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Abstract: Starting from isoniazid and carboxylic acids as precursors, thirteen new hydrazides
and 1,3,4-oxadiazoles of 2-(4-substituted-phenoxymethyl)-benzoic acids were synthesized and
characterized by appropriate means. Their biological properties were evaluated in terms of apoptosis,
cell cycle blocking, and drug metabolism gene expression on HCT-8 and HT-29 cell lines. In vitro
antimicrobial tests were performed by the microplate Alamar Blue assay for the anti-mycobacterial
activities and an adapted agar disk diffusion technique for other non-tubercular bacterial strains. The
best antibacterial activity (anti-Mycobacterium tuberculosis effects) was proved by 9. Compounds 7, 8,
and 9 determined blocking of G1 phase. Compound 7 proved to be toxic, inducing apoptosis in 54%
of cells after 72 h, an effect that can be predicted by the increased expression of mRNA caspases 3
and 7 after 24 h. The influence of compounds on gene expression of enzymes implicated in drug
metabolism indicates that synthesized compounds could be metabolized via other pathways than
NAT2, spanning adverse effects of isoniazid. Compound 9 had the best antibacterial activity, being
used as a disinfectant agent. Compounds 7, 8, and 9, seemed to have antitumor potential. Further
studies on the action mechanism of these compounds on the cell cycle may bring new information
regarding their biological activity.

Keywords: isoniazid; oxadiazole; synthesis; antibacterial activity; apoptosis; cell cycle; drug
metabolism genes expression
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1. Introduction

Hydrazides represent a class of organic compounds containing a nitrogen–nitrogen covalent bond
with at least one acyl substituent [1]. They are used as starting materials for the synthesis of surfactants
and of various heterocycles as of 1,2,4-triazoles [2], 1,3,4-thiadiazoles [3], or 1,3,4-oxadiazoles [3,4] with
pharmacological activity [5]. Hydrazides are well known for their antitumor [6], anti-inflammatory [7],
analgesic [8], antibacterial [7,9], and antiviral [10] activities, while 1,3,4-oxadiazoles are known for
antibacterial, antifungal, and anti-inflammatory activities [11,12].

Is well known that isoniazid (INH) is used as valuable drug for anti-tuberculosis treatments
mostly against the active metabolize and multiply of Mycobacterium tuberculosis bacteria [13,14], but less
effective than dormant ones [15]. The hydrazide of isonicotinic acid is considered a prodrug capable of
crossing the M. tuberculosis cell wall through passive diffusion [16]. After reaching the inside of the
cell [17], KatG (mycobacterial catalase-oxidase) is activating it. The active forms of INH shown different
effects on the cell wall mycolic acids synthesis [18], on nucleic acids replication/transcription [19], and
on bacterial respiratory metabolism, as well [20]. All this time, it never been completely discovered the
complex mechanism of action of isoniazid as prodrug [21,22].

In terms of toxicity effect over the human body, the INH behavior is different for each
patient. The isoniazid is degradaded mainly by acetylation with N-acetyltransferase (NAT),
which conduct to N1-acetyl-N2-isonicotinylhydrazine (acetylisoniazid) metabolite, and further, by
metabolization process, result the mono-acetylhydrazine and the nontoxic di-acetylhydrazine [23–25].
The polymorphisms of genes that codify NATs, also influence the metabolism of INH. On the other
hand, different degrees of activity for NATs and an individual acetylation profile are determined by
the presence of various polymorphisms [26]. On this basis, the humans may be classified in three
classes such as slow, intermediate, and fast acetylators [27]. Therefore, a fast acetylation of INH lead
to a lowering concentration of active drug [14], being responsible for applied therapy effectiveness,
mostly to some patients which required single weekly doses [28]. On the other hand, for slow
acetylators the risk for hepatotoxic effects occurrence is possible due to high concentrations of isoniazid
metabolites [24,29,30]. Literature [22,31,32] revealed that the any change added to isoniazid molecule
such as the inclusion of a functional group to the hydrazine structure could block the acetylation of the
drug by NATs, therefore influencing its activity and toxicity.

It had been previously shown that isoniazid derivatives exhibited a good anti-mycobacterial
activity, some of them being more active than isoniazid or other anti-tubercular drugs used in the
current therapy regimens [33–38]. Various studies have postulated that the majority of isoniazid
derivatives are activated before reaching the intracellular medium of M. tuberculosis [39]. On the other
hand, based on QSAR study [40], the Ventura group presumed that isoniazid derivatives activation
involve the formation of electrophilic intermediate species (hydrazyl radical or ion) that are transformed
in acyl radicals which can couple with NADH/NAD+, the formed adducts inhibiting enoyl-acyl carrier
protein reductase (InhA) activity [41].

To the best of our knowledge, the synthesis of new isoniazid derivatives based clinical drugs
is important for the therapeutic field. These observations encouraged the authors to continue the
previous research (i.e., synthesis, characterization, and pharmacological evaluation of new heterocyclic
compounds), where hydrazides/indazoles/oxadiazoles linked with other heterocycles proved as
effective antimicrobial agents [42–48]. The purpose of current study was to characterize the new
synthesized isoniazid derivatives and to preliminary evaluate their biological activity to identify their
usefulness as drugs in medical field.

2. Results and Discussion

2.1. Synthesis and Structural Characterization

The benzoic acid hydrazides were prepared following the method described in the general
experimental procedure. The carboxylic acids were obtained by a method reported earlier by Limban
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group [49], by refluxing the phthalide with potassium p-substituted phenolates in xylene. The obtained
corresponding acid was treated with thionyl chloride in 1,2-dichloroethane under reflux. The crude acid
chloride thus obtained was added to isoniazid dissolved in dichloromethane and the reaction mixture
was stirred at room temperature. Product formation was monitored by thin-layer chromatography on
silica gel, and the obtained products were separated and purified on chromatographic columns. In the
case of 2-(4-methyl/methoxy/ethyl-phenoxymethyl)-benzoic acid derivatives, the presence of two new
compounds in each reaction was observed.

The newly synthesized N,N’-diacylhydrazines (1–6) were diluted in toluene and treated with
phosphoryl chloride. The reaction mixture was refluxed for 6 h and then stirred overnight at room
temperature. Product formation was monitored by thin layer chromatography on silica gel. Toluene
and residual phosphoryl chloride were removed under reduced pressure and the reaction products
were taken up in dichloromethane and washed with 5% NaOH solution and with saturated aqueous
NaCl solution. The organic layer was dried over anhydrous sodium sulfate and the solvent distilled
under reduced pressure. The newly synthesized 1,3,4-oxadiazoles were recrystallized using ethanol.

The synthesis reactions of new compounds are presented in Figure 1.
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The synthesis yields (attempts to optimize were not made), the melting points, and the Rf values
of the new compounds obtained are presented in Table 1.
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Table 1. Results obtained in the synthesis of the compounds.

Compound Yield [%] m.p. [◦C] Rf
a,b,c

INH - 171–173 0.03 a

1 52 128–129 0.50 b

2 40 168–169 0.57 b

3 25 145–146 0.56 b

4 58 173–175 0.17 a

5 54 108–111 0.13 a

6 33 133–135 0.17 a

7 5 Semisolid 0.60 a

8 2 Semisolid 0.52 a

9 6 Semisolid 0.63 a

10 62 210–211 0.72 b

11 65 298–299 0.79 b

12 68 341–342 0.75 b

13 73 249–250 0.60 c

a AcOEt:CH2Cl2 = 1:1, b AcOEt:MeOH = 9:1, c CH2Cl2:MeOH = 5:1.

The chemical structure of the newly synthesized compounds was confirmed by 1H-NMR,
13C-NMR, IR, and by elemental analysis. The 1H-NMR spectra of compounds 1–6 showed two
singlets at 10.11–11.20 ppm and 9.72–10.55 ppm, which represent the two hydrazide protons (NH-NH,
deuterable), while the 1H-NMR spectra of compounds 7–9 showed only one singlet at 8.53–11.97 ppm,
corresponding to the NH–N proton. This indicates that compounds 1–6 are N,N’-disubstituted, while
compounds 7–9 are N,N,N’-trisubstituted.

