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Introduction
Research in developing computational algorithms for drug-
target interaction (DTI) prediction and ADMET (absorp-
tion, distribution, metabolism, excretion, and toxicity) has 
shown stupendous growth in the past few years.1–5 Presently, 
the entire drug discovery and development processes require 
~2 billion US dollars and approximately 12 years for any 
given drug and target to make it to market. Using virtual 
screening methods, it is possible to reduce the time and cost 
involved in the drug discovery process. Big pharma compa-
nies have adopted computational methods to make their 
drug discovery processes more efficient. DTI prediction is 
useful in lead compound identification, an important step in 
the multi-phase drug discovery process. Even though identi-
fying the lead compound (discovery stage) takes less time 
compared with animal and human testing (development 
stage),6 the quality of the lead compound obtained at discov-
ery stage plays an essential role in reducing the attrition rate 
during the development stage. Drug-target interaction pre-
diction is also useful for other tasks like drug activity predic-
tion and drug repurposing which are briefly discussed in this 
article.

For any given disease, a set of protein targets are initially 
identified such that their functional inhibition will reduce the 
ill effects of the disease. In lead compound identification, the 
aim is to identify a drug molecule that interacts with the bind-
ing sites of these protein targets, thereby inhibiting their func-
tional activity.7 In an in vitro testing setup, thousands of 
small-molecule compounds are tested against the target pro-
tein to test for bioactivity. This procedure is slow, laborious, and 
expensive. With in silico methods, however, it is possible to 
reduce the search space to a smaller number of molecules by 
virtually screening the drugs that are more probable to interact 
with the target protein. If the three-dimensional (3D) structure 
of the target protein is known, then docking models can be 
used to prioritize a compound that binds well with the target 
protein. Unfortunately, the 3D structure is often unavailable for 
common protein target types (ie, G-protein-coupled receptors 
[GPCRs]).7,8 In cases where the 3D structure of a target is 
unknown, machine learning (ML) models that use compound 
structure and protein sequence information are used to per-
form virtual screening. These ML models are either similarity-
based approaches8 or descriptor-based approaches.9,10 Both 
approaches use chemical structure information or mass 
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spectroscopy information of compounds and amino acid 
sequence information of proteins as input data. Similarity-
based approaches are more common and they calculate drug-
drug similarities using scores like SIMCOMP11 and 
protein-protein similarities using Smith-Waterman (SW) 
scores.12 In one of the seminal papers in similarity-based DTI 
prediction, Bleakley and Yamanishi13 use a bipartite graph 
learning method to predict drug interaction profiles for targets 
and vice versa. They created a golden standard dataset that is 
later used by most DTI prediction algorithms as a test bed. The 
dataset contains 4 DTI networks corresponding to enzymes, 
GPCRs, ion channels, and nuclear receptors. For example, in 
the enzyme data, there are 445 drugs and 664 proteins 
(enzymes) with a total of 2926 known DTIs. Similarity matri-
ces for drugs and proteins are calculated using SIMCOMP and 
SW scores. Using these matrices, embeddings (low-dimen-
sional vectors) for all drugs and proteins are calculated such 
that a drug D1 and a protein P1 are close to each other if they 
are known to interact. Similarly, drug D1 and drug D2 are close 
to each other if their structural similarity is high and the same 
applies for proteins. This low-dimensional space where drugs 
and proteins interact is called the pharmacologic space. Later 
works also used the same dataset and built algorithms that use 
variations of these low-dimensional embeddings.2,3,13 On the 
other hand, descriptor-based models extract feature vectors 
from protein sequences and chemical structures and use stand-
ard ML techniques like support vector machines (SVMs) and 
artificial neural networks to build models that predict DTIs.9,10 
In this study, we explore the utility of a new imaging-based 
descriptor obtained through RNA interference (RNAi) phe-
notyping. These imaging data corresponding to protein kinases 
are generated from an siRNA human kinome screen in engi-
neered cell models that allow for imaging-based visualization 
and quantitation of several steps of the nuclear receptor gene 
transcription activation pathways. Feature descriptors are 
extracted from the imaging data to build descriptor-based ML 
models and similarity-based models.

Protein kinases have become some of the most significant 
drug targets in cancer therapy. They are known to modulate the 
activity of many human proteins through phosphorylation, an 
essential mechanism to regulate the molecular drivers of cell 
proliferation, an out-of-control process in cancer cells. 
Successful kinase-based cancer therapy demonstrates that it is 
possible to reduce the growth of cancer cells by regulating 
phosphorylation through protein kinase inhibition. To find 
additional small-molecule inhibitors of target kinases, we pro-
pose a novel, imaging-based approach using high-content 
analysis (HCA). To this end, we have used a large imaging 
dataset generated by high-throughput microscopy. This dataset 
is created from an siRNA human kinome screen to analyze the 
effects of each kinase on 2 molecular drivers known to be 
important in breast cancer growth, estrogens and progestins, 
via activation of their cognate receptors, estrogen receptor (ER) 

