sampling 2 (TSS2):
Stage 1: Sample k clusters with SRS, that is, 𝜋𝑗 = k

K
, ∀𝑗 = 1, … ,K.

Stage 2: Sample the same percentage of individuals per cluster p, that is, the number of individuals sampled per cluster
(ie, nj) is proportional to the cluster size in the population (ie, Nj), and so 𝜋i|𝑗 = n𝑗

N𝑗

= p ∀i = 1, … ,N𝑗 and ∀j =
1, … ,K. Under this sampling scheme, the unconditional probability of being included into the sample is the same for all
individuals, that is, 𝜋i𝑗 = 𝜋𝑗𝜋i|𝑗 = k

K
n𝑗

N𝑗

= k
K

p. In contrast to what was the case for TSS1, we now need to know only the
cluster sizes for the sampled clusters before sampling individuals from those sampled clusters.

Two-Stage Sampling 3 (TSS3):
Stage 1: Sample k clusters with SRS, that is, 𝜋𝑗 = k

K
, ∀𝑗 = 1, … ,K.

Stage 2: Sample the same number of individuals n per cluster, then 𝜋i|𝑗 = n
N𝑗

.

The unconditional sample inclusion probability of the ith individual in the jth cluster is 𝜋i𝑗 = 𝜋𝑗𝜋i|𝑗 = k
K

n
N𝑗

. Thus,
individuals from different clusters have a different probability to be drawn from their cluster (the larger Nj, the smaller
this probability). This has consequences for the data analysis as will be seen in the next section.

As a final remark on this section, note that the three TSS schemes considered here can be seen as three particular cases
of a larger family of alternative TSS schemes. At the first stage, a more general expression for 𝜋j is 𝜋𝑗 =

kX𝑗∑K
𝑗=1 X𝑗

, where Xj is

an arbitrary auxiliary variable available before sampling. At the second stage, a general form for 𝜋i|j is 𝜋i|𝑗 = n𝑗Zi𝑗∑N𝑗

i=1 Zi𝑗
, where

Zij is an auxiliary variable for individuals prior of sampling. Thus, TSS1 follows by imposing Xj = Nj, Zij = 1, and nj = n.
Instead, TSS2 results from Xj = 1, Zij = 1, and nj = pNj, whereas TSS3 is obtained with Xj = 1, Zij = 1, and nj = n.

3 DEFINITION AND ESTIMATION OF THE POPULATION MEAN 𝝁

To find the population mean E(Yi𝑗) and variance V(Yi𝑗), defined from model (1) as the marginal expectation and variance
of Yij over cluster effect uj and individual effect 𝜀ij, the marginal expectation and variance of cluster effect uj (ie, E(u𝑗)
and V(u𝑗), respectively) are needed. If cluster size is noninformative (ie, 𝛾 = 0 in Assumption 4), then E(u𝑗) = 0 and
V(u𝑗) = 𝜎2

𝜈 leading to E(Yi𝑗) = 𝛽0 and V(Yi𝑗) = 𝜎2
𝑦 = 𝜎2

𝜈 + 𝜎2
𝜀 . In contrast, if cluster size is informative (ie, 𝛾 ≠ 0 in

Assumption 4), E(u𝑗) = 0 or E(u𝑗) ≠ 0 depending on the sampling scheme. To prevent misunderstanding, note that the
cluster effect uj in the population does not depend on the sampling design, and its marginal distribution in the population
is 𝑓 (u𝑗) = ∫ 𝑓 (u𝑗|N𝑗)𝑓 (N𝑗)dN𝑗 (where f (.) indicates a probability density function). Nevertheless, the sampling design
determines the cluster effect sampling distribution, which is, for a sample of size one, equal to ∫ 𝑓 (u𝑗|N𝑗)𝑓 (N𝑗)dN𝑗 if clus-
ters are sampled with equal probabilities, and equal to ∫

(
N𝑗

𝜃N

)
𝑓 (u𝑗|N𝑗)𝑓 (N𝑗)dN𝑗 , if clusters are sampled with probabilities

proportional to their size.
Under TSS2 or TSS3, the k clusters are sampled with equal probabilities from the population of K clusters, and then

(for proofs, see Appendix A)
(a) ETSS2/TSS3(u𝑗) = 0, and (b) VTSS2/TSS3(u𝑗) = 𝜎2

𝜈 + 𝛾2𝜎2
N = 𝜎2

u. (2)

Note that 𝛾2𝜎2
N is the component of VTSS2∕TSS3(u𝑗) explained by Nj, and 𝜎2

𝜈 is the unexplained variance of uj. Hence, the
following expression for E(Yi𝑗) comes from model (1) and Equation (2a):

ETSS2/TSS3(Yi𝑗) = 𝛽0, (3)

which can be interpreted as the expected outcome for an arbitrary individual (ie, E(𝜀i𝑗) = 0) from an arbitrary cluster (ie,
E(u𝑗) = 0). To estimate 𝛽0 unbiasedly, large and small clusters should be weighted equally, both in the sampling scheme
and in the estimator (see Appendix B). However, 𝛽0 is not the parameter of interest in this paper.

Under SRS m individuals are sampled directly from the population of Npop =
∑K

𝑗=1 N𝑗 individuals and with equal
probabilities (ie, 𝜋i = m

Npop
, ∀i = 1, … ,Npop). Now, the probability that a selected individual belongs to a cluster of size

Nj is proportional to cluster size, meaning that large clusters have higher chance of being represented in the SRS sample.
Hence, under SRS, kSRS clusters are indirectly sampled from the population with sampling probability proportional to
size, and kSRS can run from 1 to m. Likewise, under TSS1 k clusters are sampled with probabilities proportional to their
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size, and so large clusters are more likely to be drawn. Therefore, under SRS and TSS1, the marginal expectation and
variance of cluster effect uj are (for proofs, see Appendix A)

(a) ESRS/TSS1(u𝑗) = 𝛾𝜃N𝜏
2
N , and (b) VSRS/TSS1(u𝑗) = 𝜎2

𝜈 + 𝛾2𝜎2
N [𝜏N (𝜁N − 𝜏N) + 1] , (4)

where 𝜏N = 𝜎N
𝜃N

and 𝜁N = E[(N𝑗−𝜃N )3]
𝜎3

N
are the coefficient of variation and the skewness of cluster size distribution in the

population, respectively. Note that VSRS∕TSS1(u𝑗) = VTSS2∕TSS3(u𝑗) if one of the following conditions holds: (i) 𝜏N = 0 (ie,
no cluster size variation), (ii) 𝛾 = 0 (ie, cluster size is noninformative), or (iii) 𝜁N = 𝜏N (eg, Nj is Poisson distributed, see
Table S.M.1 in the Supplementary Material). Likewise, ESRS∕TSS1(u𝑗) = ETSS2∕TSS3(u𝑗) if either condition (i) or (ii) holds.
Thus, from model (1) and Equation (4a), the population mean that we here want to estimate as follows:

ESRS/TSS1(Yi𝑗) = 𝛽0 + 𝛾𝜃N𝜏
2
N = 𝜇. (5)