FTIR spectra showed the C=O peak at 1690–1669 cm−1 and the C–N peak at 1609–1592 cm−1, and,
also, in the case of compounds 1–9, the N–H stretching vibration at 3271–3191 cm−1. The stretching
vibrations of the aromatic rings (C=C–C) are situated at 1608–1443 cm−1. For all compounds it can
distinguish the 1,2- and 1,4-disubstitution at 748–735 cm−1 and 841–811 cm−1, respectively. The
complete interpretation of 1H-, 13C-NMR and IR spectra and the elemental analyses of new compounds
are presented in the experimental part.

All compounds were subjected to MS analysis, the signals of molecular ions [M + H] corresponding
to the calculated molecular weight and structure of these compounds.

2.2. Biological Evaluation

2.2.1. Antimicrobial Activity

Taking into account that isoniazid derivatives are known for their anti-tubercular activity [30,32,36],
the newly synthesized derivatives of isoniazid were tested for their in vitro activity against a clinical
strain of M. tuberculosis. The tested compounds were quantitatively assayed using serial binary
dilutions ranging from 25 µg/mL to 0.012 µg/mL. None of the new synthesized compounds proved to
have anti-tubercular activity, apart from compound 9 that inhibited the growth of M. tuberculosis at a
concentration of 6.25 µg/mL (Table 2).
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Table 2. The anti-tubercular evaluation of the new compounds.

Compound MIC a [µg/mL]

INH 0.098
1 >25
2 >25
3 >25
4 >25
5 >25
6 25
7 25
8 25
9 6.25

10 >25
11 >25
12 >25
13 >25

a Anti-mycobacterial activity (minimum inhibitory concentration (MIC)) against a clinical strain of M. tuberculosis.

The minimal inhibitory concentration (MIC) of the compound 9 was moderate, which is in the range
of those reported for other isoniazid derivatives obtained by combination with acid chlorides [33–38].
A very active derivative against M. tuberculosis is 1-isonicotinyl-2-nonanoyl hydrazine, superior to
isoniazid with a very low minimal inhibitory concentration value of 0.025µg/mL [38]. Other compounds
from this class exhibited MIC values ranging between 0.39 and 71.6 µg/mL [33–37]. Regarding the
isoniazid-derived 1,3,4-oxadiazoles reported in literature, few of them proved anti-tuberculosis
activity [50].

In order to establish if these new synthesized compounds have antibacterial activity against
other microbial species and to determine the spectrum of their activity, the novel derivatives
were tested on other, non-tuberculosis, bacterial strains isolated from clinical specimens, both
Gram-positive (e.g., Staphylococcus hominis, Staphylococcus aureus, and coagulase-negative staphylococci)
and Gram-negative (e.g., Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Citrobacter koseri,
Morganella morganni, Acinetobacter baumanii, and Pseudomonas aeruginosa), using an adapted diffusion
technique. The most active derivative proved to be compound 9, which inhibited the growth of
the majority of tested strains, followed by the compounds 6 and 7. The less active derivatives were
compounds 1, 3, and 10–13. On the other hand, the N,N,N’-triacylhydrazines 7–9 exhibited a better
antibacterial activity than their corresponding N,N’-diacylhydrazines 4–6, as well as the rest of tested
compounds (Table 3). According to previously reported data compounds with similar structures
proved inhibitory activity on the growth of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas
aeruginosa, and Escherichia coli [33–37].
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Table 3. The antimicrobial evaluation of the new synthesized compounds.

Compound INH 1 2 3 4 5 6 7 8 9 10 11 12 13

Micrococcaceae
Staphylococcus hominis 1813 − − − − − − − − − +/− − − − −

Staphylococcus hominis 2610/2710 − − − − − +/− +/− +/− +/− +/− − − − −

Staphylococcus aureus − − − − − − − +/− − +/− − − − −

Staphylococcus aureus 2669 − − − − − − − +/− +/− + − − − −

Staphylococcus aureus 2754 − − − − − − +/− +/− − + − − − −

Staphylococcus aureus ATCC 25923 − − − − − − − − − + − − − −

Staphylococcus aureus ATCC 29213 − − − − − +/− +/− +/− +/− +/− − − − −

Coagulase-negative Staphylococcus sp. 2672 − − − − − − − − − +/− − − − −

Coagulase-negative Staphylococcus sp. 3026 − − +/− − − − − − +/− +/− − − − −

Coagulase-negative Staphylococcus sp. 196 − − − − − − − +/− − +/− − − − −

Coagulase-negative Staphylococcus sp. 1785 − − − − − − − − − + − − − −

Streptococcaceae
Enterococcus faecalis ATCC 29212 − − − − − − − − − +/− − − − −

Enterococcus faecalis 2920 − − − − − − − − − + − − − −

Enterobacteriaceae
Enterobacter cloacae 1845 + − − − − − − − − +/− − − − −

Enterobacter cloacae 3016 − − − − − +/− +/− +/− +/− + − − − −

Citrobacter koseri 1742 − − − − +/− +/− +/− +/− +/− +/− − − − −

Morganella morganni 2810 − − − − − − − − − − − − − −

Escherichia coli 410 − − − − − +/− +/− − − +/− − − − −

Escherichia coli 1455 − − − − − +/− +/− +/− +/− + − − − −

Escherichia coli 1461 − − − − − − +/− +/− +/− + − − − −

Escherichia coli 1777 − − − − − +/− +/− +/− − +/− − − − −

Escherichia coli ATCC 25922 − − − − − − − +/− − + − − − −

Klebsiella pneumoniae 1756 − − − − − − +/− − − − − − − −

Klebsiella pneumoniae 3029 − − − − − +/− +/− − − +/− − − − −

Salmonella typhimurium ATCC 14028 − − − − − +/− +/− +/− +/− +/− − − − −

Serratia marcescens 1142 − − − − +/− +/− +/− +/− +/− +/− − − − −

Shigella sonnei ATCC 25931 − − − − − − − − − − − − − −

Pseudomonadaceae
Pseudomonas aeruginosa ATCC 27853 − − − − − − − +/− − +/− − − − −

Pseudomonas aeruginosa 165 − − − − − − +/− +/− +/− +/− − − − −

Pseudomonas aeruginosa 1144 − − − − − +/− +/− +/− +/− +/− − − − −
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Table 3. Cont.

Compound INH 1 2 3 4 5 6 7 8 9 10 11 12 13

Pseudomonas aeruginosa 1150 − − − − − +/− +/− +/− − +/− − − − −

Pseudomonas putida 160 +/− − − − − +/− +/− +/− − +/− − − − −

Xanthomonadaceae
Stenotrophomonas maltophilia 412 − − − − +/− +/− +/− +/− +/− +/− − − − −

Moraxellaceae
Acinetobacter baumanii 122 − − − − − − − − − + − − − −

Acinetobacter baumanii 125 − − − − − +/− +/− − − + − − − −

Acinetobacter baumanii 247 − − − − − − +/− − − + − − − −

Acinetobacter baumanii 411 − − − − − +/− +/− +/− +/− + − − − −

Susceptible (+); Resistant (−); Intermediate (+/−).
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2.2.2. The Influence of the New Isoniazid Derivatives on the Expression Levels of Some Genes
Implicated in Drug Metabolism

The main metabolic pathway of isoniazid and similar compounds in human body involves
its N-acetylation and the increased expression of NAT1 and NAT2 genes, which is suggested to be
associated with a better rate of metabolization. In this context, the influence of newly synthesized
substances on NAT1 and NAT2 expression in eukaryotic cells was evaluated in two cell lines—HCT-8
and HT-29—at a concentration of 50 µg/mL. As we previously reported, the HT-29 cell line presents
NAT2*5 genotype, while the HCT-8 cell line presents the NAT2*6 genotype [51]. Isoniazid decreased
the expression of NAT1 and NAT2 in both cell lines, as well as compounds 2, 4, 10, and 11. NAT1
and NAT2 gene expressions were increased by compounds 6 and 9 in both HT-29 and HCT-8 cell
lines. Compounds 3 and 5 increased the gene expression of NAT1 in both used cell lines, compound
1 increased NAT1 expression only in HT-29, and compounds 7 and 8 increased it only in the HCT-8
cell line. Regarding NAT2 gene expression, it was increased by compounds 7 and 8 in both tested cell
lines, by compounds 5 and 12 in HT-29 cell line, and by compound 3 in HCT-8 cells. Generally, the
NAT2 gene expression was more influenced by tested compounds in HCT-8 cell line, than in HT-29 cell
line, with the exception of compounds 9–11 (Figure 2). Compounds 6–9 could be used to potentiate
isoniazid metabolism in slow acetylators, and further studies should be done in this direction.
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genes in HT-29 and HCT-8 cell lines.

