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ABSTRACT

The endangered marine gastropod, Lobatus gigas, is an important fishery resource in the
Caribbean region. Microbiological and parasitological research of this species have been
poorly addressed despite its role in ecological fitness, conservation status and prevention
of potential pathogenic infections. This study identified taxonomic groups associated
with orange colored protrusions in the muscle of queen conchs using histological
analysis, 454 pyrosequencing, and a combination of PCR amplification and automated
Sanger sequencing. The molecular approaches indicate that the etiological agent of the
muscle protrusions is a parasite belonging to the subclass Digenea. Additionally, the
scope of the molecular technique allowed the detection of bacterial and fungi clades in
the assignment analysis. This is the first evidence of a digenean infection in the muscle
of this valuable Caribbean resource.

Subjects Biodiversity, Genomics, Marine Biology, Parasitology
Keywords Microbiology, Parasitic infection, 454 pyrosequencing, Bioinformatics, Trematode

INTRODUCTION

The queen conch, Lobatus gigas, is an endangered marine gastropod of great socioeconomic,
cultural and ecological importance in the Caribbean region. This species was included in
Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna
and Flora (CITES) in 1992 and the Red List of the International Union for Conservation of
Nature (IUCN) in 1994. Despite these regulations, natural stocks of this species continue to
decline (Theile, 2001; Aldana, 2003), likely by the loss of breeding habitats and detrimental
human activities such as overfishing (Glazer ¢» Quintero, 1998; Aldana, 2003).

Compared with studies in basic biology (Randall, 1964), fisheries (Brownell ¢ Stevely,
1981; Theile, 2001; Prada et al., 2009), and genetics (Mitton, Berg Jr ¢ Orr, 1989; Tello-
Cetina, Rodriguez-Gil & Rodriguez-Romero, 2005; Zamora-Bustillos et al., 2011; Mdrquez et
al., 2013), parasitological and microbial studies of L. gigas are less explored (Acosta et al.,
2009; Aldana et al., 2011; Rodriguez, Hariharan & Nimrod, 2011; Pérez et al., 2014). So far,
only one parasitic infection, with Apicomplexa coccidian protozoon, has been reported
in L. gigas (Baqueiro et al., 2007; Aldana et al., 2009; Aldana et al., 2011; Gros, Frenkiel ¢
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Aldana, 2009; Volland et al., 2010). Similarly, only three published studies report the
association between L. gigas and bacteria of the family Vibrionaceae (Acosta et al., 2009),
the phyla Firmicutes, Proteobacteria, Actinobacteria (Pérez et al., 2014) as well as potential
bacterial pathogens (Rodriguez, Hariharan ¢ Nimrod, 2011). Two recent investigations
have also studied the symbiotic association of L. gigas with dinoflagellates of the genus
Symbiodinium (Banaszak, Ramos ¢ Goulet, 2013; Garcia Ramos ¢ Banaszak, 2014).

Moreover, an unknown etiological agent sporadically produces orange colored
protrusions in the muscle of L. gigas in the Colombian San Andres archipelago. However, it
remains to be elucidated whether such lesions are caused by different agents and posteriorly
colonized by pigment-producing microorganisms or digenean infections as found in
other marine gastropods. Specifically, the infections of Cercaria parvicaudata and Renicola
roscovita have been reported to produce orange/lemon colored sporocysts in different tissues
of Littorina snails (Stunkard, 1950; Galaktionov ¢ Skirnisson, 2000), whereas Renicola
thaidus has been found infecting Nucella lapillus (Galaktionov & Skirnisson, 2000). These
trematodes, C. parvicaudata, R. roscovita and R. thaidus are considered synonymous based
on morphological similarities and cercariae size parameters (Werding, 1969). Similarly,
lemon-cream to orange colored sporocysts are produced by the congeners Renicola sp.
“polychaetophila” and Renicola sp. “martini” in infections of the gonad and digestive
glands in Cerithidea californica (Hechinger ¢» Miura, 2014).