and progesterone receptor (PR), members of the nuclear recep-
tor family of transcription factors. These molecules are essen-
tial regulatory hormones in the body during development and 
reproduction, and are implicated in the progression of multiple 
cancer types, including breast, ovarian, endometrial, and uter-
ine.14 In addition to regulation by ligand, both ER and PR are 
regulated by multiple phosphorylation sites targeted by protein 
kinases that are part of diverse intracellular signaling net-
works.15 To visualize kinase-specific effects on these signaling 
pathways, an siRNA human kinome screen was performed 
using engineered cells containing a stable, microscopically vis-
ible, multi-copy integration of the ER-responsive prolactin 
promoter-enhancer unit (PRL-HeLa). These cell lines, follow-
ing the expression of GFP-ERα or chimeric GFP-PRB-ERα, 
allow for direct and simultaneous visualization and quantita-
tion of receptor DNA binding, chromatin remodeling, and 
transcriptional regulation in response to estrogens or proges-
tins.16–19 These cell lines, combined with a custom automated 
image analysis platform,20 have been previously used to dis-
criminate and classify the mechanistic effects of estrogens and 
progestins. These data have been included in mathematical 
models predicting the potential endocrine disrupting activity 
of compounds by the Environmental Protection Agency.21

From these imaging data, we extract 2 protein kinase 
descriptors that provide valuable information regarding drug-
kinase interactions. To date, to the best of our knowledge, 
imaging-based descriptors for protein kinases have not been 
used within virtual screening. Recently, however, compound-
imaging-based descriptors were proposed22 that show promis-
ing results that encourage more research in image-based feature 
extraction procedures. A detailed description of data sources, 
feature extraction procedures, and data type information is pro-
vided in the next section. Later, in section “Methods and 
Results,” ML models are built for ligand-based drug discovery 
and target-based drug discovery. We also discuss various 
approaches including single-task learning, multi-task learning, 
and collaborative filtering (CF), and their use in different drug 
discovery scenarios. In section “Discussion,” we discuss the 
benefits of image-based methods in target-based drug discov-
ery and also comment on the pros and cons of different ML 
approaches.

Data
Three kinds of data are leveraged to build and test computa-
tional models that predict drug-kinase interactions:

1. Bioactivity data;
2. Kinase descriptors;
3. Compound descriptors.

Although our main aim is to show the utility of imaging 
descriptors for kinases through target-based discovery, we also 
provide additional models and results that use both kinase and 
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drug descriptors. A detailed description of data sources, extrac-
tion procedures, and data types of all 3 kinds of data is provided 
below.

Bioactivity data

The end goal of virtual screening is to predict interactions 
between untested compound and target kinase pairs. For this 
purpose, we collected drug-kinase interaction data from 
DrugKiNET portal23 which has information of more than 800 
compounds that have been experimentally determined to 
interact with human protein kinases. DrugKiNET has curated 
these data from several sources including (a) the National 
Center for Biotechnology Information (NCBI); (b) the 
PubChem Compound database24; (c) the Kinase SARfari 
database from the European Molecular Biology Laboratory 
(EMBL) European Bioinformatics Institute25; and (d) hun-
dreds of research publications. Each drug, along with its bind-
ing affinities with different protein kinases, is provided in a list 
format on the website. Most of the binding affinities are meas-
ured using equilibrium dissociation constant (Kd) values and a 
few with half maximal inhibitory concentration (IC50). 
Because most drug-like compounds have Kd, IC50 val-
ues < 1 µM, we chose 1 µM as a concentration threshold to 
convert the binding affinity matrix to a binary DTI matrix. If 
the concentration is less than 1 µM, then a binary value of 1 is 
associated with it and vice versa. This results in a matrix that is 
99% sparse (ie, only 1% of the values are non-zero entries that 
represent interacting drug-target pairs). The final matrix has a 
shape of 725 × 246 (drugs × targets).

Kinase descriptors

In target-based drug discovery, kinase descriptors are used as 
inputs to the ML models to predict their interactions with 
various drug compounds. Here, kinase descriptors are gener-
ated from HCA datasets that are used to determine the impact 
of kinase signaling networks on ER and PR signaling in 
response to hormones. An imaging dataset generated from an 
siRNA human kinome screen is used to analyze the signaling 
effects of each kinase on ER or PR activity. The Stealth RNAi 
Human Kinome Collection (Invitrogen) contains 636 human 
kinase targets with 3 individual non-overlapping Stealth RNAi 
duplexes per target. Library plates were thawed and siRNAs 
were printed into 2 replicate 384-well optical bottom plates in 
quadruplicate wells using a BioMek FX (Beckman Coulter) 
liquid handling platform. To reduce screening size, target rep-
licates A, B, and C were printed into the same well. siRNA was 
complexed by the addition of 20 µL of diluted XtremeGENE 
(Roche) in Opti-MEM (Invitrogen) using a µFill (BioTek) 
followed by incubation for 30 minutes at room temperature. 
GFP-ER:PRL-HeLa or GFP-PRB-ER:PRL-HeLa cells 
were trypsinized and resuspended in growth media without 
penicillin-streptomycin and added at a concentration of 1500 

cells/well using a µFill transfer device. GFP-ER:PRL-HeLa 
cells express full-length ERα with an N-terminal fusion to 
GFP (REF). GFP-PRB-ER:PRL-HeLa cells express full-
length chimeric PRB with a region containing the PR DBD 
that has been swapped for a region containing the ERα DBD 
(amino acids 183-254) and an N-terminal fusion to GFP 
(Trevino REF). Cells were placed into a 37 C/5% CO2 humidi-
fied incubator for 72 hours, treated with either estrogen (E2) or 
progestin (R5020) for 2 hours, and then fixed and nuclei stained 
with 4′,6-diamidino-2-phenylindole (DAPI).