In order to identify how new synthesized compounds may be degraded and eliminated from the
body, the expression of some CYP450 isoenzymes, involved in the metabolism of pharmacological
substances, was evaluated in HCT-8 and HT-29 cell lines (Figure 3). The obtained results shown that
isoniazid decreased the expression of CYP1A1 and CYP2C19 genes in both cell lines, but increased
the expression of CYP3A4 in HCT-8 cells. All tested compounds increased CYP1A1 expression in
both cell lines, except for compound 3. Regarding the expression of CYP2C19, it was increased by
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compound 4 in both used cell lines; by compounds 1, 5, 6, 8, and 9 in HCT-8 cells; and by new
synthesized 1,3,4-oxadiazoles 10, 11, 12, and 13 in HT-29 cells. CYP3A4 gene expression was increased
by compounds 3 and 9 in HT-29 and in HCT-8 cells, and by compounds 1, 2, and 4 only in HT-29 cells.
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Isoniazid inhibits CYP2C19 and CYP3A4 activities and mechanistically inactivates CYP1A2,
CYP2A6, CYP2C19, and CYP3A4 in human liver microsomes [52,53]. El Sayed’s group analyzed the
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influence of some isoniazid derivatives on the expression of mRNA and activity of enzymes implicated
in drug metabolism in mice [54]. Although the analyzed compounds determined some changes in
mRNA expressions, their influence on enzymes activity was minor [54]. The increased expression
levels of CYP1A1 induced by the new synthesized isoniazid derivatives could be explained by the
induction of their metabolism. CYP450 enzymes are implicated in phase I of xenobiotic and drug
metabolism, and CYP1A1 catalyzes the hydroxylation and other oxidative transformations of aromatic
substances [53,55]. Regarding different profiles of CYP2C19 expression in the two cell lines used, this
could account for the existence of a polymorphic locus.

2.2.3. Cytotoxicity and Effects on Cell Cycle

The obtained compounds have also been tested to establish their cytotoxicity and the apoptotic
effect on HT-29 cell line. The effect of the treatment with 50 µg/mL of substances for 24, 48, and 72 h
was evaluated by flow cytometry using FITC-labeled annexin-V and propidium iodide staining that
discriminate between apoptotic and intact cells. The most toxic compound proved to be compound 7,
followed by compounds 8 and 9. The treatment of HT-29 cells with 50 µg/mL of compound 7 has no
toxic effect after 24 h, but after 48 and 72 h it induced necrosis in 28.6% and 54%, respectively, of the
eukaryotic cells (Table 4).

Kumar’s group evaluated a series of N’-(E)-(substituted-benzylidene)-isonicotinohydrazide
derivatives regarding their anticancer activity against several types of tumors and determined that
isonicotinoyl hydrazides display moderate to potent anticancer activity [56]. Later, Rodrigues et al.
evaluated thirty-two N’-[(E)-(disubstituted-phenyl)-methylidene]-isonicotino-hydrazides for their
activity against four human cancer cell lines and established that the biological activity of this
compounds is determined by the number, the positions, and the types of substituents attached to the
aromatic ring. The best results were proved by disubstituted derivatives, and the presence of hydroxyl
groups on the benzene ring plays an important role in the anticancer activity of this series, especially
when it is located in o-position. Hydroxyl groups located in o-position in hydrazone systems are good
ligands for metals, the action mechanism of this class could possibly be based on the formation of
complexes that are likely to inactivate enzymes involved in abnormal cell division [57].

In current case, the most cytotoxic activity had been proved by a compound containing a methyl
group in p-position of a benzene ring (compound 7). This effect could be probably explained by its
metabolism, the tolyl moiety being oxidized to the corresponding alcohol and carboxylic acid and to
o-cresyl [58], the presence of hydroxyl groups on the benzene ring in o-position playing an important
role in the anticancer activity [57]. The metabolic pathway of compound 9 possibly involves the
oxidation of ethyl group resulting the corresponding alcohols and acids, which are less toxic [59]. In the
case of compound 8, the major metabolic pathway could involve O-demethylation of this compound,
similar to other compounds containing p-methoxyphenyl moiety [60], with isoniazid derivatives
containing a hydroxyl moiety in the p-position of a benzene ring being less toxic [57].

The cytotoxicity of the newly synthesized compounds was also studied at the molecular level by
analyzing the expression of genes implicated in apoptosis. From all tested substances, compounds 3 and
7 determined an increase in the expression levels of caspases 3, 7, 8, and 9 genes. Compounds 10 and 13
slightly increased the gene expression of caspases 3, 7, and 9, and compound 12 increased caspase 3 and 9
gene expression, while compounds 2, 8, and 9 increased only the expression of caspase 9. Regarding the
proapoptotic Bax (Bcl-2-associated X protein) and antiapoptotic Bcl-2 (B-cell lymphoma 2), their gene
expression was increased by compounds 2, 10, and 12. Compound 13 increased Bcl-2 and decreased Bax
gene expressions, while other tested compounds decreased both genes expressions. Still, the Bax/Bcl-2
ratio was positive accounting for an induction of apoptotic program. Regarding MCL1 (Myeloid Cell
Leukemia Sequence 1), compounds 1, 2, 4, and 5 decreased expression of this gene, while the other
compounds increased it (Figure 4).
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Table 4. Apoptosis induction by the new isoniazid derivatives in eukaryotic cells.

Compound Necrosis
[% of Total Cells]

Late Apoptosis
[% of Total Cells]

Early Apoptosis
[% of Total Cells]

Viable Cells
[% of Total Cells]

72 h

HT-29 1.46 0.206 0.057 98.3
INH 5.25 3.09 0.915 90.7

1 0.854 0.503 0.278 98.4
2 0.493 0.937 0.305 98.3
3 0.382 0.304 0.294 99.0
4 11.1 1.85 2.15 84.9
5 12.2 3.28 1.56 83
6 5.82 2.7 1.01 90.5
7 20.7 33.3 2.93 43
8 8.38 7.05 1.99 82.6
9 10.8 2.8 1.22 85.2
10 0.766 0.317 0.196 98.7
11 1.43 0.301 0.457 97.8
12 0.553 0.82 0.23 98.4
13 0.658 0.239 0.194 98.9

48 h

HT-29 1.27 0.264 0.13 98.3
INH 5.96 2.63 0.661 90.8

1 2.35 0.325 0.337 97.0
2 2.37 0.221 0.431 97.0
3 0.706 0.121 0.538 98.6
4 4.32 1.5 0.703 93.5
5 5.19 4.35 1.17 89.3
6 7.28 2.6 0.346 89.8
7 16.2 12.4 0.736 70.7
8 6.64 2.52 0.614 90.2
9 10.1 4.52 0.708 84.6
10 0.599 0.359 0.435 98.6
11 3.15 0.834 0.337 95.7
12 0.734 0.381 0.527 98.4
13 0.732 0.174 0.131 99.0

24 h

HT-29 0.68 0.032 0.404 98.9
INH 3.68 1.85 1.06 93.4

1 0.612 0.411 0.124 98.9
2 0.637 0.505 0.204 98.7
3 1.1 0.794 0.019 98.1
4 5.58 0.964 0.832 92.6
5 6.6 0.132 0.237 93
6 4.88 1.2 1.14 92.8
7 6.51 1.14 0.87 91.5
8 4.22 1.71 1.95 92.1
9 4.82 1.5 1.32 92.4
10 0.835 0.169 0.129 98.9
11 1.16 0.127 0.164 98.5
12 1.15 0.816 0.11 97.9
13 1.4 0.23 0.058 98.3
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Figure 4. The influence of the new isoniazid derivatives on the expression of genes implicated in
apoptosis induction in HCT-8 cells; (A) pro-apoptotic genes; (B) anti-apoptotic genes.

The activation of the effector caspase 3 can be induced by the extrinsic pathway via tumor necrosis
factor (TNF) family receptors (e.g., Fas), FADD (Fas-activated death domain protein), and caspase
8, or by the intrinsic pathway via the mitochondrial release of cytochrome c and Apaf-1–mediated
processing of caspase 9 [61]. In the case of compound 7, the increased expression of caspase 9 could be
associated with activation of intrinsic apoptotic pathway. Although the phenotypic changes induced
by the treatment of compound 7 with 50 µg/mL for 24 h are minor, the increased expression of mRNA
caspase 3 and 7 predicts the apoptotic phenomena occurring at 48 and 72 h. In the case of compounds 3,
12, and 13, although all evaluated caspases and Bax gene expressions were increased, the expression of
antiapoptotic Bcl-2 and MCL1 genes was also high, and no apoptotic effect was observed at 48 or 72 h.