This work studied the presence of parasites, bacteria and fungi in orange colored
protrusions in the muscle of Colombian Caribbean queen conchs. This was achieved by
using histological analysis and molecular approaches based on 454 FLX and capillary
automated sequencing using an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems,
Foster City, CA, USA). This 454 FLX next-generation platform (Roche, Basel, Switzerland)
permits high-throughput identification of hundreds of samples at reasonable cost and
time consumption (Mardis, 2008). This approach allows functional analysis of sequencing
data sets for comparative analysis of microbiome diversity of orange colored protrusions
found in the muscle of L. gigas by using metagenomic taxonomical classifiers (Huson et al.,
2007; Huson et al., 2011). This information is required for queen conch conservation and
management strategies of potential pathogenic infections for human beings.

MATERIALS AND METHODS

Orange colored protrusions were taken from three pieces of frozen muscle from one
specimen of L. gigas processed for food trading in the Colombian Caribbean, San Andres
archipelago (between 12°-16°N and 78°-82°W). These samples were provided by the
Gobernacién del Archipiélago de San Andrés, Providencia y Santa Catalina, through the
scientific cooperation agreement #083/2012.

Since the etiological agent of these orange colored protrusions was unknown, we
used three approaches to elucidate the origin of these lesions: (1) histological analysis,
(2) 454 pyrosequencing of one whole genome shotgun library and (3) automated capillary
sequencing (Sanger) of PCR amplified products to confirm the results provided by the
metagenomic analysis. For histological analysis, samples from orange colored muscle
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were fixed in 10% neutral phosphate-buffered formalin. The samples were prepared for
histological examination by paraffin wax techniques and stained with hematoxylin and
eosin following standard protocols (Garcia del Moral, 1993; Prophet et al., 1995).

Due to scarcity of samples, the orange protrusions were pooled and ground with liquid
nitrogen to extract the genomic DNA using the commercial DNAeasy Blood & Tissue Kit
(Qiagen, Hilden, Germany), according to manufacturer recommendations. Sample pooling
was performed to obtain high-quantity and high-quality DNA required for the generation
of the genomic library. Purified DNA from the pooled sample was sequenced using the
454 Whole Genome Shotgun strategy according to standard protocols recommended by
454 GS FLX platform (Roche, Basel, Switzerland) at the Centro Nacional de Secuenciacién
Genodmica, Universidad de Antioquia (Margulies et al., 2005). The obtained raw reads were
end polished of low-quality regions with the toolkit PRINSEQ lite (Schmieder ¢ Edwards,
2011) and assembled using MIRA3 v3.4 software (Chevreux, Wetter & Suhai, 1999).

Classification of assembled contigs was carried out using the BLAST algorithm against
nucleotide and protein non-redundant databases of the NCBI with further computation of
the taxonomic position of the assembled dataset with MEGAN software v5.5.3 (Huson et
al., 2011). This metagenomic software uses a Lowest Common Ancestor-based algorithm
that assigns each contig to taxa such that the taxonomical level of the assigned taxon reflects
the level of conservation of the sequence (Huson et al., 2007). Then, species-specific and
widely conserved sequences were assigned to particular taxa as described by Huson et al.
(2007). The contigs were classified using a bit-score threshold of 50, retaining only those
hits that were within 10% of the best hit for a contig. Additionally, the E-value confidence
criterion was set at 1E-15, even though a threshold value of 1E-04 is considered a good
match (De Wit et al., 2012). Only contig alignment lengths above 100 nucleotides for
BLASTN comparison or 100 amino acids for BLASTX comparisons were included in the
assignment analysis. These analyses, comparing DNA or protein sequences, were carried
out independently.

Furthermore, protein analysis assignments were classified to the proper taxonomic level
according to Monzoorul Haque et al. (2009), who empirically proposes identity thresholds
for restricting the assignments. Alignments having identities in ranges of 61-65%, 56—60%,
51-55% and 41-50% were conservatively restricted in the level of family, order, class
and phylum, respectively. The identity threshold of 66-100% was used for restricting
the assignment of contigs to either species or genus or family levels. Additionally, the
taxonomic level within this identity range was distinguished by the difference between the
two alignment parameters, the percentage of identities and positives.