Image datasets were collected using a GE Healthcare IN 
Cell 6000 automated imaging cytometer using reflection-based 
autofocusing, a 40×/0.90 Nikon S-luor objective, and an 
sCMOS 5.5-megapixel camera and LED illumination. 
Z-stacks at 0.5 µm optical section intervals were collected and 
maximum-projected for analysis. Cell, nucleus, array segmen-
tation, and signal quantification were performed using the 
myImageAnalysis web application powered by Pipeline Pilot 
software (Biovia) as described previously in Szafran and 
Mancini.20 Aggregated, mitotic, and apoptotic cells were 
removed using filters based on nuclear size, nuclear shape, and 
nuclear intensity. A final panel of 5 features capturing kinase 
siRNA effects on ER/PR expression, nuclear translocation, 
DNA binding, and chromatin remodeling was collected on a 
per-cell basis. Because hundreds of cells are associated with a 
single siRNA analysis, there are multiple five-dimensional 
(5D) features associated with each kinase. The following 2 
aggregation methods are used to extract a single descriptor for 
each kinase:

Population-median-based feature. There is a 5D feature asso-
ciated with each cell corresponding to 1 kinase. Therefore, 
the median feature of all the cells corresponding to an 
siRNA is used as the kinase descriptor.

Bag-of-words (BoW) feature. The median-based method 
mentioned above ignores heterogeneity across all cells in 
the image. This variance/heterogeneity can be well captured 
using a BoW-based feature vector.26 We compare model 
predictions using both of these feature descriptors in sec-
tion “Methods and Results.” More information regarding 
the BoW feature extraction process is provided in section 
“Methods and Results.”

Compound descriptors

Drug-target interactions, also known as ligand-protein interac-
tions, depend on the structure of both the ligand and the pro-
tein. Due to this reason, we assume that compounds that are 
structurally similar will interact with the same proteins, and vice 
versa. Descriptors such as extended-connectivity fingerprints 
(ECFPs) capture the structural information of compounds that 
are widely used by the drug discovery community for compound 
similarity searching, quantitative structure-activity relationship 
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(QSAR) modeling for lead compound generation, and absorp-
tion, distribution, metabolism, excretion and toxicity (ADMET) 
prediction models. ECFPs are a class of circular fingerprints 
that can capture structural information of molecules. A brief 
overview of the ECFP generation procedure is provided in the 
supplementary section, and a more in-depth analysis can be 
obtained from previous studies.27,28 ECFPs provide substruc-
ture information by calculating features based on circular neigh-
borhoods of atoms present in the molecules. In our study, we use 
a 1024-bit ECFP feature to represent each drug compound. 
Each bit indicates the presence/absence of a certain substruc-
ture. This substructure information is encoded in the ECFP 
algorithm in the form of hash tables. We have used RDKit, an 
open-source cheminformatics package, to extract these 
1024-dimensional ECFPs.29

Methods and Results
In this section, the following 3 types of drug discovery tasks are 
described and posed as ML problems (see Figure 1):

1. Lead compound identification;
2. Drug activity prediction;
3. Drug repurposing.

We build models to solve the above tasks and then compare 
their performances using area under the receiver operating 
characteristic curve (AUC) and area under the precision-recall 
(AUPR) curve metrics.

Lead compound identif ication

In lead compound identification (eg, target-based drug dis-
covery), kinase descriptors are used to predict the interac-
tions of a particular target kinase with various drug 
compounds. Two datasets are used for this purpose. Dataset-1 
contains the kinase descriptors extracted from the experi-
mental data describing the effects of kinase knockdown on 
ER/PR activity. Dataset-2 contains kinase “interactions” 
derived from a publicly available database (DrugKiNET) 

that describes known drug-kinase interactions. Machine 
learning models attempt to bridge the 2 datasets to predict 
the probability of active drugs from a known kinase effect on 
ER/PR signaling. These models are trained with kinase 
descriptors as inputs and their interaction with drug com-
pounds (binary labels: Activity/No Activity) as outputs. 
These models measure descriptor similarity of new kinases 
with existing kinases and use this information to predict the 
bioactivity of new kinases. As mentioned in section “Data,” 
we use 2 types of kinase imaging descriptors as input features 
to the learning models: a population-median-based feature 
and a BoW feature. To train ML models that have the ability 
to predict new kinase-drug interactions, we need to split the 
available data into training and testing data (see Figure 1A). 
The testing data are used only to validate the performance of 
the models. In total, 70% of the kinases and their drug inter-
action profiles are used for training, whereas the remaining 
30% are considered as new kinase targets for which the drug 
interaction profile is unknown. In the next subsection, we 
discuss the BoW feature extraction procedure and its bene-
fits, followed by a brief description of the different ML mod-
els used.