The influence of the new compounds on the cell cycle was determined on HCT-8 cells treated for
24 h with 50 µg/mL of the tested compounds. Compounds 4–9 and 13, containing methyl, ethyl, or
methoxy moieties, increased the G0/G1 phase and decreased the S phase, while the other compounds
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decreased the G0/G1 phase and increased the S phase. Compounds 4–6 slightly increased the G2/M
phase, while the rest of compounds decreased this phase. N,N,N’-Triacylhydrazines 7–9 exhibited a
stronger influence on the cell cycle than the other tested compounds (Figure 5). The evaluation of the
treatment at 48 h showed a decrease of S and G2/M phases in the case of N,N,N’-triacylhydrazines 7
and 8, and in addition, the appearance of the subG0 peak associated with apoptosis (Figure 6).
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Figure 6. The influence of compounds 7 and 8 on the cell cycle in eukaryotic cells after a 48-h treatment:
(A) compound 7; (B) compound 8; (C) control cells (HT 29).

At molecular level, the cell cycle is regulated by cyclin-dependent kinases (CDKs) that are
activated by cyclins. In order to determine the influence of the tested compounds on the expression
of different factors implicated in the regulation of the cell cycle, the expression of cyclin A, cyclin B,
CDK1 (Cyclin-dependent kinase 1), and CDC20 (cell division cycle protein 20) genes was analyzed
(Figure 7). Compounds 4 and 5 slightly reduced cyclin A, CDK1, and CDC20 gene expression and
induced the expression of the cyclin B gene. Compounds 2 and 10 reduced cyclin A, cyclin B, and CDC20
gene expression and induced the expression of the CDK1 gene. Compound 6 proved to have a weak
influence on the expression of genes implicated in the cell cycle by slightly increasing the expression of
cyclin A, cyclin B, and CDK1 genes and slightly reducing the expression of CDC20. Compounds 1, 7,
8, 9, and 11 reduced the expression levels of cyclin A, cyclin B, CDK1, and CDC20 genes, indicating
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an inhibition of cell cycle progression, which is in agreement with the decrease of S and G2 phases
demonstrated by flow cytometry. Compounds 3, 12, and 13 increased the evaluated genes expressions.
The influence of these compounds on the gene expression of cyclin B and CDK1 could explain no
apoptotic effect observed disregard increased levels of expression of caspases. CDK1/cyclin B complex
could phosphorylate procaspase 8, inhibiting its processing and, thus, the activation of apoptosis
through extrinsic pathway [62], and, also, could phosphorylate caspase 9 at an inhibitory site [63],
consequently inhibiting the intrinsic apoptotic pathway. On the other hand, CDK1/cyclin B could
also target p53, its Ser-315 phosphorylation enhancing ATP generation and membrane potential in
mitochondria [64].
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CDK1, and CDC20 genes in the eukaryotic cells.

The blocking in the G1 phase observed after 24 h of treatment with some isoniazid derivatives
was previously reported in the literature [65]. The influence of these compounds on the cell cycle was
explained by their activity as Fe-chelators, determining cyclin D proteolysis and cyclin E accumulation,
and a decrease of CDK2 (Cyclin-dependent kinase 2) level [65,66].

In the current study, compounds 7–9 reduced the expression levels of genes implicated in S, G2,
and M phases of cell cycle and caused cell cycle blocking in G0/G1 phase. This effect can also be
explained by their metabolism (discussed above), with presumed metabolites being capable of forming
complexes that could inactivate enzymes involved in abnormal cell division [57].

The influence of compounds 7–9 on cell cycle indicates their antitumor potential and further
studies on their mechanism of action should/will be done.
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3. Materials and Methods

3.1. Chemicals and Analytical Techniques

All chemicals and reagents were used as purchased from commercial suppliers (MilliporeSigma,
Burlington, MA, USA and Chimopar, Bucharest, Romania, respectively) and were of the highest
available purity. The solvents were used as absolute solvents, as well.

Analytical thin-layer chromatography (TLC) was performed on aluminium TLC plates that were
silica gel-coated with fluorescent indicator F254, with size 20 × 20 cm, (Merck KGaA, Darmstadt,
Germany). The spots were visualized using a fixed wavelength (254 nm) UV light.

The 1H(13C)-NMR spectra, in deuterated solvents DMSO-d6/CDCl3 (isotopic purity 99.9%), were
recorded on Varian Inova-400 NMR spectrometer (Agilent, Santa Clara, CA, USA, former Varian Inc.,
Palo Alto, CA, USA) of 400 MHz (1H)and 100 MHz (13C), equipped with a Varian broadband direct
(1H/X) probe. The standard for chemical shift is tetramethylsilane (TMS) and J-values were calculated
in Hz. Chemical shifts δ [ppm] are referenced to protonated solvent signals as internal standard
DMSO-d6: δ = 2.50 ppm (1H), 39.52 ppm (13C), and CDCl3: δ = 7.26 ppm (1H), 77.16 ppm (13C) [63–66].
Signal multiplicities are abbreviated as s (singlet), d (doublet), dd (doublet of doublet), t (triplet), dt
(doublet of triplet), q (quadruplet), and m (multiplet) with the prefix b in case of broad signals [67–70].

Molecular identification of organic functional groups in solid sample was performed by Fourier
transform infrared spectroscopy using a Vertex 80v spectrometer (Bruker, Ettlingen, Germany),
equipped with attenuated total reflectance (ATR) accessory. FTIR spectra were recorded in the range of
4000 to 400 cm−1, with 0.2 cm−1 spectral resolution, 0.1% T accuracy, and 32 scans/spectra.

Melting points were determined on a melting point meter Krüss M5000 (A. Krüss Optronic,
Hamburg, Germany), up to 400 ◦C, and are given uncorrected.

Mass spectra were recorded on a Maxis Bruker 4G spectrometer (Bruker Corporation, Billerica,
MA, USA) with an electrospray ionization source (ESI). For the biological approach, the synthetized
compounds were initially dissolved in DMSO (i.e., 1 mg/mL) to prepare a concentrated stock solution.
Finally, additional dilutions (e.g., 1 µg/mL in methanol) were prepared in culture medium. The
scanning range of molecular ions (m/z) was 50 to 1250.

3.2. Synthesis and Characterization of Isoniazid Derivatives

3.2.1. N,N’-diacylhydrazines and N,N,N’-triacylhydrazines

To 5 mmol of 2-(4-substituted-phenoxymethyl)-benzoic acid dissolved in 25 mL of
1,2-dichloroethan was added 10 mmol of thionyl chloride. The mixture was refluxed for 3 h. The
excess of thionyl chloride and 1,2-dichloroethan was removed under reduced pressure. A quantity of
5 mmol of isoniazid dissolved in 30 mL of dichloromethane was added to the crude acid chloride and
the mixture was stirred overnight at room temperature. The next day, a double volume of water was
added to the reaction mixture and the solid formed was separated by filtration and washed twice with
dichloromethane. After filtration, the aqueous phase was extracted three times with dichloromethane
and the organic layer was dried over anhydrous sodium sulfate. The solvent was removed under
reduced pressure and the products (Figure 8) were separated and purified on chromatographic columns
filled with silica gel using dichloromethane: ethyl acetate in gradient for elution.
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N,N,N’-triacylhydrazines (compounds 7–9) (B).

Compound 1

N-(2-Phenoxymethyl-benzoyl)-N’-(isonicotinoyl)-hydrazine

Yield: 52%
M.p.: 128–129 ◦C
Elemental analysis: C20H17N3O3, M = 347; calcd: C = 69.16%, H = 4.9%, N = 12.1%; found:

C = 69.14%, H = 4.93%, N = 12.08%.
1H-NMR (400 MHz, DMSO-d6, δ ppm, J Hz): 10.93 (s, 1H, H-3), 10.52 (s, 1H, H-4), 8.89 (d, 2H,

H-2′, H-6′, 5.9), 7.96 (d, 1H, H-3′′, 7.4), 7.81(d, 2H, H-3′, H-5′, 6.0), 7.63 (t, 1H, H-5′′, 7.3), 7.54 (d, 1H,
H-6′′,7.8), 7.30 (t, 1H, H-4′′, 7.4), 7.34 (t, 2H, H-3′′′, H-5′′′, 8.0), 7.03-6.99 (m, 3H, H-2′′′, H-4′′′, H-6′′′),
5.21 (s, 2H, H-7′′′).

