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Introduction
The thalamus harbors several relay nuclei with exten-
sive cortical and subcortical connections. It is affected 
by multiple sclerosis (MS) by inflammatory-mediated 
demyelination,1 primary neurodegeneration of axons 
and neurons,2 and/or antero-/retro-grade axonal 
degeneration due to demyelination or transection of 
the tracts projecting into and out of the thalamus.3 
Thus, change in thalamic volume may reflect not only 
local but also wider MS-related damage throughout 
the central nervous system (CNS).4,5

Thalamic volume loss occurs early in MS, including 
in patients with clinically isolated syndrome at pres-
entation,6 in pediatric MS,7 and in radiologically iso-
lated syndrome.8 Moreover, thalamic volume loss is 

associated with disability progression, measured by 
changes in Expanded Disability Status Scale (EDSS),9–

11 and cognitive impairment.12

Post hoc analyses of randomized, controlled trials 
in relapsing MS (RMS) have shown that thalamic 
volume loss was reduced by disease-modifying ther-
apies (DMTs) compared with placebo (e.g. laquini-
mod,13 fingolimod,14 and siponimod)15 or compared 
with an active treatment arm (such as daclizumab,16 
and ozanimod).17 However, the effect of anti-CD20 
therapies on thalamic volume loss has not been 
assessed. Therefore, we analyzed a large dataset of 
patients with RMS and primary progressive MS 
(PPMS) from three randomized controlled trials 
(OPERA I/II18 and ORATORIO)19 to assess the effect 
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of ocrelizumab on thalamic volume change. Our aims 
were to evaluate: the efficacy of ocrelizumab during 
the double-blind periods (DBPs); the effects of 
switching to or maintaining ocrelizumab in the  
open-label extensions (OLEs); the similarities and 
differences in thalamic atrophy between patients  
with RMS and PPMS; and the relationship between 
thalamic volume, clinical outcomes, and disability 
progression.

Materials and methods

Trial design and population
OPERA I (NCT01247324), OPERA II 
(NCT01412333), and ORATORIO (NCT01194570) 
trials have been described previously.18,19 Briefly, 
OPERA I/II (hereafter referred to as OPERA) were 
two Phase III, multicenter, randomized, double-blind, 
double-dummy, interferon beta-1a (IFNβ1a) con-
trolled trials with identical designs, in patients with 
RMS. Key eligibility criteria included an age of 18–
55 years, MS diagnosis according to 2010 revised 
McDonald criteria,20 and screening EDSS score of 
0.0–5.5. Following completion of the 96-week 
DBP of both trials, patients maintained or switched 
to ocrelizumab (IFNβ1a–ocrelizumab), given every 
24 weeks. ORATORIO was an international, multi-
center, Phase III, randomized, parallel-group, double-
blind, placebo-controlled trial investigating efficacy 
and safety of ocrelizumab in patients with PPMS. Key 
eligibility criteria included an age of 18–55 years, a 
diagnosis of PPMS by the McDonald 2005 criteria,21 
and screening EDSS score of 3.0–6.5. ORATORIO 
has three treatment periods: the DBP, an extended 
controlled period (ECP), and the OLE. The DBP 
lasted at least 120 weeks until a prespecified number 
of 12-week confirmed disability progression events 
on the EDSS (CDP12-EDSS) occurred. The subse-
quent ECP spanned from the end of the DBP to the 
first OLE dose of ocrelizumab for each individual. 
Patients entered the OLE between 144–294 weeks 
after randomization, where patients maintained or 
switched to ocrelizumab (placebo–ocrelizumab), 
given every 24 weeks.

The OLEs of all trials are ongoing. The data for this 
analysis were collected approximately to the end of 
2019. By this cut-off date, patients had been exposed 
to ocrelizumab for up to 7 years (5 in OLE) in OPERA, 
and for up to 6.5 years (4 in OLE) in ORATORIO. The 
relevant institutional review boards/ethics commit-
tees approved the trial protocols and all patients pro-
vided written informed consent.

MRI volume measurements
In OPERA, magnetic resonance imaging (MRI) 
assessments were conducted at baseline, weeks 24, 
48, and 96 in the DBP, and yearly in the OLE (OLE 
weeks 46, 94, 142, 190, and 238). In ORATORIO, 
MRI scans were acquired at baseline, weeks 24, 48, 
and 120 in the DBP, and at baseline (OLE day 1) and 
yearly thereafter in the OLE (OLE weeks 48, 96, and 
144). Because the timing of MRI assessments in the 
ORATORIO OLE differed between patients relative 
to randomization, OLE MRIs were categorized rela-
tive to OLE entry date.