Moreover, a 1,000 bp fragment of the mitochondrial cytochrome c oxidase I gene was
amplified by PCR following conditions reported by Leung et al. (2009) and primers
described by Bowles et al. (1993) (JB3: 5'-TTTTTTGGGCATCCTGAGGTTTAT-3') and
Krdlovda-Hromadovd (2008) (trem.cox1l.rrnl: 5 AATCATGATGCAAAAGGTA-3'). This
sequence was used instead of ribosomal genes since the bioinformatic analysis indicated
a high enrichment of molluscan and some fungi ribosomal sequences, which limited the
amplification of the helminth sequences of 18S and 28S ribosomal genes (data not shown).
The cytochrome c oxidase I amplicon was sequenced by automated Sanger method using
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an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) and
compared by BLASTN against the NCBI nucleotide database to look for sequence matches
of reported organisms.

Finally, a Bayesian tree was constructed using the sequence obtained from orange colored
protrusions and published sequences of Platyhelminthes. Bayesian tree construction was
performed using MrBayes (MB) V3.2 (Ronquist et al., 2012) setting the GTR+I+G4
substitution model estimated by the software IQ-TREE, with 1,000,000 generations
sampled every 1,000 generations and the other analysis parameters as default values. The
convergence of the Markov Chain Monte Carlo iterations was assessed with the Potential
Scale Reduction Factor (PSRF = 1; Gelman ¢ Rubin, 1992) and the standard deviation of
split frequencies (0.001).

RESULTS

Assembly and metagenomic approach

The massive shotgun sequencing generated 515,368 reads with an average length of 279 bp
that were cleaned and then assembled using MIRA software into 5,180 contigs. Taxonomic
classification of the contigs was carried out using the software MEGAN. For this analysis,
all the contigs were compared with the NCBI’s non-redundant protein database using
the software BLASTX. With this strategy, 1,588 (30.7%) contigs were assigned to taxa
(Bacteria: 412; Eukaryota: 1,157; other: 19), 866 (16.7%) were unassigned and 2,726
(52.6%) presented no hits. As expected, the Eukaryota group was dominant due to the
origin of the sample. Furthermore, the group Gastropoda was frequently found in this
analysis (186 hits), although many sequences remained unclassified due to the poor
representation of these organisms in the public databases. Many bacterial sequences were
also identified; 19 were assigned to the fungi group and 22 sequences were assigned to the
Trematoda category. No viral or protozoa sequences were detected.

Following the MEGAN pipeline, with nucleotide comparisons using BLASTN and
the nt/nr database, results were poorly classified. One contig was assigned to the root,
462 (8.9%) to particular taxa (Bacteria: 267; Eukaryota: 191; other: 4), 32 (0.6%) were
unassigned and 4,685 (90.5%) had no hits. At the nucleotide level, most of the sequences
were left unclassified. This reflects the lack of sequences in the databases of closely related
organisms to the ones reported in this research.

Bacteria and fungi associated with orange colored protrusions

The ranges for the confidence criterion represented by the E-value, similarity and identity
for protein comparisons are shown in Table 1. Bacteria assignments included the class
Gammaproteobacteria and the phylum Firmicutes, which includes the orders Bacillales and
Lactobacillales (Fig. 1). Specifically, the class Gammaproteobacteria showed 322 assignments
for Psychrobacter, exhibiting hits to several types of proteins with strains of Psychrobacter
sp. (Fig. 1, Table 1). The identity criterion for Psychrobacter sp. ranged from 67% to 100%
(Table 1). Similarly, nucleotide sequences showed hits for different genomic regions of
Psychrobacter sp. strains and congeners, displaying identities ranging from 72% to 99%
and alignment lengths from 104 bp to 1,061 bp (Table 2).
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Table 1

Diversity content in bacteria and fungi clades found in a pooled sample of orange colored protrusions from L. gigas muscle using
translated contig sequences and the taxonomic classifier MEGAN.