13C-NMR (100 MHz, DMSO-d6, δ ppm): 167.3 (C-5), 164.5 (C-2), 159.0 (C-1′′′), 149.7 (C-2′, C-6′),
140.8 (C-4′), 136.5 (C-1′′), 133.6 (C-2′′), 132.3 (C-5′′), 129.7 (C-3′′′, C-5′′′), 128.5 (C-4′′, 127.7 (C-3′′),
124.6 (C-6′′), 121.7 (C-3′, C-5′), 121.0 (C-4′′′), 114.3 (C-2′′′, C-6′′′), 68.5 (C-7′′′).

FT-IR (ATR in solid, ν cm−1): 3199; 3030; 2915; 2468; 1672; 1607; 1588; 1547; 1510; 1455; 1282; 1240;
1140; 815; 742.

HRMS m/z 348.1346 [M + H]+ (calcd for C20H18N3O3
+: 348.1342).

Rf (silicagel, AcOEt:MeOH = 9:1): 0.50.

Compound 2

N-[2-(p-Fluoro-phenoxymethyl)-benzoyl]-N’-(isonicotinoyl)-hydrazine Yield: 40%

M.p.: 168–169 ◦C
Elemental analysis: C20H16FN3O3, M = 365; calcd: C = 65.75%, H = 4.38%, N = 11.51%; found:

C = 65.73%, H = 4.39%, N = 11.53%.
1H-NMR (400 MHz, DMSO-d6, δ ppm, J Hz): 10.98 (s, 1H, H-3), 10.56 (s, 1H, H-4), 8.87 (d, 2H,

H-2′, H-6′, 6.0), 7.95 (d, 2H, H-3′, H-5′, 5.92), 7.66 (m, 2H, H-3′′, H-6′′), 7.57 (t, 1H, H-5′′, 7.18), 7.51 (t,
1H, H-4′′, 7.41), 7.04 (d, 2H, H-2′′′, H-6′′′, 8.4), 6.9 (d, 2H, H-3′′′, H-5′′′, 8.4), 5.35 (s, 2H, H-7′′′).
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13C-NMR (100 MHz, DMSO-d6, δ ppm): 167.9 (C-5), 164.2 (C-2), 162.1 (C-4′′′), 156.4 (C-1′′′),
150.0 (C-2′, C-6′), 140.8 (C-4′), 136.5 (C-1′′), 133.4 (C-2′′), 131.1 (C-5′′), 129.5 (C-4′′), 127.5 (C-3′′), 127.3
(C-6′′), 122.2 (C-3′, C-5′), 116.2 (C-3′′′, C-5′′′), 114.5 (C-2′′′, C-6′′′), 66.5 (C-7′′′).

FT-IR (ATR in solid, ν cm−1): 3242; 3037; 2923; 2451; 1689; 1598; 1581; 1524; 1443; 1237; 1134; 1114;
828; 739.

HRMS m/z 366.1248 [M + H]+ (calcd for C20H17FN3O3
+: 366.1248).

Rf (silicagel, AcOEt:MeOH = 9:1): 0.57.

Compound 3

N-[2-(p-Chloro-phenoxymethyl)-benzoyl]-N’-(isonicotinoyl)-hydrazine Yield: 25%

M.p.: 145–146 ◦C
Elemental analysis: C20H16ClN3O3, M = 381.5; calcd: C = 62.91%, H = 4.19%, N = 11.01%; found:

C = 62.89%, H = 4.16%, N = 11.03%.
1H-NMR (400 MHz, DMSO-d6, δ ppm, J Hz): 11.2 (s, 1H, H-3), 10.96 (s, 1H, H-4), 9.12 (d, 2H,

H-2′, H-6′, 5.95), 8.34 (d, 2H, H-3′, H-5′, 5.8), 7.99 (m, 2H, H-3′′, H-6′′), 7.81 (t, 1H, H-5′′, 7.0), 7.76 (t,
1H, H-4′′, 7.32), 7.5 (d, 2H, H-3′′′, H-5′′′, 8.0), 6.70 (d, 2H, H-2′′′, H-6′′′, 8.1), 5.74 (s, 2H, H-7′′′).

13C-NMR (100 MHz, DMSO-d6, δ ppm): 167.9 (C-5), 164.4 (C-2), 156.6 (C-1′′′), 150.1 (C-2′, C-6′),
140.7 (C-4′), 136.6 (C-1′′), 133.7 (C-2′′), 131.4 (C-5′′), 125.1 (C-4′′′), 129.9 (C-4′′), 129.2 (C-3′′′, C-5′′′),
128.2 (C-3′′), 127.8 (C-6′′), 122.2 (C-3′, C-5′), 115.4 (C-2′′′, C-6′′′), 67.1 (C-7′′′).

FT-IR (ATR in solid, ν cm−1): 3215; 3037; 2968; 1690; 1598; 1573; 1510; 1452; 1247; 1218; 1139; 826;
741; 713.

HRMS m/z 382.0954 [M + H]+ (calcd for C20H17ClN3O3
+: 382.0952).

Rf (silicagel, AcOEt:MeOH = 9:1): 0.56.

Compound 4

N-[2-(p-Tolyloxymethyl)-benzoyl]-N’-(isonicotinoyl)-hydrazine Yield: 58%

M.p.: 173–175 ◦C
Elemental analysis: C21H19N3O3, M = 361; calcd: C = 69.81%, H = 5.26%, N = 11.63%; found:

C = 69.83%, H = 5.25%, N = 11.65%.
1H-NMR (400 MHz, DMSO-d6, δ ppm, J Hz): 10.96 (s, 1H, H-3), 10.55 (s, 1H, H-4), 8.84 (d, 2H,

H-2′, H-6′, 6.05), 7.91 (d, 2H, H-3′, H-5′, 5.86), 7.62 (m, 2H, H-3′′, H-6′′), 7.55 (t, 1H, H-5′′, 7.22), 7.46 (t,
1H, H-4′′, 7.42), 7.08 (d, 2H, H-3′′′, H-5′′′, 8.2), 6.90 (d, 2H, H-2′′′, H-6′′′, 8.39), 5.30 (s, 2H, H-7′′′), 2.22
(s, 3H, H-8′′′).

13C-NMR (100 MHz, DMSO-d6, δ ppm): 167.5 (C-5), 163.9 (C-2), 156.1 (C-1′′′), 149.6 (C-2′, C-6′),
140.2 (C-4′), 136.0 (C-1′′), 133.0 (C-2′′), 130.5 (C-5′′), 129.8 (C-4′′′), 129.5 (C-4′′), 127.8 (C-3′′′, C-5′′′),
127.6 (C-3′′), 127.5 (C-6′′), 121.8 (C-3′, C-5′), 114.6 (C-2′′′, C-6′′′), 66.5 (C-7′′′), 20.0 (C-8′′′).

FT-IR (ATR in solid, ν cm−1): 3191; 3027; 2919; 2461; 1669; 1607; 1590; 1551; 1510; 1455; 1291; 1244;
1140; 811; 739.

MS m/z 362.1023 [M + H]+ (calcd for C21H20N3O3
+: 362.4018).

Rf (silicagel, AcOEt:CH2Cl2 = 1:1):0.16.

Compound 5

N-[2-(p-Methoxy-phenoxymethyl)-benzoyl]-N’-(isonicotinoyl)-hydrazine Yield: 54%

M.p.: 108–111 ◦C
Elemental analysis: C21H19N3O4, M = 377; calcd: C = 66.84%, H = 5.04%, N = 11.17%; found:

C = 66.82%, H = 5.02%, N = 11.17%.
1H-NMR (400 MHz, CDCl3, δ ppm, J Hz): 10.11 (s, 1H, H-3), 9.72 (s, 1H, H-4), 8.63 (d, 2H, H-2′,

H-6′, 5.5), 7.74 (d, 1H, H-3′′, 7.62), 7.62 (d, 2H, H-3′, H-5′, 5.67), 7.52 (m, 2H, H-5′′, H-6′′), 7.42 (t, 1H,
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H-4′′, 6.64), 6.93 (d, 2H, H-3′′′, H-5′′′, 8.98), 6.78 (d, 2H, H-2′′′, H-6′′′, 8.98), 5.22 (s, 2H, H-7′′′), 3.73 (s,
3H, H-8′′′).