This mean can be interpreted as the expected outcome for an individual randomly sampled from the population ignoring
cluster membership by SRS. Note that the two definitions of E(Yi𝑗) in Equations (3) and (5) coincide if either clusters have
the same size in the population (ie, 𝜏N = 0) or cluster size is not related to the outcome (ie, 𝛾 = 0). Given the focus of
this paper on 𝜇, model (1) can be rewritten from Equation (5) as follows:

𝑦i𝑗 = 𝜇 + b𝑗 + 𝜀i𝑗 , (6)

where b𝑗 = u𝑗 − 𝛾𝜃N𝜏
2
N = u𝑗 − ESRS∕TSS1(u𝑗) (see Equation (4a)) with ESRS∕TSS1(b𝑗) = 0 and VSRS∕TSS1(b𝑗) = VSRS∕TSS1(u𝑗)

(see Equation (4b)).
To estimate 𝜇 unbiasedly, the weight of a cluster should be proportional to its size, either in the sampling scheme or

in the estimator (for details, see Appendices A and B). For each sampling scheme, the first row of Table 1 presents the
unbiased or approximately unbiased (ie, for k sufficiently large) estimator of 𝜇 under model (6), the second and third
row present the conditional expectation and variance of �̂�, the fourth row gives the marginal expectation of �̂�, and the
last two rows show the two components of the marginal variance of �̂� (ie, Var (�̂�) = E (V (�̂�|N∗)) + V (E (�̂�|N∗)), where
N∗ = N = (N1, … ,Nk)T under TSS and N∗ = NSRS = (N1, … ,NkSRS)

T under SRS) (for proofs, see Appendix B). As the first
row of Table 1 shows, the estimator of 𝜇 is a weighted sum of cluster means in each sampling scheme, but the weights
differ between schemes. Under SRS kSRS clusters are indirectly sampled from the population and large clusters have higher
chance of being sampled, thus the unweighted estimator is unbiased for 𝜇 (recall that from Assumption 2, m

Npop
→ 0,

which implies that kSRS → m). Under TSS1 clusters are sampled with probabilities proportional to their size, and so 𝜇 is
estimated unbiasedly by the unweighted average of cluster means. Under TSS3 and TSS2 cluster means must be weighted
by cluster size (ie, Nj in TSS3, and also in TSS2 because nj = pNj) in the analysis, because clusters are weighted equally
by these sampling designs, that is, all clusters have equal sampling probability (for details, see Appendix B). An exception
to this is the special case of noninformative cluster size (ie, 𝛾 = 0), in which the two definitions of population means
coincide (ie, 𝜇 = 𝛽0). It then follows that E(u𝑗) = 0 for any sampling scheme (see Appendix A), and from model (1), then

results that E(�̄�𝑗) = 𝛽0. Thus, any estimator of 𝜇 = 𝛽0 of the form �̂� =
∑k

𝑗=1 w𝑗 �̄�𝑗∑k
𝑗=1 w𝑗

is unbiased then, although some weights

wj are more efficient than others.23,24

4 RELATIVE EFFICIENCIES OF TSS SCHEMES VERSUS SRS AND
EACH OTHER

Under the constraint of a fixed total sample size (ie, m = nk), the efficiency of the three TSS schemes can be investigated
by computing their relative efficiencies, defined as the ratio of the sampling variances of �̂� under two competing sampling
schemes (ie, the variances obtained as the sum of the last two rows of Table 1). For instance, the relative efficiency of TSS1
versus SRS is defined as the ratio of V (�̂�) for SRS to V (�̂�) for TSS1 (ie, RE (TSS1 vs SRS) = V (�̂�SRS) ∕V (�̂�TSS1)). The relative
efficiencies are given in Table 2 (for proof, see section 2 of the Supplementary Material), whereas the relative efficiency
of TSS2 versus TSS1 is plotted in Figure 1. As shown by Table 2, the numerator and denominator of the relative efficiency
are both a weighted sum of two components, respectively E(V(�̂�|N)) and V(E(�̂�|N)) from last two rows of Table 1, with
weights determined by the correlation between cluster effect and cluster size corr(u𝑗 ,N𝑗). The component E(V(�̂�|N))with
weight (1−corr(u𝑗 ,N𝑗)2) depends on the intraclass correlation 𝜌 = 𝜎2

𝜈

𝜎2
𝜈
+𝜎2

𝜀

, the coefficient of variation of cluster size 𝜏N, and
the average number of individuals sampled per cluster n. The other component, ie, V(E(�̂�|N)), weighted by corr(u𝑗 ,N𝑗)2,
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TABLE 2 Relative efficiencies of two-stage sampling (TSS) schemes versus simple random sampling (SRS)
and each othera

RE (TSS1 vs SRS)
(

1−corr(u𝑗 ,N𝑗)2
)
+corr(u𝑗 ,N𝑗)2

𝜌[𝜏N(𝜁N−𝜏N)+1](
1−corr(u𝑗 ,N𝑗)2

)
[1+(n−1)𝜌]+corr(u𝑗 ,N𝑗)2n𝜌[𝜏N(𝜁N−𝜏N)+1]

RE (TSS2 vs SRS)
(

1−corr(u𝑗 ,N𝑗)2
)
+corr(u𝑗 ,N𝑗)2

𝜌[𝜏N(𝜁N−𝜏N)+1](
1−corr(u𝑗 ,N𝑗)2

)[
1+

(
n
(

k(𝜏2
N +1)

𝜏2
N +k

)
−1

)
𝜌

]
+corr(u𝑗 ,N𝑗)2n𝜌

[(
k−1

k

)2
𝜏2

N

(
𝜂N−

k−3
k−1

+𝜏N(𝜏N−2𝜁N)
)
+2

(
k−1

k

)
𝜏N(𝜁N−𝜏N)+1

]

RE (TSS3 vs SRS)
(

1−corr(u𝑗 ,N𝑗)2
)
+corr(u𝑗 ,N𝑗)2

𝜌[𝜏N(𝜁N−𝜏N)+1](
1−corr(u𝑗 ,N𝑗)2

)( k(𝜏2
N +1)

𝜏2
N +k

)
[1+(n−1)𝜌]+corr(u𝑗 ,N𝑗)2n𝜌

[(
k−1

k

)2
𝜏2

N

(
𝜂N−

k−3
k−1

+𝜏N(𝜏N−2𝜁N)
)
+2

(
k−1

k

)
𝜏N(𝜁N−𝜏N)+1

]

RE (TSS2 vs TSS1)
(

1−corr(u𝑗 ,N𝑗)2
)
[1+(n−1)𝜌]+corr(u𝑗 ,N𝑗)2n𝜌[𝜏N(𝜁N−𝜏N)+1](

1−corr(u𝑗 ,N𝑗)2
)[

1+
(

n
(

k(𝜏2
N +1)

𝜏2
N +k

)
−1

)
𝜌

]
+corr(u𝑗 ,N𝑗)2n𝜌

[(
k−1

k

)2
𝜏2

N

(
𝜂N−

k−3
k−1

+𝜏N(𝜏N−2𝜁N)
)
+2

(
k−1

k

)
𝜏N(𝜁N−𝜏N)+1

]