Ranges
Contig Organism Gene E-value Positives  Identities  Length Assignment®
(%) (%) (aa)
8 Psychrobacter sp. binding protein, kinase, transporter, adap- 0.000E+-00; 96; 100 96; 100 113; 259 Species
tor, hypothetical proteins, membrane pro-  1.325E-30
tein, glycosylase
11 Psychrobacter sp. dehydrogenase, hypothetical proteins, 0.000E+00; 94; 100 90; 99 105; 306 Genus
catalase, cytoplasmic protein, propionase, 4.451E-73
transferase, chaperone, deaminase, mem-
brane protein
2 Psychrobacter sp. channel protein, hypothetical protein 1.189E-107; 77; 83 67;73 183; 242 Family
4.390E-77
2 Carnobacterium replication initiator, phosphorylase 5.120E-93; 99; 100 99; 100 135; 138 Species
jeotgali 4.347E-87
2 Carnobacterium hypothetical protein; integrase 2.691E-127; 1005 100 100; 100 109; 183 Species
sp.! 4.938E-58
1 Carnobacterium integrase 1.940E-61 86 80 129 Genus
sp.!
1 Carnobacterium hypothetical protein 2.200E-69 94 86 158 Family
sp.!
2 Lactobacillus hypothetical protein 2.022E-78; 73; 85 68; 81 166; 169 Genus
jensenii' 2.550E-60
1 Enterococcus fae- hypothetical protein 3.700E-45 68 44 172 Phylum
calis'
7 Brochothrix ther- kinase, transcriptional regulator, trans- 3.514E-162; 100; 100 100; 100 180; 248 Species
mosphacta® porter, ribosomal protein, reductase, hy- 9.715E-69
pothetical proteins
6 Brochothrix ther- dehydrogenase, hypothetical proteins, 1.918E-148;  76; 100 71; 99 120; 243 Genus
mosphacta® transposase, transferase 1.431E-53
1 Planococcus hypothetical protein 2.650E-55 90 80 106 Family
antarcticus®
1 Bacillus cytotoxi- synthetase 7.050E-164 83 71 223 Family
cus®
1 Lactococcus lactis replication protein 6.020E-91 81 62 164 Family
subsp. Lactis'
1 Staphylococcus hypothetical protein 2.050E-32 71 64 104 Family
aureus®
1 Fusarium oxyspo-  glutamine-rich protein 1.064E-16 56 41 243 Phylum
rum
1 Fusarium oxyspo-  glutamine-rich protein 2.900E-16 85 82 243 Genus
rum
1 Neurospora hypothetical protein 1.426E-58 92 90 107 Genus
tetrasperma
Notes.
2The assignments were classified to the taxonomic level according to Monzoorul Haque et al. (2009), ® Bacillales, ' Lactobacillales.
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Figure 1 Phylogenetic diversity of translated contigs from orange colored protrusions of Lobatus gigas computed by MEGAN. The nodes of the
cladogram represent the assigned taxa and the numbers indicate the relative abundance of assigned contigs.
Full-size &4 DOI: 10.7717/peer;j.4307/fig-1

On the other hand, 18 assignments for the order Lactobacillales (Fig. 1) showed hits
for diverse proteins exhibiting similarities and identities up to 100% for Carnobacterium
jeotgali and Carnobacterium sp. (Table 1). We also found hits for proteins of Lactobacillus
jensenii and Enterococcus faecalis displaying identities above 68% and 44%, respectively
(Table 1). Similarly, nucleotide analysis showed matches for genome regions and plasmids
of Carnobacterium sp., displaying identities above 82% (Table 2). Additionally, the single
hits for a plasmid and a genome fragment of Enterococcus casseliflavus and Enterococcus
faecalis exhibited identities of 81% and 73%, respectively (Table 2).

A total of 28 contigs were assigned to different Bacillales bacteria within the phylum
Firmicutes (Fig. 1); specifically, Brochothrix thermosphacta showed hits for several proteins
exhibiting identities up to 100% (Table 1). Planococcus antarcticus, Bacillus cytotoxicus,
Lactococcus lactis subsp. Lactis and Staphylococcus aureus showed identity ranges from 62%
to 80% (Table 1). Furthermore, the nucleotide analysis showed hits for diverse bacteria
belonging to genus Listeria, Bacillus and Paenibacillus (Table 2).

Only three out of 19 assignments to fungi clades satisfied the selection parameters; two
hits supported the taxonomical levels of phylum and genus for Fusarium oxysporum and
one hit classified to the genus taxonomical level for Neurospora tetrasperma (Table 1). In
addition, nucleotide analysis (Table 2) showed three assignments for Mrakia frigida (rRNA
genes, two hits) and Togninia minima (putative polyubiquitin protein mRNA, one hit).