13C-NMR (100 MHz, CDCl3, δ ppm): 166.5 (C-5), 162.8 (C-2), 154.7 (C-1′′′), 152.2 (C-4′′′), 150.6
(C-2′, C-6′), 138.5 (C-4′), 135.7 (C-1′′), 132.1 (C-2′′), 131.8 (C-3′′), 130.4 (C-5′′), 129.0 (C-4′′), 128.7
(C-6′′), 121.0 (C-3′, C-5′), 116.61 (C-3′′′, C-5′′′), 114.82 (C-2′′′, C-5′′′), 69.55 (C-7′′′), 55.72 (C-8′′′).

FT-IR (ATR in solid, ν cm−1): 3199; 3066; 2993; 1683; 1592; 1576; 1550; 1452; 1242; 1213; 1140; 1038;
830; 743.

MS m/z 378.0935 [M + H]+ (calcd for C21H20N3O4
+: 378.4012).

Rf (silicagel, AcOEt:CH2Cl2 = 1:1): 0.13.

Compound 6

N-[2-(p-Ethyl-phenoxymethyl)-benzoyl]-N’-(isonicotinoyl)-hydrazine Yield: 33%

M.p.: 133–135 ◦C
Elemental analysis: C22H21N3O3, M = 375; calcd: C = 70.40%, H = 5.60%, N = 11.20%; found:

C = 70.36%, H = 5.62%, N = 11.23%.
1H-NMR (400 MHz, DMSO-d6, δ ppm, J Hz): 10.90 (s, 1H, H-3), 10.53 (s, 1H, H-4), 8.78 (d, 2H,

H-2′, H-6′, 3.91), 7.83 (d, 2H, H-3′, H-5′, 4.30), 7.60 (m, 2H, H-3′′, H-6′′), 7.53 (t, 1H, H-5′′,7.23), 7.43
(t, 1H, H-4′′, 7.22), 7.09 (d, 2H, H-3′′′, H-5′′′, 8.01), 6.90 (d, 2H, H-2′′′, H-6′′′, 8.01), 5.29 (s, 2H, H-7′′′),
2.50 (m, 2H, overlapping with DMSO-d6 signal, H-8′′′), 1.11 (t, 3H, H-9′′′, 7.42).

13C-NMR (100 MHz, DMSO-d6, δ ppm): 167.6 (C-5), 164.2 (C-2), 156.3 (C-1′′′), 150.5 (C-2′, C-6′),
139.4 (C-4′), 136.1 (C-1′′), 136.0 (C-4′′′), 133.1 (C-2′′), 130.6 (C-5′′), 128.7 (C-4′′), 127.9 (C-3′′′, C-5′′′),
127.6 (C-3′′), 127.6 (C-6′′), 121.4 (C-3′, C-5′), 114.7 (C-2′′′, C-2′′′), 66.5 (C-7′′′), 27.3 (C-8′′′), 15.9 (C-9′′′).

FT-IR (ATR in solid, ν cm−1): 3265; 3030; 2961; 2926; 2870; 1690; 1608; 1581; 1509; 1453; 1218; 1140;
827; 736.

MS m/z 376.0836 [M + H]+ (calcd for C22H22N3O3
+: 376.3283).

Rf (silicagel, AcOEt:CH2Cl2 = 1:1): 0.17.

Compound 7

N,N-di[2-(p-Tolyloxymethyl)-benzoyl]-N’-(isonicotinoyl)-hydrazine

Yield: 5%
M.p.: semisolid
Elemental analysis: C36H31N3O5, M = 585; calcd: C = 73.85%, H = 5.30%, N = 7.18%; found:

C = 73.82%, H = 5.28%, N = 7.19%.
1H-NMR (400 MHz, DMSO-d6, δ ppm, J Hz): 11.85 (s, 1H, H-3), 8.77 (d, 2H, H-2′, H-6′, 5.86), 7.71

(d, 2H, H-3′′, 7.42), 7.57 (m, 4H, H-3′, H-5′′, H-6′′), 7.50 (t, 2H, H-5′′, 7.20), 7.38 (t, 2H, H-4′′, 6.83), 7.04
(d, 4H, H-5′′′, H-3′′′, 8.59), 6.87 (d, 4H, H-2′′′, H-6′′′, 8.40), 5.20 (s, 4H, H-7′′′), 2.21 (s, 6H, H-8′′′).

13C-NMR (400 MHz, DMSO-d6, δ ppm): 169.8(C-5), 164.6 (C-2), 155.9 (C-1′′′), 150.5 (C-2′, C-6′),
138.2 (C-4′), 136.1 (C-1′′), 132.6 (C-2′′), 131.3 (C-5′′), 129.7 (C-4′′′), 129.5 (C-4′′), 127.9 (C-3′, C-5′), 127.4
(C-3′′), 127.2 (C-6′′), 121.0 (C-3′′′, C-5′′′), 114.6 (C-2′′′, C-6′′′), 66.4 (C-7′′′), 20.0 (C-8′′′).

FT-IR (ATR in solid, ν cm−1): 3271; 3030; 2923; 1689; 1609; 1583; 1508; 1217; 1140; 811; 739.
MS m/z 586.2167 [M + H]+ (calcd for C36H32N3O5

+: 586.5563).
Rf (silicagel, AcOEt:CH2Cl2 = 1:1): 0.60.

Compound 8

N,N-di[2-(p-Methoxy-phenoxymethyl)-benzoyl]-N’-(isonicotinoyl)-hydrazine

Yield: 2%
M.p.: semisolid
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Elemental analysis: C36H31N3O7, M = 617; calcd: C = 70.02%, H = 5.02%, N = 6.81%; found:
C = 70.05%, H = 5.00%, N = 6.79%.

1H-NMR (400 MHz, CDCl3, δ ppm, J Hz): 8.62 (d, 2H, H-2′, H-6′, 5.47), 8.53 (s, 1H, H-3), 7.69 (d,
1H, H-3′′, 7.81), 7.55 (d, 2H, H-6′′, 7.62), 7.45 (t, 2H, H-5′′, 7.48), 7.33 (t, 2H, H-4′′, 7.61), 7.15 (d, 2H,
H-3′, H-5′, 5.86), 6.88 (d, 4H, H-3′′′, H-5′′′, 9.18), 6.78 (d, 4H, H-2′′′, H-6′′′, 8.98), 5.19 (s, 4H, H-7′′′),
3.72 (s, 6H, H-8′′′).

13C-NMR (100 MHz, CDCl3, δ ppm): 170.4 (C-5), 164.4 (C-2), 154.4 (C-1′′′), 152.4 (C-4′′′), 150.5
(C-2′, C-6′), 138.7(C-4′), 135.5 (C-1′′), 133.5 (C-2′′), 131.4 (C-5′′), 131.1 (C-4′′), 128.7 (C-3′′), 126.7 (C-6′′),
120.8 (C-3′, C-5′), 116.8 (C-3′′′, C-5′′′), 114.9 (C-2′′′, C-6′′′), 68.6 (C-7′′′), 55.7 (C-8′′′).

FT-IR (ATR in solid, ν cm−1): 3267; 3065; 2932; 1688; 1556; 1503; 1463; 1207; 1139; 1032; 821; 737.
MS m/z 618.2467 [M + H]+ (calcd for C36H32N3O7

+: 618.5551).
Rf (silicagel, AcOEt:CH2Cl2 = 1:1): 0.52.

Compound 9

N,N-di[2-(p-Ethyl-phenoxymethyl)-benzoyl]-N’-(isonicotinoyl)-hydrazine

Yield: 6%
M.p.: semisolid
Elemental analysis: C38H35N3O5, M = 613; calcd: C = 74.39%, H = 5.71%, N = 6.85%; found:

C = 74.37%, H = 5.69%, N = 6.87%.
1H-NMR (DMSO, δ ppm, J Hz): 11.97 (s, 1H, H-3), 8.77 (d, 2H, H-2′, H-6′, 4.69), 7.73 (d, 2H,

H-3′′, 7.62), 7.58 (m, 4H, H-3′, H-5′, H-6′′), 7.50 (t, 2H, H-5′′, 7.42), 7.37 (t, 2H, H-4′′, 7.03), 7.07 (d, 4H,
H-3′′′, H-5′′′, 8.01), 6.90 (d, 4H, H-2′′′, H-6′′′, 8.20), 5.21 (s, 4H, H-7′′′), 2.50 (m, 4H, overlapping with
DMSO-d6 signal, H-8′′′), 1.12 (t, 6H, H-9′′′, 7.43).