BoW feature extraction procedure. Bag-of-words-based features 
are frequently used in document classification and computer 
vision tasks.26,30 If an entity (eg, an image) has multiple distinct 
features associated with it, then using BoW it is possible to 
extract a single descriptor that contains information about all 
the different features. For example, consider an image classifi-
cation task where the task is to classify a given image as a cat or 
a dog. Multiple randomly sampled image patches are used to 
represent each image. In case of a dog image, these random 
patches may contain nose parts, ears, tail, and other parts that 
constitute a typical dog. This patch sampling process is repeated 
for all the training images and each patch is represented as a 
point in a high-dimensional space. By clustering these points, 
one can observe that specific features like long ears of dogs and 
small noses of cats belong to the same clusters. This ability to 
capture complex information by leveraging heterogeneity of 

Figure 1. The machine learning setups for various drug discovery tasks: (A) lead compound identification—the task is to predict drug interactions with 

new kinase targets to find lead compounds that show significant bioactivity when tested experimentally; (B) drug activity prediction—the task is to predict 

the target interactions of new drugs to find drug-like molecules; (C) drug repurposing—given partially known bioactivity data, the task is to predict 

unknown interactions. This is useful for finding new therapeutic uses for already established drugs.
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multiple local features across the image field makes the BoW 
descriptor well suited for image classification tasks.

In our work presented here, a kinase siRNA will impact one 
or more of the multiple imaging features available, each associ-
ated with an individual cell. Each imaging feature is repre-
sented as a point in the 5D space. The median-based method 
calculates the centroid of all the data points while ignoring the 
variance information. However, the BoW method tries to cap-
ture the variance by learning a distribution over all the available 
points. The steps involved in a BoW feature extraction proce-
dure are as follows:

1. Cluster all data points from all kinase screens into k 
groups;

2. Multiple cells are analyzed in each kinase screen. 
Therefore, for each kinase, calculate a normalized histo-
gram for which bins are the cluster indices and the fre-
quency values are the number of points of that kinase 
belonging to that cluster index;

3. Use these normalized histograms (k-dimensional vector) 
as features for each kinase.

If the distribution (the BoW feature vector) is very narrow, 
then it implies that the feature variance for that particular 
kinase siRNA is low. On the contrary, if the distribution is 
wide, then the feature variance is high (see Figure 2 for exam-
ples of BoW vectors).

Single-task learning and multi-task learning. In this subsection, 
we discuss single- and multi-task approaches for building DTI 
prediction models. In lead compound identification, predicting 
interactions of all test kinases with a single compound is con-
sidered as a “single task.” Therefore, the total number of tasks is 
equal to the number of compounds. When separate models are 

trained to predict kinase interactions for each compound, then 
that approach is called single-task learning. On the other hand, 
multi-task learning attempts to learn a single model to predict 
the bioactivities of a kinase with multiple compounds. In 
multi-task learning (see Figure 3), mainly multi-task neural 
networks, features from any kinase are extracted using a shared 
network and then separate models are learned using these fea-
tures as inputs. This method can extract better initial features 
because data from all the compounds (more data) are used to 
build the shared network.31,32 We use a 2-layered multi-task 
neural network that predicts the entire drug interaction profile 
of each kinase. For single-task learning, we have used ML 
models that include (a) logistic regression, (b) k-nearest neigh-
bor (KNN), (c) neural networks, (d) random forest, and (e) 
SVMs. The results for each of these single-task learning mod-
els and multi-task learning are shown in Table 1.

The scikit-learn package in Python is used to implement all 
the single-task learning algorithms. For the random forest clas-
sifier, we have used 100 decision trees with a maximum depth 
of 5. For the neural network classifier, a 2-layered neural net-
work with 50 hidden layer units and 1 output unit is used for 
predicting each task; a sigmoid activation function is used in 
both the hidden layer and the output layer. The Keras deep 
learning library is used to build the multi-task neural networks. 
Keras is an easy-to-use library built on TensorFlow with 
Python as the core language. A multi-task neural network with 
50 hidden layer units and 725 outputs (725 is the number of 
drug compounds) is used to construct a model that predicts the 
entire compound interaction profile for any new kinase. In case 
of linear SVM and logistic regression, default parameters are 
used. In total, 100 independent trials are conducted where in 
each trial a new train-test split is created. 95% confidence 
intervals are calculated using the AUC33 values from each of 
these 100 trials. We have observed that most of the models 

Figure 2. Bag-of-words. This is a simulated example used for illustration 

purpose only. We can observe that the blue-colored points are highly 

heterogeneous and, therefore, have a flatter histogram profile. The 

red-colored points are local (eg, very homogeneous and therefore have a 

narrow histogram profile).

Figure 3. (A) Single-task learning setup. Independent models are trained 

for predicting bioactivity for each kinase. For example, Task-1 represents 

the task of predicting the bioactivity of all compounds with a particular 

protein kinase (say AAK1). (B) Multi-task learning. A shared model is 

used to extract an initial set of features from all the drugs. These features 

are later used as inputs to smaller models which can make predictions on 

all the tasks.
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perform similarly with multi-task neural networks slightly out-
performing the other models (see Table 1). The receiver oper-
ating characteristic (ROC) curves corresponding to 10 
independent simulations of a multi-task neural network are 
shown in Figure 4. The average AUC of all the ROC curves is 
0.86, with a 95% confidence interval of [0.84-0.87].