A parasite associated with orange colored protrusions

The histological approach showed a tissue lesion characterized by the aggregation of
hemocytes (cells endowed with phagocytic and immune-related functions) inside isolated
foci surrounded by smooth muscle fibers and a basophilic tissue contiguous to a lamellated
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Table 2 Diversity content in bacteria and fungi clades found in a pooled sample of orange colored protrusions from L. gigas muscle using nu-
cleotide contig sequences and the taxonomic classifier MEGAN.

Ranges
Contig Organism Gene E-value Identities (%) Length (bp)
1 Psychrobacter sp. PRWF101 0.000E+00 98 993
1 Psychrobacter sp. gf 0.000E+4-00 99 815
6 Psychrobacter sp. p> gf 0.000E+00; 7.247E-59 90; 96 176; 679
1 Psychrobacter sp. gf 0.000E+4-00 88 1,162
7 Psychrobacter sp. p> gf 0.000E+00; 3.877E-131 80; 85 520;914
3 Psychrobacter sp. gf 4.648E-143; 2.430E-35 76579 288; 748
1 Psychrobacter cryohalolentis gf 0.000E+-00 93 1,047
3 Psychrobacter cryohalolentis p> gf 5.595E-138; 6.961E-40 92; 95 112; 352
4 Psychrobacter cryohalolentis gf 3.316E-153; 1.041E-103 83; 84 419; 537
3 Psychrobacter cryohalolentis gf 1.626E-92; 3.574E-74 75; 78 524; 700
1 Psychrobacter arcticus of 0.000E+-00 91 646
1 Psychrobacter arcticus gf 5.090E-120 94 307
1 Psychrobacter arcticus of 8.830E-47 91 148
11 Psychrobacter arcticus gf 0.000E+00; 3.900E—-148 81; 88 611; 1,061
11 Psychrobacter arcticus gf 0.000E+00; 6.195E-25 80; 89 104; 603
7 Psychrobacter arcticus gf 1.962E-172; 1.181E-24 72579 224; 978
1 Carnobacterium sp.! of 0.000E+00 94 2,422
1 Carnobacterium sp.! pWNCR9 0.000E4-00 92 1,466
1 Carnobacterium sp.. gf 0.000E+00 96 1,244
1 Carnobacterium sp.! gf 0.000E+-00 98 1,029
3 Carnobacterium sp.. p> gf 0.000E+00; 1.117E-155 95; 98 321; 624
6 Carnobacterium sp.l p> gf 0.000E+00; 8.843E-57 82; 88 264; 897
1 Enterococcus casseliflavus' pTnpA 4.680E-85 81 464
1 Enterococcus faecalis' of 3.310E-37 73 537
1 Listeria grayi® 23S rRNA 0.00E+00 90 1,263
1 Listeria welshimeri® 23S rRNA 1.150E-176 88 539
1 Listeria monocytogenes® gf 3.850E-103 74 902
1 Listeria innocua® gf 7.870E-109 76 754
1 Bacillus megaterium® gf 5.410E-170 78 908
1 Bacillus toyonensis® gf 1.430E-66 74 622
1 Bacillus cereus® of 2.570E-17 78 174
1 Paenibacillus larvae® pPL374 1.110E-170 100 335
1 Uncultured compost bacterium® 16S rRNA 0.000E+-00 99 436
1 Mrakia frigida 25S rRNA 0.000E+00 100 1,429
1 Mrakia frigida 18S rRNA 0.000E+4-00 99 1,793
1 Togninia minima protein mRNA 3.407E-28 90 3,261
Notes.
b Bacillales, ' Lactobacillales.
gf, genome fragment; p, plasmid; rRNA, ribosomal fragment.
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Figure 2 Histological sections of orange-colored protrusions in the muscle of Lobatus gigas. The le-
sions showed hemocytes stained purplish-blue and smooth muscle fibers pink-red in color. (A) Presence
of lamellated membrane (arrowhead) (40x). (B) Granulation process (arrowhead) (100x).