Whole brain, thalamic volume, cortical gray, and 
white matter, all normalized by head size, were 
assessed using baseline MRIs. Relative percentage 
change from baseline was obtained for each subse-
quent visit using SIENA (Structural Image Evaluation, 
using Normalization, of Atrophy) for whole brain, and 
paired Jacobian integration22 for the rest. T1-weighted 
three-dimensional images with 3 mm slice thickness 
(no gap) and whole brain coverage acquired during the 
studies were used for those assessments.

Statistical analysis
All analyses used the intent-to-treat (ITT) population 
and the OPERA trials were pooled for this analysis. 
Missing data were not imputed. All statistical tests 
were exploratory and no adjustment for multiplicity 
was applied. The significance level of statistical tests 
was set at 5%. Analyses were performed in SAS 9.4 
and R version 3.6.3. Random coefficient models were 
analyzed on the latter environment using package 
LME4 version 1.1.21.

Association between thalamic volume and population 
characteristics at baseline. DBP baseline associa-
tions between normalized thalamic volume and 
patients’ demographics, and disease characteristics 
were assessed through Spearman’s correlations for 
continuous variables or Wilcoxon rank-sum tests for 
categorical variables.

Longitudinal evaluation of thalamic volume.  
Percentage change of thalamic volume from DBP 
baseline was computed using a mixed-effects model of 
repeated measures (MMRMs) including factors for 
time, treatment, treatment × time, treatment × baseline 
thalamic volume, and adjusted for baseline characteris-
tics: that is, age; region (United States vs rest of the 
world (ROW)); EDSS category (<4, ⩾4); normal-
ized thalamic volume; presence/absence of T1 Gado-
linium (Gd)-enhancing lesions; and T2 lesion volume.
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Moreover, to evaluate thalamic volume decline in 
specific situations, linear random coefficients mixed-
effects models were used, in which treatment, study 
(for OPERA), region, time, treatment × time (for 
evaluating the difference in slopes), and baseline 
characteristics (EDSS category, age, normalized tha-
lamic volume, presence/absence of T1 Gd-enhancing 
lesions, T2 lesion volume, and previous relapses on 
past year ⩽1 versus >1, for OPERA) were entered as 
fixed effects, while participant and time (study day of 
the assessment) were included as random intercept 
and slopes, respectively. Model and bootstrapped esti-
mates have been retrieved. From random effect mod-
els annualized percent change were computed as 
((adjusted slope estimate)/(adjusted mean at hypo-
thetical baseline) × 100).

To assess the relationship between T2 lesions and tha-
lamic volume loss, the thalamic percentage change at 
the end of the DBP was correlated (using Spearman 
correlation) with baseline T2 lesion volume and T2 
lesion volume change at the end of the DBP.

Treatment effect size. We computed Cohen’s d as the 
between-arm difference at the last visit of the DBP 
(week 96 for RMS; week 120 for PPMS) divided by 
the adjusted standard deviation of the measurement. 
Estimates were obtained from the MMRM model. In 
addition to thalamic volume loss, we assessed Cohen’s 
d for whole brain, cortical, and white matter volume 
loss.23,24

RMS versus PPMS comparison. To assess differ-
ences between the RMS and PPMS populations in a 
pooled analysis, baseline normalized thalamic vol-
umes were compared with an ANCOVA corrected for 
age, sex, disease duration, EDSS, region, presence/
absence of T1 Gd-enhancing lesions, and T2 lesion 
volume. Thalamic volume loss rates in ocrelizumab-
treated patients were compared using a random 
coefficients model as previously described with an 
additional factor for the trial.

Baseline thalamic volume and clinical outcomes 
association. Baseline relationship between thalamic 
volume and clinical outcomes (i.e. EDSS, Nine-Hole 
Peg Test (9HPT), and Timed 25-Foot Walk (T25FW)) 
was assessed with linear regression analyses corrected 
for age, sex, presence/absence of T1 Gd-enhancing 
lesions, and T2 lesion volume.