AUPR curve. Although AUC (or AUROC) is a widely used 
metric in bioinformatics, it has few disadvantages in the context 
of DTI prediction performances. The AUC value does not pro-
vide insights into virtual screening efficiency. For example, an 
AUC value of 0.8 does not give any information about how 
many interactions the algorithm correctly predicted and how 
efficient it was in making those predictions. If we would like to 
know the efficiency of the virtual screening process, then a met-
ric like precision score (eg, positive predictive value [PPV]) 
would be useful. Precision is the ratio between the number of 

true positives (TPs) to the total number of predicted positives 
(TP + FP). Therefore, a low precision score implies that the vir-
tual screening process is inefficient, for example, the algorithm 
predicts many positives, of which only few are positive interac-
tions. The precision score alone does not provide all the required 
information. There can be a situation where the algorithm pre-
dicts very few positives in total, most of which are TPs. In this 
situation, the model will receive a high precision score, but it is 
not useful because it ignores a lot of TPs that are of interest. 
Therefore, another metric that captures information about the 
number of predicted TPs compared with the total number of 
TPs needs to be calculated. Recall (eg, sensitivity or true-posi-
tive rate [TPR]) is defined as the ratio between predicted TPs 
and the total number of existing positives (TP + FN). A high 
recall score implies that a significant amount of positive labels 
are predicted correctly. Therefore, high precision and high recall 
scores result in an efficient and well-explored virtual screening 
process. For this reason, AUPR would be a better metric com-
pared with the AUC. The AUPR results for lead compound 
identification are provided in Table 2. Note that a random clas-
sifier that predicts output as all ones with probability 0.01 and 
zeros with probability 0.99 (these values are chosen because the 
DTI input matrix has a sparsity of 1%) would result in an 
AUPR score of 0.01 and an AUC score of 0.5.

Drug activity prediction

In drug activity prediction (a.k.a. ligand-based drug discovery), 
compound descriptors are used as inputs and their kinase activ-
ities as outputs to the ML models. During the testing stage, 
this allows us to predict kinase interactions for new drug com-
pounds. Drug activity prediction is very useful in the case of 
virtual screening because thousands of chemical compounds 
can be surveyed to discover possible drug-like molecules that 
are predicted to interact with at least 1 kinase. 1024-bit-length 
ECFPs were used as compound descriptors. For training and 
testing data split, 70% of the drugs and their kinase interaction 

Table 1. Single-task learning—compound profile prediction AUC results of protein kinases using either population-median-based descriptor or bag-
of-words-based descriptor.

MODEl AUC (WITh 95% CONFIDENCE INTERvAl)

MEDIAN FEATURE BAG-OF-WORDS FEATURE

KNN (k = 3) 0.68 (0.65-0.69) 0.68 (0.65-0.72)

logistic regression 0.8 (0.79-0.83) 0.84 (0.81-0.87)

linear SvM 0.83 (0.79-0.86) 0.82 (0.8-0.86)

Random forest 0.83 (0.81-0.85) 0.83 (0.81-0.85)

2-layered neural network 0.82 (0.8-0.84) 0.84 (0.79-0.86)

Multi-task neural network 0.85 (0.84-0.86) 0.86 (0.84-0.87)

Abbreviations: AUC, area under the receiver operating characteristic curve; KNN, k-nearest neighbor; SvM, support vector machine.
A simple linear SvM could provide very good performance on the test set. Average AUCs and confidence intervals are calculated over 100 independent trials.

Figure 4. Receiver operating characteristic (ROC) curves of a multi-task 

neural network for predicting drug-target interactions with BoW-based 

kinase features as inputs. Each ROC curve corresponds to 1 experiment. 

The average AUC of all the ROC curves is 0.86, with a 95% confidence 

interval of [0.84-0.87]. AUC indicates area under the receiver operating 

characteristic curve; ROC, receiver operating characteristic.
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profiles are used for training, whereas the remaining 30% are 
considered as new drug compounds for which the kinase inter-
action profile is unknown. These unknown interactions are 
treated as “missing data” in the DTI matrix as shown in Figure 
1B. Both single- and multi-task learning approaches are used 
to assess the prediction performances. Similar to the lead com-
pound identification problem mentioned previously, we have 
used ML methods like logistic regression, KNN, neural net-
works, random forest, and SVMs to build drug activity predic-
tion models. Results for each of these single-task learning 
models and multi-task learning are provided in Table 3. Area 
under the precision-recall scores for the prediction of each 
model are also included in Table 3. Random forest classifiers 
and 2-layered multi-task neural networks provide the best per-
formances on the test sets.

Drug repurposing

Drug repurposing is a scenario where previously failed drugs 
are re-investigated for new therapeutic indications.34 This can 
be posed as an ML problem where the interaction data are par-
tially available either for the drug or the target protein, and the 
bioactivities of the unavailable data are of interest. This 

scenario is illustrated in Figure 1C. Both single-task learning 
and collaborative-filtering-based methods can be used to pre-
dict interactions of the unavailable data. The CF methods35 use 
similarities between the target profiles of 2 compounds to make 
predictions on their missing interactions. Moreover, they use 
similarities between compound profiles of 2 targets to make 
predictions on missing interactions. As an example, assume 
that Drug-A and Drug-B interact with few common targets, 
then there is a high chance that Drug-A and Drug-B have the 
same interaction profile for some missing values. This proce-
dure is unlike ligand-based/target-based drug discovery where 
compound descriptors/target-protein descriptors are used to 
make predictions.