Full-size Gal DOI: 10.7717/peer;j.4307/fig-2

membrane (Fig. 2A). Additionally, some lesions exhibit interstitial immunocyte inclusions
with morphology similar to a granulation process (Fig. 2B). Although the histological
approach did not allow for detectection of key features for identification, the microscopic
images showed structures around 0.55 mm in diameter, which are compatible with
immature developmental stages of a trematode.

Furthermore, the metagenomic analysis assigned 22 contigs to the trematode parasites
clade. Specifically, these contigs had hits to an endonuclease-reverse transcriptase of
Schistosoma mansoni (17) and Schistosoma japonicum (4), showing identities above 46%
and 42%, respectively. Similarly, in the nucleotide analysis, seven contigs showed identities
above 71% for different regions of two chromosomes of S. mansoni (Table 3).

We successfully amplified and sequenced a 740 bp region that confirmed the presence of
trematode DNA in the L. gigas tissue (GenBank accession number KR092371). Moreover,
this sequence clustered in a basal position to the suborder Xiphidiata (Trematoda: Digenea),
which encompasses Renicola and Helicometrina genera (posterior probability: 0.98; Fig. 3).
Additionally, the BLASTN results showed hits for some members of Xiphidiata, such
as Helicometrina labrisomid (query coverage: 89%; identity: 77%), Renicola cerithidicola
(query coverage: 70%; identity: 78%), Synthesium pontoporiae (query coverage: 42%;
identity: 83%) and Haematoloechus sp. (query coverage: 39%; identity: 77%).

DISCUSSION

In this study, three approaches, including histological analysis, 454 pyrosequencing and
automated Sanger amplification of the cytochrome c oxidase I gene, were used to explore the
potential causal agent of orange colored protrusions in the muscle of L. gigas. Identification
by histology was limited since no characteristic structures were detected in the sample.
Also, several contigs had no hits for proteins (~52%) or nucleotide sequences (~90%),
indicating a lack of information on such sequences in reference databases. This explanation
is plausible since the current protein sequence reference databases cover only a small
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Table 3 Diversity content in the trematoda clade found in a pooled sample of orange colored protrusions from L. gigas muscle using contig se-
quences and the taxonomic classifier MEGAN.

Ranges
Contig  Organism Gene E-value Positives  Identities  Length Assignment *
(%) (%)

Translated contig sequences

2 Schistosoma japonicum endonuclease-reverse transcriptase 3.637E-61; 75; 76 64; 64 141; 165 Family
6.062E-42

2 Schistosoma japonicum endonuclease-reverse transcriptase 2.102E-122;  61;63 42; 43 262; 489 Phylum
1.995E-56

5 Schistosoma mansoni endonuclease-reverse transcriptase 3.147E-152;  77;81 61; 67 155; 345 Family
4.075E-45

5 Schistosoma mansoni endonuclease-reverse transcriptase 2.497E-172;  71;74 56; 59 204; 346 Order
2.424F-61

4 Schistosoma mansoni endonuclease-reverse transcriptase ~ 0.000E+00;  69; 70 52; 52 275;695  Class
9.203E-89

3 Schistosoma mansoni endonuclease-reverse transcriptase 1.343E-66; 65; 68 46; 50 193;262  Phylum
1.719E-51

Nucleotide contig sequences

1 Schistosoma mansoni chromosome fragment W 1.320E-20 80 80 161 -

5 Schistosoma mansoni chromosome fragments 1.640E-55; 71;73 71; 73 649; 763 =
7.006E-27

1 Schistosoma mansoni chromosome fragment 4 1.990E-19 77 77 199 -

Notes.
2The assignments were classified to the taxonomic level according to Monzoorul Haque et al. (2009).

fraction of the biodiversity believed to be present in the environment (Wi et al., 2009).
Despite these limitations, the alignment lengths of the contigs (>100 nucleotides or amino
acids) and the bit-scores (50) used in this research ensure a reasonable level of confidence
in the taxonomic assignments (Huson et al., 2007).