The association between baseline normalized thalamic 
volume and future disability accumulation was evalu-
ated by Cox proportional hazard regression models 
adjusted for treatment group, age, sex, EDSS score, T2 

lesion volume, presence/absence of T1 Gd-enhancing 
lesions, normalized thalamic volume, and treatment 
group × thalamic volume. Time to 12- and 24-week 
confirmed disability progression (CDP12 and CDP24, 
respectively) measured by EDSS (CDP12-EDSS, 
CDP24-EDSS); 9HPT (CDP12-9HPT, CDP24-
9HPT); T25FW (CDP12-T25FW, CDP24-T25FW); 
and composite CDP (CCDP12, CCDP24, defined as a 
confirmed occurrence of an increase in EDSS score, 
the time to perform the T25FW of ⩾20%, or the time 
to complete 9HPT of ⩾20%) in the DBP were evalu-
ated. For all clinical tests, we investigated the predic-
tive value of baseline thalamic volume for the 
treatment effect by its interaction with the treatment 
variable. In case of a significant interaction, we 
assessed each arm in a separate model.

Results
Nearly all the ITT population (99.8%) initially rand-
omized in OPERA and ORATORIO contributed to 
the analysis. The demographics and disease charac-
teristics of the ITT population at baseline are summa-
rized in Table 1. At baseline, the normalized thalamic 
volume was 15.14 ± 1.93 cm3 in patients with RMS 
and 14.41 ± 1.80 cm3 in patients with PPMS.

The association between thalamic volume and 
population characteristics at baseline
The associations between normalized thalamic vol-
ume and population characteristics at baseline are 
summarized in Figure 1.

Longitudinal evaluation of thalamic volume and 
treatment effect size
During the DBP, compared with the comparator arm, 
ocrelizumab progressively reduced thalamic volume 
loss in patients with RMS and PPMS, reaching a per-
centage reduction of 43% in RMS and 35% in PPMS 
at the end of the DBP (Figure 2). When comparing 
these results with the treatment effect on whole brain, 
cortical gray and white matter volume, the thalamus 
showed the largest effect size (Cohen’s d: RMS: 
0.320, 0.383, 0.159, vs 0.561 for the thalamus; PPMS: 
0.158, 0.126, 0.08 vs 0.427, respectively). Throughout 
the OLE, the difference in volume accumulated in the 
DBP was largely maintained, despite the switching of 
patients from the comparator arm to ocrelizumab. 
After ~7 years, ocrelizumab patients still showed 
16% less thalamic volume loss compared with 
IFNβ1a–ocrelizumab patients in OPERA, and 26% 
less compared with placebo–ocrelizumab patients in 
ORATORIO (Figure 2). When OLE trajectories of the 
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thalamic volume decrease in RMS were compared, 
ocrelizumab and IFNβ1a–ocrelizumab patients 
showed similar slopes (p = 0.124). Considering time-
points occurring after OLE week 46 (to avoid 

confounding due to the reversal of pseudoatrophy in 
patients switching from IFNβ1a), estimated yearly 
percentage changes for IFNβ1a–ocrelizumab and 
ocrelizumab were −0.33% (95% confidence interval 

Table 1. Baseline characteristics of patients in the ITT population.

RMS (OPERA I/II) PPMS (ORATORIO)

IFNβ1a (n = 829) Ocrelizumab (n = 827) Placebo (n = 244) Ocrelizumab (n = 488)

Age, median 
(range), years

37 (18–55) 38 (18–56) 46 (18–56) 46 (20–56)

Female, n (%) 552 (66.6) 541 (65.4) 124 (50.8) 237 (48.6)

Time since MS 
diagnosis, median 
(range), years

1.7 (0.1–28.5) 1.8 (0.0–28.9) 1.3 (0.1–23.8) 1.6 (0.1–16.8)

EDSS score, 
median (range)

2.5 (0.0–6.0) 2.5 (0.0–6.0) 4.5 (2.5–6.5) 4.5 (2.5–7.0)

T2w lesion volume, 
median (range), mL

6.2 (0.0–76.1) 5.4 (0.0–96.0) 6.2 (0.0–81.1) 7.3 (0.0–90.3)

No. of T2w lesions, 
median (range)

42.0 (0.0–226.0) 40.0 (1.0–233.0) 43.0 (0.0–208.0) 42.0 (0.0–249.0)

Patients with T1w 
Gd-enhancing 
lesions, no./total 
no. (%)

327/822 (39.8) 333/818 (40.7) 60/243 (24.7) 133/484 (27.5)

Normalized brain 
volume, median 
(range), cm3

1504.8 (1245.9–1751.9) 1502.4 (1202.7–1761.3) 1464.5 (1216.3–1701.7) 1462.2 (1214.3–1711.1)

EDSS: Expanded Disability Status Scale; Gd: gadolinium; IFNβ1a: interferon β-1a; ITT: intent-to-treat; PPMS: primary 
progressive multiple sclerosis; RMS: relapsing multiple sclerosis.