RE (TSS3 vs TSS1)
(

1−corr(u𝑗 ,N𝑗)2
)
[1+(n−1)𝜌]+corr(u𝑗 ,N𝑗)2n𝜌[𝜏N(𝜁N−𝜏N)+1](

1−corr(u𝑗 ,N𝑗)2
)( k(𝜏2

N +1)
𝜏2
N +k

)
[1+(n−1)𝜌]+corr(u𝑗 ,N𝑗)2n𝜌

[(
k−1

k

)2
𝜏2

N

(
𝜂N−

k−3
k−1

+𝜏N(𝜏N−2𝜁N)
)
+2

(
k−1

k

)
𝜏N(𝜁N−𝜏N)+1

]

RE (TSS3 vs TSS2)

(
1−corr(u𝑗 ,N𝑗)2

)[
1+

(
n
(

k(𝜏2
N +1)

𝜏2
N +k

)
−1

)
𝜌

]
+corr(u𝑗 ,N𝑗)2n𝜌

[(
k−1

k

)2
𝜏2

N

(
𝜂N−

k−3
k−1

+𝜏N(𝜏N−2𝜁N)
)
+2

(
k−1

k

)
𝜏N(𝜁N−𝜏N)+1

]
(

1−corr(u𝑗 ,N𝑗)2
)( k(𝜏2

N +1)
𝜏2
N +k

)
[1+(n−1)𝜌]+corr(u𝑗 ,N𝑗)2n𝜌

[(
k−1

k

)2
𝜏2

N

(
𝜂N−

k−3
k−1

+𝜏N(𝜏N−2𝜁N)
)
+2

(
k−1

k

)
𝜏N(𝜁N−𝜏N)+1

]

aDerivations are given in section 2 of the Supplementary Material. Recall that 𝜌 is the intraclass correlation, defined as 𝜎2
𝜈

𝜎2
𝑦

∈

(0, 1), where 𝜎2
𝑦 = 𝜎2

𝜈 + 𝜎2
𝜀 is the total unexplained outcome variance.

Relative Efficiency of TSS2 versus TSS1 under the model-based approach

FIGURE 1 Model-based Relative Efficiency of TSS2 versus TSS1 for a given total sample size nk, as a function of the (absolute value of the)
correlation between cluster effect and cluster size (ie, corr (uj,Nj)), for different values of the average number of individuals sampled per
cluster (ie, n) and of the coefficient of variation of cluster size (ie, 𝜏N ) (curves), and different cluster size distributions (panels). The values of
the relative efficiency at corr(uj,Nj) = 0 and corr(uj,Nj) = 1 refer to 𝜔 and 𝜆, respectively
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is a function of the coefficient of variation 𝜏N, the skewness 𝜁N, and (for TSS2 and TSS3 only) the kurtosis 𝜂N of cluster
size distribution. Denote by 𝜔 the relative efficiency under noninformative cluster size (ie, RE = 𝜔 if corr(u𝑗 ,N𝑗) = 0),
and by 𝜆 the relative efficiency under a perfect linear relation between uj and Nj (ie, RE = 𝜆 if corr(u𝑗 ,N𝑗)2 = 1). These
two extremes can be derived directly from Table 2 and Figure 1, which plots the RE against corr(u𝑗 ,N𝑗). Therefore, the RE
moves from 𝜔 to 𝜆 as corr(uj,Nj) moves from zero to one. For small to moderate correlations (say, |corr(uj,Nj)| < 0.7),
𝜔 receives more weight in the relative efficiency. If 𝜔 and 𝜆 are both smaller than or equal to one, the relative efficiency
is also smaller than or equal to one. Now, the 𝜔's shown in Table 2 are all smaller than one, which entails the following
ordering of the sampling schemes in terms of efficiency based on 𝜔 (from most to least efficient): SRS, TSS1, TSS2, and
TSS3. Under a perfect linear relation between cluster effect and cluster size (ie, corr(uj,Nj)2 = 1), RE = 𝜆, and SRS is
more efficient than TSS1, whereas TSS2 and TSS3 are equally efficient. Furthermore, TSS1 is more efficient than TSS2
and TSS3 (ie, 𝜆 ≤ 1) if one of the following conditions is met (for proofs, see section 2 of the Supplementary Material): the
cluster size distribution is positively skewed (ie, 𝜁N > 0) with 𝜏N ∈ [0, 𝜁N], or is symmetric (ie, 𝜁N = 0) with 𝜏N ∈ [0, 1]

and k ∈

[
1, (2−𝜏2

N)+
√

2−𝜏2
N

(1−𝜏2
N)

]
, or is Normal. Thus, for any value of corr(uj,Nj), the ordering of the sampling schemes in

terms of efficiency based on V(�̂�) is (from most to least efficient) as follows: SRS, TSS1, TSS2, and TSS3. However, if none
of the aforementioned conditions is met, 𝜆 might be bigger than one and then, to see whether TSS1 is more efficient than
TSS2 and TSS3, the relative efficiency must be computed for the specific cluster size distribution.

Given that RE = 𝜔 if corr(uj,Nj) = 0 and 𝜔 has more weight than 𝜆 in the RE for |corr(uj,Nj)| < 0.7, it is useful to
have a closer look at the patterns of the 𝜔's shown in Table 2. First, the 𝜔 of any TSS scheme versus SRS is a decreasing
function of the intraclass correlation 𝜌, the average number of individuals sampled per cluster n̄, and (only for TSS2 and
TSS3) of the coefficient of variation of cluster size 𝜏N. Second, 𝜔(TSS2 vs TSS1), 𝜔(TSS3 vs TSS1), and 𝜔(TSS3 vs TSS2)
are decreasing functions of the coefficient of variation of cluster size 𝜏N. Third, as the intraclass correlation 𝜌 and/or the
average number of individuals sampled per cluster n̄ increase, TSS2 moves away from TSS1 and toward TSS3 in terms of
efficiency as expressed by 𝜔 (see Figure 2).

When the outcome variable is unrelated to the cluster size (ie, 𝛾 = 0 and so also corr(uj,Nj) = 0), the population mean

𝜇 is equal to 𝛽0, as shown in Section 3. In this special case, any estimator of 𝜇 of the form �̂� =
∑k

𝑗=1 w𝑗𝑦𝑗∑k
𝑗=1 w𝑗

is unbiased. How-

ever, some weights are more efficient than others. For TSS2, weighting cluster means by their inverse variance (ie, w𝑗 =

Var(𝑦𝑗)−1 =
(
𝜎2

u + 𝜎2
𝜀

n𝑗

)−1
, where 𝜎2

u = 𝜎2
𝜈 because 𝛾 = 0) is optimal, and unweighted analysis (ie, wj = 1) is more or less

efficient than cluster size weighting (ie, wj = pNj), depending on the intraclass correlation 𝜌 and the average cluster size in

the sample.3,23 The conditional variance of the optimal estimator is Var
( ∑k

𝑗=1 𝑦𝑗Var(𝑦𝑗)−1∑k
𝑗=1 Var(𝑦𝑗)−1

||||N
)

=
(∑k

𝑗=1
pN𝑗

pN𝑗𝜎
2
u+𝜎2

𝜀

)−1
.3, (eq.(6))