The CF methods are extensively used in recommender sys-
tems like Netflix, Amazon, and YouTube, where user-item data 
are partially available. For example, in the Netflix movie recom-
mendation problem,35,36 each user rates only a few movies and 
the goal is to predict his or her ratings on unseen movies. 
Similarly, for each movie, only a few users would have rated it, 
and the goal is to predict ratings of some user. Information is 
shared across users and across movies to predict a new value in 
the user-movie recommendation matrix. Low-rank matrix fac-
torization (LRMF) is a common method used for CF. In this 

Table 2. Single-task learning—compound profile prediction AUPR results of protein kinases using either population-median-based descriptor or 
bag-of-words-based descriptor.

MODEl AUPR (WITh 95% CONFIDENCE INTERvAl)

MEDIAN FEATURE BAG-OF-WORDS FEATURE

KNN (k = 3) 0.16 (0.13-0.18) 0.15 (0.13-0.17)

logistic regression 0.25 (0.22-0.3) 0.33 (0.29-0.37)

linear SvM 0.3 (0.28-0.36) 0.29 (0.23-0.33)

Random forest 0.26 (0.24-0.3) 0.26 (0.24-0.27)

2-layered neural network 0.3 (0.27-0.33) 0.32 (0.29-0.36)

Multi-task neural network 0.3 (0.27-0.33) 0.32 (0.29-0.34)

Abbreviations: AUPR, area under the precision-recall curve; KNN, k-nearest neighbor; SvM, support vector machine.
Average AUPR scores and their confidence intervals are calculated over 100 independent trials.

Table 3. Drug activity prediction results using ECFPs as input features.

MODEl AUC (WITh 95% CONFIDENCE INTERvAl) AUPR (WITh 95% CONFIDENCE INTERvAl)

KNN (k = 3) 0.68 (0.63-0.7) 0.2 (0.14-0.24)

logistic regression 0.8 (0.77-0.81) 0.25 (0.22-0.29)

linear SvM 0.77 (0.76-0.79) 0.21 (0.19-0.26)

Random forest 0.8 (0.78-0.83) 0.22 (0.17-0.28)

2-layered neural network 0.72 (0.7-0.74) 0.12 (0.1-0.14)

Multi-task neural network 0.8 (0.76-0.83) 0.22 (0.19-0.26)

Abbreviations: AUC, area under the receiver operating characteristic curve; AUPR, area under the precision-recall curve; ECFPs, extended-connectivity fingerprints; 
KNN, k-nearest neighbor; SvM, support vector machine.
Multi-task network and random forest methods are marginally better than the other methods.
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method, we assume that individual drug properties are gov-
erned by a set of low-dimensional features known as latent fac-
tors. Similarly, each protein has a low-dimensional feature 
associated with it. Each drug and each protein are considered 
to interact with each other if they have similar latent factors.

The LRMF method can be formulated as follows:
Let Y  denote a binary matrix representing Activity/No 

Activity with +1 representing “Activity” and −1 representing 
“No Activity.” Assuming that there are “n” compounds and “m” 
kinases, then the size of Y  is n × m. Initially, the entire matrix 
Y  is known. To build and validate ML models, the dataset has 
to be split into training and test data. For this purpose, we ran-
domly remove matrix values and label them as missing/test 
data as shown in Figure 1C. The model assumption is that 
drugs and targets are controlled by a few latent factors that 
dictate the interactions between them. Each drug and each tar-
get are represented by an embedded k-dimensional feature. A 
drug and a target protein are said to interact if they are close in 
this k-dimensional space. Let U and V be the drug and target 
embeddings, respectively. U is of size n × k and V is of size 
k × m (a transposed feature matrix is used for convenience) for 
which the product is the estimated interaction matrix Y . Let 
Ytr  be the input training matrix containing the values −1, +1, 
and 0 corresponding to No Activity, Activity, and Unknown 
Activity, respectively. The goal of LRMF is to find a low-rank 
matrix Y  that is closest to Ytr  in the Frobenius norm. Note 
that the Frobenius norm is calculated only for the training val-
ues.37 As described above, the low-rank constraint can be 
forced into Y  by learning 2 rectangular matrices U, V of rank 
“k,” the product of which is equal to Y (product of 2 rank-k 
matrices gives a rank-k matrix). So the optimization problem 
(or loss function) becomes

 min Y UV U Vtr u F v FF
− + +

2 2 2λ λ  (1)

where U is of size n × k and V is of size k × m. The terms 
U

F
 and V

F
 are the regularization terms used to limit the 

matrix values,38 thereby giving better results.
This optimization problem is non-convex because it con-

tains a product of 2 variable matrices U, V. However, if we 
assume that one of the matrices is constant, then the problem 
becomes convex. Therefore, an alternating optimization scheme 
can be used to solve the optimization problem, where we itera-
tively update one matrix while keeping the other fixed. We 
have used the convex optimization toolbox, “CVXPY,” which is 
available in Python to perform optimization on our dataset. 
The steps of the alternating optimization method are shown in 
Algorithm 1.