Figure 1. Associations between normalized thalamic volume and population characteristics at baseline.
For continuous variables (i.e. age, disease duration, and T2w lesion volume), Spearman’s correlations were computed to assess the 
association with normalized thalamic volume. In this case, correlation coefficients and p values are reported. For categorical variables 
(i.e. sex, prior relapses, presence/absence of gadolinium-enhancing lesions), Wilcoxon rank-sum tests assessed the differences in 
normalized thalamic volume between groups and p values are reported.

https://journals.sagepub.com/home/msj
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(CI): −0.35% to −0.30%) and −0.38 % (95% CI: 
−0.40% to −0.35%) per year, respectively. In PPMS, 
placebo–ocrelizumab had a slightly lower rate of vol-
ume loss than ocrelizumab, but it was not significant 
(p = 0.071). When considering timepoints after OLE 

day 1, estimated yearly percentage changes for pla-
cebo–ocrelizumab and ocrelizumab were −0.42% 
(95% CI: −0.48% to −0.37%) and −0.53 % (95% CI: 
−0.57% to −0.49%) per year, respectively. Especially 
in PPMS, a negative correlation between the intercept 
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Figure 2. Treatment effect on thalamic volume loss over time in the RMS (a) and PPMS (b) populations.
BL, baseline; IFNβ1a, interferon β-1a; OCR, ocrelizumab; OLE, open-label extension; PBO, placebo; SE, standard error. Gray box in 
(b) represents the transition period of PPMS patients switching from placebo to ocrelizumab and entering the OLE from the extended 
controlled period. Percentage reductions reported in the figure were calculated as: 100 × (ocrelizumab adjusted mean—comparator arm 
adjusted mean)/(comparator arm adjusted mean).
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(thalamic volume at the first timepoint considered) 
and the slope (rate of thalamic volume loss) was 
observed, indicating that placebo–ocrelizumab 
showed slightly less thalamic volume loss because of 
lower thalamic volume after the DBP as a starting 
point. Baseline T2 lesion volume showed weak-to-
moderate correlations with thalamic volume loss at 
the end of the DBP, with higher associations found for 
the comparator arms (correlation coefficient, p value; 
RMS, IFNβ1a: −0.296, p < 0.001, ocrelizumab: 
−0.209, p < 0.001; PPMS, placebo: −0.377, p < 0.001, 
ocrelizumab: −0.231, p < 0.001). When considering 
T2 lesion volume changes, instead, no correlation 
was found in RMS in either arm (p > 0.05), while 
there was a weak correlation in PPMS and more pro-
nounced in the placebo arm (correlation coefficient, 
p value; placebo: −0.27, p < 0.001; ocrelizumab: 
−0.13, p = 0.021).

RMS versus PPMS comparison
Patients with RMS and PPMS had similar baseline 
thalamic volumes, after adjusting for baseline charac-
teristics (adjusted mean: RMS: 14.92 ± 1.73 cm3; 
PPMS: 14.83 ± 0.58 cm3; p = 0.289) as well as similar 
thalamic volume loss rates when treated with ocreli-
zumab (p = 0.481). In particular, estimated yearly 

percentage changes for OPERA and ORATORIO 
were −0.45% (95% CI: −0.47% to −0.42%) and 
−0.46% (95%CI: −0.49% to −0.42%) per year, 
respectively.

Baseline thalamic volume and clinical outcomes 
association
Lower thalamic volume at baseline was significantly 
associated with the 9HPT, T25FW, and EDSS score in 
RMS and PPMS (Table 2).