13C-NMR (DMSO, δ ppm): 169.9 (C-5), 164.7 (C-2), 156.1 (C-1′′′), 150.5 (C-2′, C-6′), 138.5 (C-4′),
136.1 (C-1′′), 132.7 (C-4′′′), 131.2 (C-2′′), 129.6 (C-5′′), 128.6 (C-4′′), 128.0 (C-3′′′, C-5′′′), 127.4 (C-3′′),
127.2 (C-6′′), 121.1 (C-3′, C-5′), 114.6 (C-2′′′, C-6′′′), 66.4 (C-7′′′), 27.3 (C-8′′′), 15.8 (C-9′′′).

FT-IR (ATR in solid, ν cm−1): 3231; 3022; 2958; 2923; 1674; 1628; 1599; 1554; 1507; 1476; 1244; 1134;
831; 748.

MS m/z 614.0954 [M + H]+ (calcd for C38H36N3O5
+: 614.3095).

Rf (silicagel, AcOEt:CH2Cl2 = 1:1): 0.63.

3.2.2. 1,3,4-Oxadiazoles Synthesis

A quantity of 1 mmol N,N’-diacylhydrazine was suspended in 15 mL toluene. After 20 min of
stirring, 5 mmol phosphoryl chloride was added dropwise. The reaction mixture was refluxed for
6 h and stirred overnight at room temperature. The solvent and residual phosphoryl chloride were
removed under reduced pressure. The residue was taken up in dichloromethane and washed three
times with 5% NaOH solution and three times with saturated aqueous NaCl solution. The organic
layer was dried over anhydrous sodium sulfate and distilled under reduced pressure to remove the
solvent. The final compound (Figure 9) was recrystallized using ethanol.
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Compound 10

22-[2-(Phenoxymethyl)-phenyl]-5-(pyridine-4-yl)-1,3,4-oxadiazole

Yield: 62%
M.p.: 210–211 ◦C
Elemental analysis: C20H15N3O2, M = 329; calcd: C = 72.95%, H = 4.56%, N = 12.77%; found:

C = 72.97%, H = 4.58%, N = 12.74%.
1H-NMR (400 MHz, DMSO-d6, δ ppm, J Hz): 8.87 (d, 2H, H-2′, H-6′, 4.00), 8.24 (d, 1H, H-3′′,

8.00), 8.05 (d, 2H, H-3′, H-5′, 4.00), 7.80 (d, 1H, H-6′′, 8.00), 7.72 (t, 1H, H-5′′, 7.99), 7.62 (t, 1H, H-4′′,
7.99), 7.29 (d, 2H, H-3′′′, H-5′′′, 8.00), 7.02-6.93 (m, 3H, H-2′′′, H-4′′′, H-6′′′), 5.58 (s, 2H, H-7′′′).

13C-NMR (100 MHz, DMSO-d6, δ ppm): 164.8 (C-5), 162.1(C-2), 158.2(C-1′′′), 149.2 (C-2′, C-6′),
136.7 (C-4′), 132.3 (C-5′′), 132.0 (C-2′′), 130.4 (C-4′′), 129.6 (C-3′′′, C-5′′′), 129.2 (C-6′′), 128.6 (C-3′′),
121.4 (C-1′′),121.1 (C-4′′′), 120.0 (C-3′, C5′), 114.5 (C-2′′′, C-6′′′), 67.6 (C-7′′′).

FT-IR (ATR in solid, ν cm−1): 3030; 2964; 2815; 2160; 1604; 1574; 1552; 1503; 1452; 1232; 1125; 1015;
824; 742.

HRMS m/z 330.1237 [M + H]+ (calcd for C20H16N3O2
+: 330.1237).

Rf (silicagel, AcOEt:MeOH = 9:1): 0.72.

Compound 11

22-[2-(p-Fluoro-phenoxymethyl)-phenyl]-5-(pyridine-4-yl)-1,3,4-oxadiazole

Yield: 65%
M.p.: 298–299 ◦C
Elemental analysis: C20H14FN3O2, M = 347; calcd: C = 69.16%, H = 4.03%, N = 12.1%; found:

C = 69.15%, H = 4.05%, N = 12.12%.
1H-NMR (400 MHz, DMSO-d6, δ ppm, J Hz): 8.74 (d, 2H, H-2′, H-6′, 4.68), 8.21 (d, 1H, H-3′′, 7.3),

7.84 (d, 2H, H-3′, H-5′, 5.7), 7.75 (d, 1H, H-6′′, 7.42), 7.67 (t, 1H, H-5′′, 6.6), 7.57 (t, 1H, H-4′′, 7.6), 6.87
(d, 2H, H-3′′′, H-5′′′, 8.21), 7.03 (d, 2H, H-2′′′, H-6′′′, 8.2), 5.51 (s, 2H, H-7′′′).

13C-NMR (100 MHz, DMSO-d6, δ ppm): 164.9 (C-5), 162.8 (C-2), 156.6 (C-1′′′), 152.1 (C-4′′′),
151.3 (C-2′, C-6′), 137.2 (C-4′), 132.5 (C-5′′), 131.0 (C-2′′), 129.9 (C-1′′), 129.8 (C-3′′), 129.5 (C-6′′), 129.0
(C-4′′), 120.7 (C-3′, C5′), 115.2 (C-3′′′, C-5′′′), 114.9 (C-2′′′, C-6′′′), 68.3 (C-7′′′).

FT-IR (ATR in solid, ν cm−1): 3029; 2974; 2844; 2163; 1608; 1581; 1508; 1455; 1241; 1124; 1114; 1015;
841; 739.

HRMS m/z 348.1145 [M + H]+ (calcd for C20H15FN3O2
+: 348.1142).

Rf (silicagel, AcOEt:MeOH = 9:1): 0.79.
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Compound 12

22-[2-(p-Chloro-phenoxymethyl)-phenyl]-5-(pyridine-4-yl)-1,3,4-oxadiazole

Yield: 68%
M.p.: 341–342 ◦C
Elemental analysis: C20H14ClN3O2, M = 363.5; calcd: C = 66.02%, H = 3.85%, N = 11.55%; found:

C = 66.01%, H = 3.87%, N = 11.57%.
1H-NMR (400 MHz, DMSO-d6, δ ppm, J Hz): 8.71 (d, 2H, H-2′, H-6′, 4.68), 8.14 (d, 1H, H-3′′, 7.3),

7.81 (d, 2H, H-3′, H-5′, 5.82), 7.73 (d, 1H, H-6′′, 7.35), 7.64 (t, 1H, H-5′′, 6.65), 7.58 (t, 1H, H-4′′, 7.69),
7.52 (d, 2H, H-3′′′, H-5′′′, 8.39), 6.74 (d, 2H, H-2′′′, H-6′′′, 8.39), 5.49 (s, 2H, H-7′′′).

13C-NMR (100 MHz, DMSO-d6, δ ppm): 164.1 (C-5), 161.9 (C-2), 155.9 (C-1′′′), 150.3 (C-2′, C-6′),
136.5 (C-4′), 132.0 (C-5′′), 130.4 (C-2′′), 129.4 (C-1′′), 129.2 (C-3′′), 129.0 (C-6′′), 128.7 (C-3′′′, C-5′′′),
128.1 (C-4′′), 124.8(C-4′′′), 120.0 (C-3′, C5′), 114.8 (C-2′′′, C-6′′′), 67.7 (C-7′′′).

FT-IR (ATR in solid, ν cm−1): 3030; 2991; 2843; 2159; 1604; 1582; 1551; 1510; 1455; 1218; 1125; 840;
745; 713.

HRMS m/z 364.0837 [M + H]+ (calcd for C20H15ClN3O2
+: 364.2827).

Rf (silicagel, AcOEt:MeOH = 9:1): 0.75.