We have used a 70-30 train-test split to build and test the 
LRMF model. 30% of the entries are randomly removed from 
the initial DTI matrix and are considered as unknown test 
data. An LRMF method with rank k = 20 is used to build a 
DTI prediction model. This model has resulted in an AUC of 

0.93 and an AUPR score of 0.61. From these results, we can 
observe that CF provides better prediction AUCs even without 
using any feature descriptors. This happens when lots of inter-
action data are available at the training stage. However, if the 
input data are very sparse (>90% missing entries), then 
descriptor-based ML models perform better because they sup-
ply external information to the model in the form of feature 
descriptors. Figure 5 shows the comparison of the CF and 
logistic regression methods at varying levels of sparsity. The 
logistic regression model uses BoW-based kinase imaging 
descriptors as input features.

CF with side information. A significant number of existing DTI 
algorithms are similarity-based methods. These methods use 
drug networks and protein networks to build models that can 
predict DTIs. Yamanishi et  al1 published a seminal paper in 
2008 that uses both drug and protein networks to build a bipar-
tite graph learning method. Drug networks contain drug com-
pounds as nodes and structural similarity between them as the 
edge lengths; protein networks contain proteins as the nodes 
and their sequence similarity as the edge lengths. In their paper, 
low-dimensional embeddings of both drugs and proteins are 
computed by learning a mapping function that maps drugs/pro-
teins from the compound/genomic space to a low-dimensional 
pharmacology space. Drugs and proteins close by in this space 
are said to interact with each other. Gonen2 showed better 
results with a similar method, but using Bayesian priors on the 
mapping matrices. A variational approximation is used to solve 
the Bayesian optimization problem. We have tested both of 
their methods on our dataset, but the performances were not 
satisfactory compared with the CF methods. Therefore, we have 

AlGORIThM 1. AlTERNATING OPTIMIzATION FOR MATRIX 
FACTORIzATION.

Procedure MF(Ytr, k)
 1. Initialize matrices U, V with values from unit normal 
distribution N(0, 1)
 2. Choose a convergence threshold
 3. while (prevIterloss – Iterloss > threshold) do
 4.  if (odd iteration) then # update U in odd iterations
 5.   U = argmin loss; given Ytr, V
 6.  else # update V in even iterations
 7.   V = argmin loss; given Ytr, U
 8.  end if
 9. end while
10. return U, V
11. end procedure

here Loss = − + +Y UV U Vtr F F F
. Note that this loss function does 

not contain squared terms. We have used this loss because it is faster to 
optimize and has the same properties as the loss function in equation (1); 
prevIterloss = loss function value in previous iteration; Iterloss = loss function 
value in present iteration.
argmin: Minimization is done using the cvxopt function in the CvXPY toolbox. 
This function uses the stochastic gradient descent (SGD) method to find the 
global minimum of any convex function. cvxopt outputs the minimizer and the 
corresponding loss function value. If the loss function is non-decreasing over 
successive iterations, then the algorithm is considered to converge to an optimal 
solution. The entire implementation on our dataset is provided on Github.39
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used a graph regularized alternating least squares (GRALS) 
method to perform CF when side information like drug and 
protein networks is available. Rao et  al37 use the GRALS 
method on the MovieLens dataset with user social networks as 
side information and show that this additional side information 
improves the model prediction performance. Instead of using 
L2-regularizers (Frobenius norm) as in equation (1), a graph-
based regularizer is used. Low-dimensional embeddings in this 
case are learned in such a way that any 2 drugs connected in the 
drug network will have their embeddings close to each other. 
Similarly, any 2 kinases connected in the kinase network will 
have embeddings close to each other in the low-dimensional 
space. Note that these constraints are placed in addition to the 
initial condition where drugs and targets connected in the DTI 
network need to have embeddings close to each other.

Therefore, optimal U, V should be calculated such that they 
satisfy both the interaction matrix criterion as well as the side 
information criteria. The above conditions can be formulated 
as follows

 min Y UVtr
F

− 2  (2a)

 min S u uij i j
d −( )∑

2

i j,

 (2b)

 min S u uij
k

i j−( )∑
2

i j,

 (2c)

Equations (2b) and (2c) can be represented in the following 
matrix forms, which make them easier to optimize. Here, Sd  
and S k  are the adjacency matrices of the drug similarity net-
work and the kinase similarity network, respectively. For exam-
ple, Sij

d  represents the similarity value between drugs i and j

 
1

2

2S u u tr U L Uij
d T

i j
i j

d( ) ( )
,

− =∑  (3a)

 
1

2

2S v tr V L Vij
T

i j

k
i j

kv( ) ( )
,

− =∑  (3b)

where Ld  and Lk  are the graph Laplacian matrices40 of the 
drug and kinase networks, respectively.
L D Sd d d= −  and L D Sk k k= −  where Dd  is the degree 

matrix of the drug network. It is a diagonal matrix with Dii
d  

representing the degree of the drug node “i.”
The combined loss function can be written as

 min Y UV tr U L U tr V L V
tr

F u

T d

v

T k
− + +( ) ( )2

λ λ  (4)

An alternating optimization method similar to Algorithm 1 
is used to minimize equation (4). For the drug similarity net-
work, the nodes are represented by drugs and the edges contain 
the structural similarity values. We have used the Sorensen-
Dice coefficient41 to calculate similarity between 2 ECFP fea-
tures. Given any 2 fingerprint vectors X and Y (which are 
1024-dimensional bit vectors in our case), the Sorensen-Dice 
coefficient is calculated as follows

 SDC
X Y
X Y

=
∩
+  (5)

where X ∩ Y is the “AND” operation between 2 binary vec-
tors and|X| is the total number of ones in X.