Bacteria and fungi associated with orange colored protrusions
The scope of the massive sequencing approach allowed the detection of some bacteria
previously reported as microbiota associated with L. gigas (Acosta et al., 2009; Pérez et
al., 2014), as well as new reports. For instance, Psychrobacter sp. was found in the L. gigas
muscle in both nucleotide and protein analyses (Tables 1 and 2). This outcome corroborates
previous studies that found Psychrobacter sp. in environmental (Acosta et al., 2009; Pérez et
al., 2014) and tissue (Pérez et al., 2014) samples from L. gigas.

However, this study also found bacteria and fungi that have not been reported so far
in L. gigas. Specifically, homologous protein and nucleotide sequences of species (e.g.,
Carnobacterium jeotgali), family and genus of Carnobacterium sp. were detected in the
L. gigas muscle (Tables 1 and 2). Carnobacterium strains have been reported to inhabit live
fish and a variety of seafood, dairy and meat (Leisner et al., 2007).

In addition, this research found homologous protein and nucleotide sequences of genus
Bacillus and Enterococcus in the affected tissue of L. gigas. Bacillus species have ubiquitous
distribution, inhabiting different environments such as soils, rocks, vegetation, foods and
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Figure 3 Bayesian tree obtained from cytochrome c oxidase I gene sequences of orange-colored protrusions from the muscle of L. gigas (OPML)
and GenBank Platyhelminthes sequences. P. macrorchis (JN592039.1), M. sebastis (NC_009055.1), E. multilocularis (AB018440.2), E. granulosus
(AF297617.1), T. saginata (AY195858.1), T. solium (AY211880.1), T. pisiformis (GU569096.1), S. mansoni (AF216698.1), S. japonicum (AF215860.
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guis (KU563724.1), R. sternae (KU563723.1), R. lari (KU563727.1), R. cerithidicola (KF512573.1), R. buchanani (KF512572.1), Renicola sp. ‘poly-
chaetophila’ (KF512551.1) and Renicola sp. ‘martini’ (KF512560.1).
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waters (Nicholson, 2002). Similarly, the ubiquitous nature of enterococci determines their
frequently being found in foods as contaminants, although their predominant habitat is
human and animal gastrointestinal tracts (Giraffa, 2002). However, they also occur in soil,
surface waters, vegetables and fermented foods such as sausages, meat and cheese (Giraffa,
2002; Foulquié et al., 2006).

Furthermore, another bacteria present in the sample was Brochothrix thermosphacta, as
it was assigned to bacterial species or genus taxonomical levels according to Monzoorul
Haque et al. (2009). This bacterium, closely related to Listeria, is a non-proteolytic food
spoilage organism in prepacked meats and fish products (Gardner, 1981; Lannelongue et
al., 1982; Pin, Garcia de Fernando ¢ Ordéiiez, 2002). In addition, some Listeria hits were
detected in the nucleotide analysis, although the identity values did not allow species
identification. This result is concordant with studies that have isolated Listeria members
from freshwater and marine environments (Colburn et al., 1990; El Marrakchi, Boum’ handi
¢ Hamama, 2005).

Metagenomic analysis also showed some fungi assignments related to Fusarium,
Neurospora, Togninia and Mrakia. Both Fusarium and Neurospora exhibit wide distribution,
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including humid tropical and subtropical marine environments (Steele, 1967; Turner,
DPerkins ¢ Fairfield, 2001; Babu et al., 2010; Summerell et al., 2010; Jebaraj et al., 2012;
Saravanan & Sivakumar, 2013; Kumar, Gousia ¢» Latha, 2015). Specifically, some Fusarium
species are associated with infections in crustaceans and cultivated fishes (Hatai, 2012),
whereas other species are endosymbionts of some seaweeds (Suryanarayanan, 2012), corals
(Raghukumar ¢ Ravindran, 2012) and some sea sponges (Holler et al., 2000; Wang, Li ¢
Zhu, 2008; Liu et al., 2010; Paz et al., 2010).