Under TSS1 and TSS3, the same number of individuals is sampled per cluster (ie, nj = n, ∀j = 1, … , k), so the estima-

tor with w𝑗 = Var(𝑦𝑗)−1 reduces to
∑k

𝑗=1 𝑦𝑗

k
. Thus, for TSS1 and TSS3, wj = 1 is optimal and its sampling variance is given

in the fifth row of the TSS1 column in Table 1 (for proof, see Appendix B or section 2.3 of the Supplementary Material),

Relative Efficiency of TSS3 versus TSS2 under the model-based approach and non-informative cluster size

FIGURE 2 Model-based Relative Efficiencies of TSS3 versus TSS2, for a given total sample size nk and noninformative cluster size
(ie, 𝛾 = 0), as a function of the coefficient of variation of cluster size (ie, 𝜏N ), for different values of the intraclass correlation (ie, 𝜌) (curves)
and for different average numbers of individuals sampled per cluster (ie, n) (panels)
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so TSS1 and TSS3 are equally efficient then, given equal weighting of cluster means, but TSS3 is more practical because,
unlike TSS1, it does not require the knowledge of all cluster sizes in the population. The optimal estimator of TSS2 is less

efficient than that of TSS3 and TSS1 (ie, RE
(∑k

𝑗=1 𝑦𝑗Var(𝑦𝑗)−1∑k
𝑗=1 Var(𝑦𝑗)−1 vs

∑k
𝑗=1 𝑦𝑗

k

)
≤ 1, for proof see section 2.3 of the Supplementary

Material). Therefore, TSS3 combined with
∑k

𝑗=1 𝑦𝑗

k
is the best strategy to estimate 𝜇 if cluster size is not informative. To pre-

vent misunderstanding, note that the ordering of sampling schemes in this last paragraph only holds if noninformative
cluster size is combined with optimal weighting of cluster means. Those weights differ from the ones in Table 1 first row,
on which Table 2 and Figures 1 and 2 are based, and which are needed for unbiased estimation of the population mean
if cluster size is informative.

5 DESIGN-BASED INFERENCE FOR TSS WHEN CLUSTER SIZE IS
INFORMATIVE

The aim of this section is to study the relative efficiencies of the three TSS schemes compared with SRS and with each
other under the design-based approach. It is important to emphasize that the inferential framework of this section is
different from the model-based approach adopted in the rest of this paper. So far, the outcome variable Yij and cluster size
Nj were both seen as random variables, and inference was based on the probability distribution of Yij given in model (1).
In contrast, in the design-based approach (ie, this section), the outcome variable Yij and cluster size Nj are fixed quantities,
the inclusion indicator is the only random variable (eg, for cluster j, it is defined as Ij = 1 if cluster j is included into the
sample, which occurs with probability 𝜋j, and Ij = 0 otherwise), and inference is based on the probability distribution
induced by the sampling scheme.

The notation of this section remains the same as before with the important distinction that all population quantities
here must be interpreted as relating to the finite population. Thus, the two types of population means can be expressed as

𝜇 =
∑K

𝑗=1 N𝑗Y 𝑗∑K
𝑗=1 N𝑗

and 𝛽0 =
∑K

𝑗=1 Y 𝑗

K
, respectively, where Y 𝑗 is the mean of all Nj individuals within cluster j. Furthermore, in the

population the outcome variable for the ith individual within the jth cluster can be decomposed (combining model (1)
with Assumption 4) as follows:

Yi𝑗 = 𝛽0 + 𝛾(N𝑗 − 𝜃N) + 𝜈𝑗 + 𝜀i𝑗 , (7)

where 𝜈j is the cluster effect with E(𝜈𝑗) =
∑K

𝑗=1 𝜈𝑗

K
= 0 and V(𝜈𝑗) =

∑K
𝑗=1 𝜈

2
𝑗

K
= 𝜎2

𝜈 , and 𝜈j ⟂ Nj, whereas 𝜀ij is the individual

effect with E(𝜀i𝑗) =
∑N𝑗

i=1 𝜀i𝑗

N𝑗

= 0, V(𝜀i𝑗) =
∑N𝑗

i=1 𝜀
2
i𝑗

N𝑗

= 𝜎2
𝜀 , and 𝜈j ⟂ 𝜀ij, which entails that Y 𝑗 here represents 𝛽0 + uj in

model (1). Note that, in this section, no distributional assumptions are made for Equation (7), all quantities (ie, Yij, Nj, 𝜈j,
and 𝜀ij) are just fixed constants, the only random variable is the inclusion indicator and its probability distribution is the
foundation of inference. From Equation (7), it follows that 𝜇 = 𝛽0 + 𝛾𝜃N𝜏

2
N , an expression that is similar to Equation (5)

but refers to the finite population (for proof, see section 3 of the Supplementary Material). Hence, under both inferential
paradigms, the two population means coincide (ie,𝜇 = 𝛽0) only if either there is no cluster size variation in the population
(ie, 𝜏N = 0), or cluster size is noninformative (ie, 𝛾 = 0).

For each sampling scheme, Table 3 shows in the first row the estimator of the population mean 𝜇, in the second row
the sampling variance of �̂� as available in the design-based literature,7-9,25 and in the third row again the sampling vari-
ance of �̂� but under the assumption that Equation (7) describes the outcome variable Yij in the population (for proofs, see
section 3 of the Supplementary Material). For large enough k (say, k ≥ 30), the model-based variances given in Table 1 are
equal to the design-based variances given in the third row of Table 3. Furthermore, the estimators of Table 3 are the same
as those of the model-based approach (ie, Table 1, first row). The estimators under SRS and TSS1 are unbiased,7(p308),8(p236)

whereas the estimator under TSS2 and TSS3, the so-called ratio estimator, is only approximately unbiased,8(p186),25(pp323,324)

and then the number of sampled clusters k is assumed to be large enough to neglect this bias. It is important to emphasize
that, under the design-based paradigm, the properties of an estimator (ie, approximate unbiasedness, variance as given
in the second row of Table 3) are based only on the sampling scheme.8(p147),9(p239) The assumption that the outcome vari-
able is described by Equation (7) (ie, Table 3, third row) is needed to allow a fair comparison with the results obtained
under the model-based approach. However, the assumption of a model, like Equation (7), to evaluate competing sampling
schemes is appropriate under the design-based framework, provided that inference is then based on the sampling scheme
only.7(p256),8(p205),26,27
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Similarly to Section 4, the relative efficiency of two competing sampling schemes is defined as the ratio of their vari-
ances (as given in the third row of Table 3). For large enough k (say, k ≥ 30), it turns out that these relative efficiencies
(given in Table S.M.2 and shown in Figures S.M.1-2 of the Supplementary Material) are approximately equal to those
shown in Table 2 because the variances in Table 1 and those in the third row of Table 3 are approximately equal. The
only distinction to be made is that corr(uj,Nj) is replaced with the correlation between cluster mean and cluster size
corr(Y 𝑗 ,N𝑗). Like in Section 4, numerator and denominator of the relative efficiency are both made up of two compo-
nents, weighted by corr(Y 𝑗 ,N𝑗)2 and (1 − corr(Y 𝑗 ,N𝑗)2), respectively, and only the component weighted by corr(Y 𝑗 ,N𝑗)2

depends on the skewness and kurtosis of the cluster size distribution. The extreme cases of the relative efficiency, namely,
under noninformative cluster size and a perfect relation between cluster mean and cluster size, are denoted by 𝜔 and 𝜆,
respectively. The patterns and the ordering of the relative efficiencies are then those of Section 4. Specifically, for any value
of corr(Y 𝑗 ,N𝑗), SRS is the most efficient sampling scheme, followed by TSS1 (under the conditions given in Section 4),
TSS2, and finally TSS3.