For the kinase similarity network, kinases are represented by 
the nodes and the edges contain the kinase similarity values. 
Cosine similarity between the normalized kinase imaging fea-
tures is used as a similarity metric. After the similarity matrices 
are created, we preserve only 5 nearest neighbors for each node 
in both the networks. This nearest neighbor truncation is applied 
because sparse similarity matrices are faster to train and perform 
inference. We have tested this collaborative filtering with side 
information (CFSI) model with rank k = 20, and the side infor-
mation is the truncated drug and target similarity matrices. This 
has resulted in an AUC of 0.94 for the drug repurposing case as 
shown in Figure 1C. Results for the unknown drug case as in 
Figure 1B and unknown target cases in Figure 1A are very simi-
lar to the ones obtained through feature-based models.

Discussion
Quantitative structure-activity relationship methods have been 
well studied in the past 2 decades.42 Drug-target interaction pre-
diction methods are a subclass of QSAR methods that are primar-
ily used for virtual screening.43 Existing DTI prediction methods 
use information like compound chemical structures and amino 

Figure 5. Performance of the collaborative filtering (using lRMF) and 

kinase-feature-based methods (logistic regression model) at varying 

levels of training data sparsity. AUC indicates area under the receiver 

operating characteristic curve; lRMF, low-rank matrix factorization.
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acid sequences to describe drug compounds and target proteins. 
Recently, Simm et  al22 showed that imaging-based features 
extracted from high-throughput screening can be used to describe 
drug compounds. These imaging features are not completely 
related to the chemical structure and therefore might contain 
mutually exclusive information regarding drug-target bioactivity. 
Their work has motivated us to look at new imaging-based 
descriptors for target proteins, especially kinases, that can be used 
in DTI prediction. We have shown the DTI prediction results in 
3 different setups: lead compound identification, drug activity pre-
diction, and drug repurposing as shown in Figure 1. A new 
approach to lead compound identification has been introduced 
using the image-derived kinase features, unlike most existing 
methods that use gene/protein sequence information to represent 
kinases.2–4 Two feature extraction approaches for kinase imaging 
data, namely, a population-median-based approach and a BoW-
based approach, are used to build target-based drug discovery 
models. BoW features are generally favored over population 
median features because of their ability to capture heterogeneity 
across the imaging data. However, our results (see Tables 1 and 2) 
show that BoW does not provide a significant improvement over 
median-based features.

Multiple methods like single-task learning, multi-task learn-
ing, and CF are used to build models for DTI prediction. Various 
ML models like logistic regression, SVMs, KNN, neural net-
works, and random forests are used for the single-task learning 
setup. Whereas KNN performs poorly, all the remaining methods 
provide similar performances with random forests being margin-
ally better than the others. In the multi-task learning setup, we 
have used a 2-layered neural network to build prediction models. 
We observe that the multi-task learning method provides slightly 
better results than the single-task learning methods (see Tables 1 
to 3). For the CF setup, we have used 2 types of models, one that 
uses only the DTI data and the other that uses additional side 
information (ie, drug networks and protein networks) to build 
prediction models. Collaborative filtering methods outperform 
feature-based methods (single-task/multi-task learning) when a 
sufficient amount of training data are available (ie, if more than 
10% of DTIs are known in the training phase). In cases where the 
available DTIs are reduced (sparser training data), the perfor-
mance of the CF method drops and feature-based methods tend 
to perform better. Prediction performances of both the models 
are compared with varying levels of training data, and the results 
are shown in Figure 5. Even though the performance of the CF 
methods is impressive, it is important to note that predictions for 
drugs/targets that do not have any known interactions (ie, entirely 
new drugs/targets) are difficult. Collaborative filtering with side 
information overcomes this problem using data from drug/pro-
tein networks to make predictions. It is recommended to use 
CF with side information for DTI predictions because of its 
general use in all 3 tasks—lead compound identification, drug 
activity prediction, and drug repurposing—while giving the best 
accuracies. CF with side information44 is known to provide 

state-of-the-art results on the gold standard dataset from Bleakley 
and Yamanishi13 to predict DTI for 4 kinds of target proteins: 
enzymes, ion channels, GPCRs, and nuclear receptors. In general, 
variants of matrix factorization are known to perform well in 
DTI prediction. This has been the case for prediction of drug-
kinase interactions using imaging-based descriptors. In this arti-
cle, we have shown that feature descriptors extracted from HCA 
could be used for virtual screening, thereby making the drug dis-
covery process more cost efficient. Our future work includes col-
lecting more drug-kinase bioactivity data and experimentally 
validating the proposed models.
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