Compound 13

22-[2-(p-Tolyloxymethyl)-phenyl]-5-(pyridine-4-yl)-1,3,4-oxadiazole

Yield: 73%
M.p.: 249–250 ◦C
Elemental analysis: C21H17N3O2, M = 343; calcd: C = 73.47%, H = 4.96%, N = 12.24%; found:

C = 73.45%, H = 4.93%, N = 12.27%.
1H-NMR (400 MHz, DMSO-d6, δ ppm, J Hz): 8.79 (d, 2H, H-2′, H-6′, 4.71), 8.22 (d, 1H, H-3′′, 7.29),

7.89 (d, 2H, H-3′, H-5′, 5.73), 7.78 (d, 1H, H-6′′, 7.40), 7.70 (t, 1H, H-5′′, 6.63), 7.62 (t, 1H, H-4′′, 7.69),
7.08 (d, 2H, H-3′′′, H-5′′′, 8.35), 6.87 (d, 2H, H-2′′′, H-6′′′, 8.44), 5.53 (s, 2H, H-7′′′), 2.21 (s, 3H, H-8′′′).

13C-NMR (100 MHz, DMSO-d6, δ ppm): 164.5 (C-5), 162.4 (C-2), 156.1 (C-1′′′), 150.8 (C-2′, C-6′),
136.8 (C-4′), 132.2 (C-5′′), 130.4 (C-2′′), 129.9 (C-3′′′, C-5′′′), 129.6 (C-1′′), 129.5 (C-3′′), 129.1 (C-6′′),
128.5 (C-4′′), 121.4 (C-4′′′), 120.2 (C-3′, C5′), 114.5 (C-2′′′, C-6′′′), 67.7 (C-7′′′), 20.1 (C-8′′′).

FT-IR (ATR in solid, ν cm−1): 3028; 2924; 2870; 2158; 1608; 1587; 1550; 1509; 1457; 1240; 1125;
810; 735.

HRMS m/z 344.1394 [M + H]+ (calcd for C21H18N3O2
+: 344.3465).

Rf (silicagel, CH2Cl2:MeOH = 5:1): 0.60.

3.3. Anti-Mycobacterial Activity

The M. tuberculosis clinical strain used for anti-mycobacterial assay was maintained on Middlebrook
7H9 broth. The anti-mycobacterial activity was evaluated by the microplate Alamar Blue assay (MABA)
as stated by Franzblau et al. [71]. We used serial dilutions of the new synthesized compounds and
isoniazid, the final drug concentrations being between 25 µg/mL to 0.012 µg/mL. Equal volumes of
M. tuberculosis inoculum and tested compounds were mixed and incubated at 37 ◦C for eight days in
96-well plates covered and sealed with parafilm. On day nine, a volume of 10 µL of freshly prepared
mixture (1:1) of Alamar Blue reagent (0.1 mg/mL) and tween 80 (10%) was added to each well and kept
at 37 ◦C for another 24 h. A blue color in the well was interpreted as no bacterial growth, and a pink
color was scored as growth. The MIC (Minimal Inhibition Concentration) was defined as the lowest
drug concentration, which prevented a color change from blue to pink.
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3.4. Antibacterial Activity

The antimicrobial activity of the newly synthesized compounds was determined according to
Matei et al. [51], using the following strains: Acinetobacter baumanii, Citrobacter koseri, Escherichia coli,
Enterobacter cloacae, Enterococcus faecalis, Klebsiella pneumonia, Morganella morganii, Pseudomonas aeruginosa,
Peudomonas putida, Salmonella typhimurium, Serratia marcescens, Shigella sonnei, Stenotrophomonas
maltophilia, Staphylococcus hominis, Staphylococcus aureus, and coagulase-negative staphylococci, using
an adapted agar disk diffusion technique. Briefly, bacterial suspensions of 0.5 McFarland density
obtained from 24 h cultures were seed on solid medium. Subsequent, a volume of 5 µL of tested
compounds (1 mg/mL solutions) were spotted on inoculated plates. Anti-bacterial activity was assessed
after incubation for 24 h at 37 ◦C.

3.5. Cell Culture

Two cell lines, HCT-8 (CCL-224) and HT-29 (ATCC-HTB-38), were used to evaluate the activity of
new compounds on eukaryotic cells. These cells were maintained as adherent cultures in Dulbecco′s
Modified Essential Medium (DMEM) (Sigma, Ronkonkoma, NY, USA) supplemented with 10%
heat-inactivated fetal bovine serum (Sigma, USA) at 37 ◦C, 5% CO2, in a humid atmosphere.

3.6. Apoptosis Detection

The apoptotic effect of tested compounds was evaluated using Annexin V-FITC Apoptosis
Detection Kit I (BD Bioscience Pharmingen, USA) according to manufacturer protocol. In this regard,
HT-29 cells (3 × 106), were seeded in 3.5 cm diameter wells and treated with 50 µg/mL of tested
compounds. After 24 h, the cells were resuspended in 100 µL of binding buffer and stained with 5 µL
Annexin V-FITC and 5 µL propidium iodide for 10 min in dark. At least 10,000 events from each
sample were acquired using a Beckman Coulter flow cytometer. The analysis was done using FlowJo v
8.8.6 software (Ashland, OR, USA).

3.7. Cell Cycle Analysis

To assess the influence of new compounds on cell cycle, a number of 3 × 106 HT-29 cells were
treated with compounds at 50 µg/mL concentration for 24 h. Treated cells were harvested, washed in a
cold phosphate-buffered saline solution (PBS), then fixed in cold ethanol (70%) and stored at −20 ◦C.
After 24 h, the cells were washed with PBS, resuspended in 100 µl PBS, treated with 1 mg/mL RNase
A and labeled with 100 µg/mL propidium iodide in the dark at room temperature for 30 min. DNA
content of cells was quantified on a Beckman Coulter EPICS XL flow cytometer and analyzed using
FlowJo 8.8.6 software (Ashland, OR, USA).

3.8. Quantitative RT-PCR for Analysis of Genes Expression

A number of 3 × 106 HT-29 or HCT-8 cells treated with isoniazid and compounds 1–13 at final
concentration of 50 µg/mL for 24 h were used to extract total RNA with Trizol Reagent (Invitrogen,
USA) as indicated in the protocol. For each sample, 2 µg of total RNA was reverse transcripted using
High Capacity cDNA Reverse Transcription Kit with RNAse inhibitor (Applied Biosystem). Following,
50 ng of cDNA from each sample was used in real-time PCR reaction that was performed on an
ABI 7300 Real Time PCR System. Gene expression was evaluated using pre-validated Taqman Gene
Expression Assays (Applied Biosystems) for NAT1 (Hs00265080_s1), NAT2 (Hs01854954_s1), BAX
(Hs00180269_m1), MCL1 (Hs00172036_m1), BCL2 (Hs00153350_m1), CASP3 (Hs00234387_m1), CASP7
(Hs00169152_m1), CASP8 (Hs00154256_m1), CASP9 (Hs00154261_m1), CCNB1 (Hs00259126_m1),
CDK1 (Hs00938777_m1), CCNA2 (Hs00153138_m1), CDC20 (Hs00426680_mH) as well as human beta
actin (endogenous control). Also, for CYP1A1, CYP2C19, CYP3A4 and GAPDH (endogenous control),
forward and reverse primers were used as described by Matei et al. [51]. Results were analyzed with
RQ study software (Applied Biosystems) applying ∆∆CT method.
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4. Conclusions

Starting from isoniazid, six new N,N’-diacylhydrazines were obtained, together with three new
N,N,N’-triacylhydrazines ones; also, the N,N’-diacylhydrazines were converted by synthesis in the
corresponding new oxadiazoles. All the compounds were characterized by IR, NMR, MS, and elemental
analysis. The newly obtained derivatives of isoniazid exhibit different biological activities, depending
on their structure. The best antioxidant and antibacterial activities (including anti-Mycobacterium
tuberculosis effects) were proved by compound 9. Compounds 7–9 determined cell cycle blocking in
G0/G1 phase. Moreover, compound 7 proved to be the most toxic, inducing apoptosis in 54% of cells
after 72 h, an effect that can be predicted by the increased expression of mRNA caspase 3 and 7 after a
24 h treatment. The influence of tested compounds on gene expression of some enzymes implicated in
drug metabolism indicate that newly synthesized compounds could be metabolized on other pathways
than NAT2, spanning adverse effects of isoniazid.

In summary, compound 9 had the best antibacterial activity and could be used as disinfectant
agent, and, along with compounds 7 and 8, seemed to have antitumor potential. Further studies of
action mechanism of these compounds on cell cycle may bring some new significant information
regarding their activity potential.
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