To conclude, even though the mathematical foundations of the two inferential approaches are different, in the consid-
ered setting, they yield almost the same results, ie, the population mean estimators are the same, as well as the relative
efficiencies, provided that k is large enough and Equation (7) holds in the population. An advantage of the design-based
approach is robustness because the unbiasedness and the variance of a design-based estimator do not depend on the
assumptions of a model. Nevertheless, the model-based approach has a practical advantage when designing a survey,
more specifically for choosing a sampling scheme and computing the sample size. The sampling variances in Table 1
(last two rows) and Table 3 (last row), and the relative efficiencies in Table 2, all based on Equation (7), can be obtained
by specifying the intraclass correlation 𝜌, the correlation corr(uj,Nj), and four parameters of cluster size distribution (ie,
𝜃N, 𝜏N, 𝜁N, and 𝜂N). In contrast, the sampling variances in Table 3 (second row) from the design-based approach require
the knowledge of cluster size Nj and cluster mean Y 𝑗 for all the K clusters in the population. If that information were
available, then the population mean 𝜇 would also be known, making the survey superfluous.

6 APPLICATION TO TWO REAL CLUSTER SIZE DISTRIBUTIONS

With the aim of planning a survey to estimate the population mean 𝜇 of a quantitative outcome variable Yij in a two-level
population, we want to establish whether TSS1 is more efficient than TSS2 for the population under study and assess its
efficiency gain relative to TSS2. The outcome variable Yij is assumed to be decomposed, as shown in Equation (7), but
the analysis is carried out for both the model-based and the design-based approach. Two real cluster size distributions
are considered, ie, the distribution of public high school size in Italy and the distribution of patient list size for general
practices in England.

School size and alcohol consumption. In adolescent health literature, it has been shown that greater connection
between students and school (eg, positive relations with teachers and peers, participation in school activities) is asso-
ciated with less emotional distress, substance consumption (eg, alcohol, cigarettes, marijuana), violence, and suicidal
intentions.28 Furthermore, it has been found that school connectedness and school size are inversely related,29,30 which
suggests that school size can be informative for health risk behaviors in adolescents. Suppose that we want to estimate
the average weekly alcohol consumption (in liters) among high school students in Italy. According to the Italian Min-
istry of Education,31 in the school year 2016/2017 in Italy, there were 6, 235 = K public high schools with a total of
2, 515, 060 = Npop students enrolled. The distribution of public high school size in Italy (with parameters 𝜃N = 403,
𝜏N = 0.912, 𝜁N = 1.256, and 𝜂N = 4.315) is plotted in Figure 3 (first column, first row). The first row of Figure 3
also shows the relative efficiency of TSS2 versus TSS1, for a sample of 50 = k schools and 20 = n students per
school, as a function of the (absolute value of the) correlation between school size and school specific-mean, for dif-
ferent values of the intraclass correlation, under the model-based (second column) and the design-based approach
(third column). As can be seen from Figure 3, under both inferential approaches TSS1 is more efficient than TSS2 and
allows a sizeable efficiency gain (about 15%) even for noninformative school size and a small intraclass correlation
(𝜌 = 0.01).

Patient list size for general practices and government expenditure on health. According to Eurostat,32 in 2016,
health was the second largest area of government expenditure in the United Kingdom with a share of 7.6% of the Gross
Domestic Product (GDP). Spending for hospital services represented the largest component of the government expendi-
ture on health, with a share of 5.7% of the GDP.32 In reducing such costs, general practices can play a role by effectively
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Relative Efficiency of TSS2 versus TSS1 for two real cluster size distributions

FIGURE 3 First column: Distribution of public high school size in Italy (first row), distribution of patient list size for general practices in
England (second row). Second column: Model-based Relative Efficiency of TSS2 versus TSS1, as a function of the (absolute value of the)
correlation between cluster effect and cluster size (ie, corr(uj,Nj)), for different values of the intraclass correlation coefficient 𝜌 (curves).
Third column: Design-based Relative Efficiency of TSS2 versus TSS1, as a function of the (absolute value of the) correlation between cluster
mean and cluster size (ie, corr(Y ,N𝑗 )), for different values of the intraclass correlation coefficient 𝜌 (curves). TSS1, two-stage sampling 1;
TSS2, two-stage sampling 2

treating those conditions, which can lead to avoidable hospitalisations (eg, influenza, diabetic complications). Kelly and
Stoye33 have found that small practices (defined as those with three or fewer full-time equivalent (FTE) practitioners) had
higher rates of hospitalizations for such preventable conditions in 2010/2011 in England. This suggests that patient list
size can be informative for government expenditure on health, given that patients per general practice were proportional
to the number of FTE practitioners (see figure 2.6 and table 2.3 in the work of Kelly and Stoye33). Suppose we want to
estimate the average per capita government expenditure on health in England. According to the Health and Social Care
Information Centre,34 in October 2017, 58, 719, 921 = Npop patients were registered at 7, 353 = K general practices in
England. The distribution of patient list size for general practices in England (with parameters 𝜃N = 7, 986, 𝜏N = 0.633,
𝜁N = 2.12, and 𝜂N = 14.549) is plotted in Figure 3 (first column, second row). The second row of Figure 3 shows the
relative efficiency of TSS2 versus TSS1, for a sample of 50 = k practices and 20 = n patients per practice, as a function
of the (absolute value of the) correlation between patient list size and general practice specific-mean, for different val-
ues of the intraclass correlation, under the model-based (second column) and the design-based approach (third column).
As shown in the second row of Figure 3, TSS1 is more efficient than TSS2 under both inferential paradigms and its effi-
ciency gain increases as the intraclass correlation and/or the correlation between patient list size and the general practice
specific-mean increase.
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To conclude, the two examples show that TSS2 leads to important efficiency losses relative to TSS1, and that, in planning
a survey, it is more practical to use variances based on a model, like those given in Table 1 or third row of Table 3, than
the design-based variances in the second row of Table 3, which require the prior knowledge of all cluster sizes Nj as well
as all cluster means Y 𝑗 in the population.

7 DISCUSSION

In multilevel populations, two types of overall means can be defined, ie, the mean of all individual outcomes in the
population ignoring cluster membership and the mean of all cluster-specific means. For unbiased estimation of the
first population mean, individuals can be sampled not only by SRS but also with three alternative TSS schemes, ie,
sampling clusters with probability proportional to cluster size and then taking a SRS of the same number of indi-
viduals within sampled clusters (ie, TSS1); drawing a SRS of clusters and then sampling the same percentage of
individuals per cluster (ie, TSS2); and taking a SRS of clusters and then of individuals within the sampled clusters
(ie, TSS3).