In contrast, Togninia and Mrakia show more restricted distributions. For instance,
Togninia comprises pathogenic fungi responsible for the development of wood diseases,
and some strains have been isolated from submerged wood from streams, lakes, ponds,
reservoirs and ditches (Hu, Cai & Hyde, 2012). Likewise, several Mrakia species have been
isolated from icy environments, including meltwaters from glaciers and permafrost in
Antarctica (Hua et al., 2010; Pathan et al., 2010; Carrasco et al., 2012; Zhang et al., 2012;
Tsuji et al., 2013a; Tsuji et al., 2013b), Argentina (Brizzio et al., 2007; De Garcia, Brizzio
¢ Broock, 2012), the Qinghai-Tibet Plateau (Su et al., 2016), Italy (Turchetti et al., 2008;
Branda et al., 2010; Thomas-Hall et al., 2010) and the Arctic (Pathan et al., 2010).

Considering that several of the new bacteria reports are related to food microorganisms,
we hypothesized that they might grow under environmental or freezing conditions instead
of being native microbiota. Fungi findings suggest an environmental source; however, since
some species of Fusarium and Neurospora produce orange spores (Davis ¢ Perkins, 2002;
Hatai, 2012), the colored protrusions found in L. gigas may be due to an opportunistic
or primary fungal infection. Thus, the role of bacteria and fungi in the muscle of L. gigas
and their relationship with the lesion, native microbiota or the environment remains to be
explored.

A parasite associated with orange colored protrusions

Histology showed evidence of a membrane, that is consistent with a syncytium, enclosing a
multicellular parasite, a mollusk inflammatory response elicited by hemocytes (De Vico ¢»
Carella, 2012). Moreover, such membranes are also compatible with the wall layers of the
life cycle stage of Platyhelminthes, suggesting a possible infection by trematodes that infect
other mollusks (Cake, 1976; Sorensen ¢» Minchella, 2001). This finding was supported by
the metagenomics analysis that showed sequences homologous to an endonuclease-reverse
transcriptase of some species of trematodes like Schistosoma (Table 3). This result is expected
since highly repetitive sequences, such non-LTR retrotransposons with an estimated copy
number going up to 24,000, are more likely to be detected in whole genome shotgun
amplification (DeMarco et al., 2005). Since databases of protein and nucleotide sequences
are currently enriched with Schistosoma, but exhibit a poor representation of most members
of Trematoda, these assignments require cautioned interpretation. Moreover, the lack of
information in reference databases for most of the sequences from the studied sample
(~90% of nucleotide sequences and ~52% of proteins) explains the relatively low number
of hits for the parasite compared with Trematoda, bacteria and fungi taxa. Although these
assignments are biased by the nucleotide and protein sequences available in the NCBI
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databases, it supports the histological finding that the protrusions may be caused by a
trematode.

The Bayesian tree supported the last result due to clustering of the sample in a basal
position to the suborder Xiphidiata (Trematoda: Digenea), which includes Renicola species
that produce colored pigments (Stunkard, 1950; Galaktionov & Skirnisson, 2000). The
phylogenetic relationships with Xiphidiata were consistent with the BLASTN analysis
that revealed genetic similitudes between the sequence found in this study and Renicola,
Helicometrina, Synthesium and Haematoloechus, although its genetic distance with other
members of these genera remains to be determined due to the lack of information for
cytochrome c oxidase I and endonuclease-reverse transcriptase sequences of these taxa.

The molecular findings let us hypothesize about the structures approximately 0.55 mm
in diameter found in the snail muscle tissue, although histology did not allow detection of
key features for its identification. According to the life cycle described for Xiphidiata, the
microscopic life cycle stage found in the muscle of L. gigas could be sporocysts, which are
described to preferentially infect gonads and digestive glands, but can also disperse to other
tissues in the form of more sporocysts or rediae (Cribb et al., 2003). Based on the structure’s
size, other stages such as metacercaria seems unlikely at least in Renicola, as they exhibit
0.12 to 0.16 mm in diameter (Stunkard, 1964). However, the evidence presented here is
not enough to conclude which parasitic stage was observed within the colored lesions.

In conclusion, this study found evidence of a trematode infection, as well the presence of
fungi and bacteria in the protruded muscle of L. gigas, which provides novel information for
the parasitology and microbiology of this species. This first insight of a trematode infection
in L. gigas is a baseline to expand the toolset to identify these organisms, the trematode life
cycle, environmental conditions that trigger its appearance and epidemiological aspects
regarding the host and possible effects on human health.
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