The results of this paper are the following. First, it was shown that the first population mean gives equal weight to all
individuals and thus more weight to large clusters than to small clusters, the second mean gives equal weight to all clusters
irrespective their size, and these two means coincide only if cluster size does not vary or is unrelated (ie, noninformative)
to the outcome variable of interest. Second, for estimation of the first population mean (ie, the average of all individual
outcomes), the unweighted average of cluster means is unbiased under TSS1, and weighting cluster means by cluster
size is asymptotically unbiased under TSS2 or TSS3. Third, it was shown that the relative efficiency of any TSS scheme
versus SRS is a decreasing function of the intraclass correlation, the average number of individuals sampled per cluster,
and (only for TSS2 and TSS3) of the coefficient of variation of cluster size. Furthermore, the relative efficiencies of TSS2
and TSS3 versus TSS1 and of TSS3 versus TSS2 are decreasing functions of the coefficient of variation of cluster size,
but the efficiency loss of TSS3 compared with TSS2 improves with an increase of the intraclass correlation and/or the
average number of individuals sampled per cluster. All relative efficiencies also depend on other features of the cluster
size distribution, in particular, on its skewness and (only for those involving TSS2 and TSS3) kurtosis. Nevertheless, SRS
is always the most efficient sampling scheme, followed (for many cluster size distributions) by TSS1, and then by TSS2,
which, in turn, is always more efficient than TSS3. With respect to choosing between the three TSS schemes, we do not
expect TSS1 to be less efficient than TSS2 in practice, and thus we recommend TSS1 provided all cluster sizes are known
before sampling. Fourth, it was shown that model-based and design-based inference in survey sampling yield almost the
same results, at least if the model assumptions are met.

Although design-based inference has the advantage of being robust against violations of the model assumptions, com-
paring the four sampling schemes in terms of their relative efficiencies, as well as sample size planning, can only be done
taking a model-based approach. Sample size planning within the design-based approach would require knowledge of the
size and outcome mean of all clusters in the population (see Table 3, second row), which, in turn, would imply that the
population mean is already known. Furthermore, models are also needed to deal with missing data and measurement
error.9

The results of this paper could be extended by (i) deriving the optimal design of these three TSS schemes under a cost
constraint and comparing their efficiencies under that constraint instead of the present constraint of a fixed total sample
size, (ii) investigating different variance estimation methods, (iii) considering binary outcome variables, and (iv) deriving
the optimal design for a scheme, which samples different numbers and percentages of individuals at the second stage,
that is, a sampling scheme in-between TSS2 and TSS3.
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APPENDIX A

DERIVATION OF THE POPULATION MEAN 𝝁

Assuming that uj = 𝛾(Nj − 𝜃N) + 𝜈j (ie, Assumption 4) and then plugging this equation into model (1) give

𝑦i𝑗 = 𝛽0 + 𝛾(N𝑗 − 𝜃N) + 𝜈𝑗 + 𝜀i𝑗 . (A1)

Now, before deriving the population mean 𝜇 under model (1) with informative cluster size as in (A1), we will first show
how the sampling scheme affects the sampling distribution of cluster size, which, in turn, influences the cluster effect
sampling distribution if cluster size is informative.

Denote by 𝑓 (N𝑗|𝜃N , 𝜎
2
N) the probability density function of cluster size Nj, where 𝜃N and 𝜎2

N are its mean and variance,
respectively, and by N = (N1, … ,Nk)T the vector of the cluster sizes of the k sampled clusters. Under TSS2 or TSS3, the
k clusters are sampled with equal probabilities from the population of K clusters, then

𝑓TSS2/TSS3(N𝑗) = 𝑓 (N𝑗), and 𝑓TSS2/TSS3(N1, … ,Nk) =
k∏

𝑗=1
𝑓 (N𝑗),

where the subscript of f∗(.) (here, TSS2/TSS3) indicates how the k clusters are drawn at the first stage (here, with equal
probabilities, ie, under TSS2 or TSS3). Thus, under TSS2 or TSS3, clusters are weighted equally in the cluster size sampling
distribution, and then integrating over that distribution gives

(a) ETSS2/TSS3(N𝑗) = 𝜃N , and (b) VTSS2/TSS3(N𝑗) = 𝜎2
N . (A2)

In contrast, under SRS m individuals are sampled directly from the population of Npop individuals. The probability that
a selected individual belongs to a cluster of size Nj is N𝑗𝑓 (N𝑗 )dN𝑗

∫ N𝑗𝑓 (N𝑗 )dN𝑗

and then, under SRS, kSRS clusters are indirectly sampled
from the population, where kSRS can run from 1 to m. Thus, large clusters have higher chance of being represented in
an SRS sample, as well as, in a TSS1 sample, because under both sampling schemes clusters are sampled (directly or
indirectly) with probabilities proportional to their size. Denote by k∗ the number of clusters sampled with an arbitrary
sampling scheme, then k∗ = kSRS under SRS and k∗ = k under any TSS scheme. Thus, under SRS or TSS1, we have that

𝑓SRS/TSS1(N𝑗) =
N𝑗𝑓 (N𝑗)dN𝑗

∫ N𝑗𝑓 (N𝑗)dN𝑗

, and 𝑓SRS/TSS1(N1, … ,Nk∗ ) =
k∗∏
𝑗=1

(
N𝑗𝑓 (N𝑗)dN𝑗

∫ N𝑗𝑓 (N𝑗)dN𝑗

)
,

and so each cluster of size Nj is weighted by the factor N𝑗

𝜃N
in the cluster size sampling distribution, which gives (for proofs,

see section 1 in the Supplementary Material)

(a) ESRS/TSS1(N𝑗) = ETSS2/TSS3(N𝑗)
(
𝜏2

N + 1
)
, and (b) VSRS/TSS1(N𝑗) = VTSS2/TSS3(N𝑗) [𝜏N(𝜁N − 𝜏N) + 1] , (A3)

https://doi.org/10.1002/sim.8070
https://doi.org/10.1002/sim.8070


1832 INNOCENTI ET AL.

TABLE A1 Notation

Population Sample

Number of clusters K k
Number of individuals within cluster j Nj nj or n
Number of individuals Npop =

∑K
𝑗=1 N𝑗 m = nk =

∑k
𝑗=1 n𝑗

Average cluster size 𝜃N N =
∑k

𝑗=1 N𝑗

k

Cluster size variance 𝜎2
N S2

N =
∑k

𝑗=1

(
N𝑗−N

)2

k

Coefficient of variation of cluster size 𝜏N = 𝜎N
𝜃N

CVN = SN

N

Skewness of cluster size distribution 𝜁N = E[(N𝑗−𝜃N )3]
𝜎3

N
-

Kurtosis of cluster size distribution 𝜂N = E[(N𝑗−𝜃N )4]
𝜎4

N
-

Correlation between cluster effect and cluster size corr (uj,Nj) -
Unexplained between-cluster variance 𝜎2

𝜈 -
Within-cluster variance 𝜎2

𝜀 -
Total unexplained outcome variance 𝜎2

𝑦 = 𝜎2
𝜈 + 𝜎2

𝜀 -

Intraclass correlation coefficient 𝜌 = 𝜎2
𝜈

𝜎2
𝑦

-

where 𝜏N = 𝜎N
𝜃N

and 𝜁N = E[(N𝑗−𝜃N )3]
𝜎3

N
are the coefficient of variation and the skewness of cluster size distribution in the

population, respectively.
Now, let us consider how the sampling distribution of the cluster effect uj is affected by the sampling distribution of

cluster size Nj. For all sampling schemes, the expectation and the variance of cluster effect uj conditional on Nj are

E(u𝑗|N𝑗) = E
(
𝛾(N𝑗 − 𝜃N) + 𝜈𝑗|N𝑗

)
= 𝛾(N𝑗 − 𝜃N) (A4a)

V(u𝑗|N𝑗) = V
(
𝛾(N𝑗 − 𝜃N) + 𝜈𝑗|N𝑗

)
= 𝜎2

𝜈 . (A4b)

In contrast, the marginal expectation (ie, E(uj) = E(E(uj|Nj))) and the marginal variance (ie, V(uj) = E(V(uj|Nj)) +
V(E(uj|Nj))) of uj are affected by the sampling scheme because they are obtained by integrating E(uj|Nj) and V(uj|Nj) over
the cluster size sampling distribution. Thus, if clusters are weighted equally in the cluster size sampling distribution (ie,
under TSS2 or TSS3), it follows from (A2) that

ETSS2/TSS3(u𝑗) = ETSS2/TSS3
(
𝛾(N𝑗 − 𝜃N)

)
= 0

VTSS2/TSS3(u𝑗) = ETSS2/TSS3
(
𝜎2
𝜈

)
+ VTSS2/TSS3

(
𝛾(N𝑗 − 𝜃N)

)
= 𝜎2

𝜈 + 𝛾2𝜎2
N = 𝜎2

u,

that is, Equations (2a) and (2b), respectively. In contrast, if each cluster of size Nj is weighted by the factor N𝑗

𝜃N
in the cluster

size sampling distribution (ie, under SRS or TSS1), it follows from (A3) that

ESRS/TSS1(u𝑗) = ESRS/TSS1
(
𝛾(N𝑗 − 𝜃N)

)
= 𝛾𝜃N𝜏

2
N

VSRS/TSS1(u𝑗) = ESRS/TSS1
(
𝜎2
𝜈

)
+ VSRS/TSS1

(
𝛾(N𝑗 − 𝜃N)

)
= 𝜎2

𝜈 + 𝛾2𝜎2
N
[
𝜏N(𝜁N − 𝜏N) + 1

]
,

that is, Equations (4a) and (4b), respectively. The two definitions of population means (ie, Equations (3) and (5)) now
follow from ETSS2/TSS3(uj) and ESRS/TSS1(uj), respectively, given model (1).

APPENDIX B

RESULTS OF TABLE 1

The following facts will be used in this appendix. First, N = (N1, … ,Nk)T denotes the vector of the cluster sizes of the
k clusters drawn with TSS, NSRS = (N1, … ,NkSRS)

T is the vector of the cluster sizes of the kSRS clusters indirectly sampled
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with SRS, whereas N∗ is used when the sampling scheme is not specified (ie, N∗ = N for TSS and N∗ = NSRS for SRS).

Second, note that the four estimators in the first row of Table 1 are all of the form �̂� =
∑k∗

𝑗=1 w𝑗𝑦𝑗∑k∗
𝑗=1 w𝑗

, where k∗ = k for the three

TSS schemes and k∗ = kSRS for SRS (recall that m
Npop

→ 0 (ie, Assumption 2), which entails that kSRS → m). Third, from

Equation (A1), we have that Y 𝑗 = 𝛽0 + 𝛾(N𝑗 − 𝜃N) + 𝜈𝑗 + 𝜀𝑗 .
Conditional expectations and unbiasedness.

The conditional expectation of any estimator in Table 1 has the form E(�̂�|N∗) =
∑k∗

𝑗=1 w𝑗E(𝑦𝑗 |N∗)∑k∗
𝑗=1 w𝑗

, where E(𝑦𝑗|N∗) =

𝛽0 + 𝛾(N𝑗 − 𝜃N). Thus, the second row of Table 1 follows E(�̂�TSS1|N) = 𝛽0 + 𝛾(N − 𝜃N) because wj = 1, where N =
∑k

𝑗=1 N𝑗

k
;

E(�̂�TSS3|N) = 𝛽0 + 𝛾(N(CV 2
N + 1) − 𝜃N) because wj = Nj and

∑k
𝑗=1 N2

𝑗∑k
𝑗=1 N𝑗

= S2
N+N

2

N
= N(CV 2

N + 1), where S2
N =

∑k
𝑗=1 (N𝑗−N)2

k
;

E(�̂�TSS2|N) = E(�̂�TSS3|N) because wj = nj = pNj; and E(�̂�SRS|NSRS) = 𝛽0 + 𝛾(NSRS − 𝜃N) because wj = 1, where NSRS =∑kSRS
𝑗=1 N𝑗

kSRS
. To prove the unbiasedness of the four estimators (fourth row of Table 1), we need to derive their marginal expec-

tation, that is, integrating the conditional expectation over the cluster size sampling distribution. Thus, Equation (A3a)
implies that �̂�TSS1 and �̂�SRS are unbiased because E(�̂�TSS1) = ETSS1(E(�̂�TSS1|N)) = 𝛽0+𝛾(ETSS1(N)−𝜃N) = 𝛽0+𝛾𝜃N𝜏

2
N = 𝜇 and

E(�̂�SRS) = ESRS(E(�̂�SRS|NSRS)) = 𝛽0 + 𝛾(ESRS(NSRS) − 𝜃N) = 𝛽0 + 𝛾𝜃N𝜏
2
N = 𝜇. In contrast, �̂�TSS3 and �̂�TSS2 are asymptotically

unbiased because E(�̂�TSS3) = E(�̂�TSS2) = ETSS3(E(�̂�TSS3|N)) = ETSS2(E(�̂�TSS2|N)) = 𝛽0 + 𝛾

(
ETSS2/TSS3

(
S2

N+N
2

N

)
− 𝜃N

)
≈

𝛽0 + 𝛾𝜃N

(
k−1

k

)
𝜏2

N ≈ 𝜇, where ETSS2/TSS3

(
S2

N+N
2

N

)
= E

(
S2

N+N
2

N

)
= E(N(CV 2

N + 1)) ≈ 𝜃N

((
k−1

k

)
𝜏2

N + 1
)

comes from

(i) E(S2
N) =

(
k−1

k

)
𝜎2

N and (ii) the multivariate version of the Delta Method.35(pp241-242) To better understand why the
unweighted average of cluster means is an unbiased estimator of 𝜇 under SRS and TSS1 but biased under TSS2 and TSS3,
note that (i) E

(∑k∗
𝑗=1

𝑦𝑗

k∗

|||N∗

)
= 𝛽0 + 𝛾(N∗ − 𝜃N) for any sampling scheme, and (ii) E(Nj) depends on the sampling scheme

(see Equations (A2a) and (A3a)), and so

ETSS2/TSS3

(
E

( k∑
𝑗=1

𝑦𝑗

k

||||||N

))
= 𝛽0 + 𝛾

(
ETSS2/TSS3(N) − 𝜃N

)
= 𝛽0 ≠ 𝜇.

This also points out that the unweighted average of cluster means is a biased estimator for 𝛽0 under SRS and TSS1 because
clusters are weighted proportionally to their size by the latter two sampling schemes.

Conditional variances.
The conditional variance of any estimator in Table 1 has the form V(�̂�|N∗) =

∑k∗
𝑗=1 w2

𝑗
V(𝑦𝑗 |N∗)

(
∑k∗

𝑗=1 w𝑗 )2
. Furthermore, note that

under TSS1 and TSS3 n individuals are sampled per cluster and so V(𝑦𝑗|N) = 𝜎2
𝜈 +

𝜎2
𝜀

n
, whereas under TSS2 nj individuals

are sampled per cluster, then V(𝑦𝑗|N) = 𝜎2
𝜈 + 𝜎2

𝜀

n𝑗

. Under SRS kSRS clusters are sampled indirectly from the population,
but given that kSRS → m (which follows from m

Npop
→ 0 in Assumption 2), we have that V(𝑦𝑗|NSRS) = 𝜎2

𝜈 + 𝜎2
𝜀 . Thus, the

third row of Table 1 follows V(�̂�TSS1|N) = n𝜎2
𝜈
+𝜎2

𝜀

nk
because wj = 1; V(�̂�TSS3|N) = n𝜎2

𝜈
+𝜎2

𝜀

nk
× (CV 2

N + 1) because wj = Nj

and
∑k

𝑗=1 N2
𝑗

(
∑k

𝑗=1 N𝑗 )2
= S2

N+N
2

kN
2 = (CV 2

N+1)
k

; V(�̂�TSS2|N) = pN(CV 2
N+1)𝜎2

𝜈
+𝜎2

𝜀

pNk
because wj = nj = pNj and

∑k
𝑗=1 n2

𝑗

(
∑k

𝑗=1 n𝑗 )2
=

∑k
𝑗=1 N2

𝑗

(
∑k

𝑗=1 N𝑗 )2
; and

V(�̂�SRS|NSRS) =
𝜎2
𝜈
+𝜎2

𝜀

m
because wj = 1.

Marginal variances.
Recall that the marginal variance is defined as V(�̂�) = E(V(�̂�|N∗)) + V(E(�̂�|N∗)). From Equation (A3b) follows

that V(�̂�TSS1) = ETSS1

(
n𝜎2

𝜈
+𝜎2

𝜀

nk

)
+ VTSS1(𝛽0 + 𝛾(N − 𝜃N)) = n𝜎2

𝜈
+𝜎2

𝜀

nk
+ 𝛾2 VTSS1(N)

k
= n𝜎2

𝜈
+𝜎2

𝜀

nk
+ 𝛾2 𝜎2

N [𝜏N (𝜁N−𝜏N )+1]
k

and that

V(�̂�SRS) = ESRS

(
𝜎2
𝜈
+𝜎2

𝜀

m

)
+ VSRS(𝛽0 + 𝛾(NSRS − 𝜃N)) = 𝜎2

𝜈
+𝜎2

𝜀

m
+ 𝛾2 VSRS(N)

m
= 𝜎2

𝜀
+𝜎2

𝜈
+𝛾2𝜎2

N [𝜏N (𝜁N−𝜏N )+1]
m

. The derivation of the
marginal variances of TSS3 and TSS2 requires more steps. The first component of V(�̂�) (fifth row of Table 1) for TSS3
and TSS2 are, respectively, E(V(�̂�TSS3|N)) = n𝜎2

𝜈
+𝜎2

𝜀

nk
× (E(CV 2

N) + 1) ≈
(

n𝜎2
𝜈
+𝜎2

𝜀

nk

)
×

(
k(𝜏2

N+1)
𝜏2

N+k

)
and E (V (�̂�TSS2|N)) =

(E(CV 2
N)+1)𝜎2

𝜈

k
+ 𝜎2

𝜀

pk
E
(

1
N

)
≈

p𝜃N

(
k(𝜏2

N+1)
𝜏2
N+k

)
𝜎2
𝜈
+𝜎2

𝜀

p𝜃N k
, where both E(CV 2

N) + 1 = E
(

S2
N

N
2

)
+ 1 ≈ E(S2

N)
E(N

2
)
+ 1 =

(
k−1

k

)
𝜎2

N

𝜎2
N
k
+𝜃2

N

+ 1 = k(𝜏2
N+1)

𝜏2
N+k
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and E
(

1
N

)
≈ 1

𝜃N
follow from the Delta Method.35(pp241-242) The second component of V (�̂�) (sixth row of Table 1) is

the same under TSS2 and TSS3 because E (�̂�TSS2|N) = E (�̂�TSS3|N) (see Table 1, second row), then V (E (�̂�TSS3|N)) =

V (E (�̂�TSS2|N)) = 𝛾2VTSS2/TSS3

(
S2

N+N
2

N

)
≈ 𝛾2 𝜎2

N
k

[(
k−1

k

)2
𝜏2

N

(
𝜂N − k−3

k−1
+ 𝜏N (𝜏N − 2𝜁N)

)
+ 2

(
k−1

k

)
𝜏N (𝜁N − 𝜏N) + 1

]
,

which is derived as follows. To apply the Delta Method, compute the first derivatives of g(S2
N ,N) = S2

N+N
2

N
at

(E(S2
N),E(N))T : 𝜕g(S2

N ,N)
𝜕S2

N

||||S2
N=

(
k−1

k

)
𝜎2

N ,N=𝜃N

= 1
𝜃N
,

𝜕g(S2
N ,N)

𝜕N

||||S2
N=

(
k−1

k

)
𝜎2

N ,N=𝜃N

= 1 −
(

k−1
k

)
𝜏2

N . Then, plug these derivatives

into equation (5.5.9) in the work of Casella and Berger,35(p242): Var(g(S2
N ,N)) ≈ 1

𝜃2
N

Var(S2
N) +

(
1 −

(
k−1

k

)
𝜏2

N

)2
Var(N) +

2 1
𝜃N

(
1 −

(
k−1

k

)
𝜏2

N

)
Cov(S2

N ,N). Finally, in the previous expression replace Var(S2
N), Var(N), and Cov(S2

N ,N) with

Var(S2
N) =

(
k−1

k

)2
Var

(∑k
𝑗=1 (N𝑗−N)2

k−1

)
=

(
k−1

k

)2
𝜎4

N
k

(
𝜂N − k−3

k−1

)
(Theorem 2, p229, in the work of Mood et al36), where

𝜂N = E
[(

N𝑗−𝜃N

𝜎N

)4
]

is the kurtosis of cluster size distribution, Var(N) = 𝜎2
N
k

and Cov(S2
N ,N) =

(
k−1

k

)
𝜎3

N𝜁N

k
.37
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