For disability progression occurring during the DBP, 
in RMS, the interaction between baseline thalamic 
volume and treatment was significant for CCDP12 
(p = 0.019), CCDP24 (p = 0.024), CDP12-9HPT 
(p = 0.004), and CDP24-9HPT (p = 0.007). When the 
treatment arms were considered separately, baseline 
thalamic volume was associated with increased risk 
of progression in the IFNβ1a-treated patients, but not 
for those randomized to ocrelizumab (Table 3). For 
the other disability progression measures, there was 
no evidence of an association between baseline tha-
lamic volume and treatment effect on disability pro-
gression occurring during DBP (p > 0.05 for all 
models) (Supplemental Table S1). In PPMS, baseline 
thalamic volume was not significantly associated with 

Table 2. Association between baseline thalamic volume and baseline 9HPT, EDSS, and T25FW in RMS and PPMS populations.

RMS (OPERA I/II) PPMS (ORATORIO)

9HPT (s) EDSS T25FW (s) 9HPT (s) EDSS T25FW (s)

Estimates 
(standard error), 
p value, cm3

–1.075 (0.185), 
p < 0.001

–0.163 (0.020), 
p < 0.001

–0.461 (0.168), 
p = 0.006

–2.587 (0.530), 
p < 0.001

–0.107 (0.031), 
p < 0.001

–1.933 (0.518), 
p < 0.001

9HPT: Nine-Hole Peg Test; EDSS: Expanded Disability Status Scale; T25FW: Timed 25-Foot Walk Test; PPMS: primary progressive multiple sclerosis; RMS: 
relapsing multiple sclerosis; s: seconds.

Table 3. Association between baseline thalamic volume and 24-week confirmed disability progression measured by 
9HPT and CCDP in the IFNβ1a and the ocrelizumab treatment arms, in the RMS population (multiple Cox regression).

CDP24-9HPTa CCDP24b

IFNβ1a Ocrelizumab IFNβ1a Ocrelizumab

Events, n (%) 35 (4.23) 25 (3.02) 205 (24.76) 154 (18.62)
Baseline thalamic 
volume (cm3),  
HR [95% CI], p value

0.79 [0.64–0.98], 
0.031

1.22 [0.91–1.64], 
0.192

0.87 [0.80–0.95], 
0.003

0.96 [0.86–1.08], 
0.531

9HPT: Nine-Hole Peg Test; CCDP24: composite confirmed disability progression at 24 weeks; CDP24: confirmed disability 
progression at 24 weeks; CI: confidence interval; HR: hazard ratio; IFNβ1a: interferon β-1a.
aTime to CDP24 measured by an increase from double-blind baseline in the time to complete 9HPT of ⩾20%.
bTime to CCDP24 measured by an increase from double-blind baseline in EDSS score of least 1.0 point (or 0.5 points for a 
baseline score above 5.5), the time to perform the T25FW of ⩾20%, or the time to complete 9HPT of ⩾20%.
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any progression measures (p > 0.05 for all models) 
(Supplemental Table S2).

Discussion
We assessed thalamic volume changes in patients 
with RMS and PPMS, quantified the effect of an anti-
CD20 therapy on thalamic volume loss in these pop-
ulations, and evaluated the usefulness of baseline 
thalamic volume as a potential prognostic/predictive 
tool to capture the risk of subsequent disability 
progression.

Ocrelizumab significantly reduced thalamic volume 
loss in patients with RMS and PPMS, and the advan-
tage acquired during the DBP was maintained during 
the OLE when the comparator arm switched to ocreli-
zumab. Previously, Sotirchos et al.25 showed patients 
in an observational cohort on high-efficacy DMTs 
(natalizumab or rituximab) had a reduced annualized 
percentage change in thalamic volume loss compared 
with low-efficacy DMTs (interferon-beta or glati-
ramer acetate). However, the groups were not rand-
omized and rituximab-specific results were not 
reported.25 Thus, to our knowledge, this is the first 
work that looks at a large, randomized population of 
patients with RMS and PPMS to assess the effect of 
an anti-CD20 treatment on thalamic volume.

Ocrelizumab showed the greatest effect on thalamic 
volume compared with whole brain, white or cortical 
gray matter. This could be explained from the per-
spective that thalamic injury may reflect much of the 
MS-related damage that occurs throughout the whole 
CNS and may not be specific to the thalamus only.26 
For instance, demyelinating lesions can directly affect 
the thalamus;1 however, thalamic lesion volume does 
not seem to correlate with thalamic volume loss.27 It 
seems that lesions outside the thalamus play a more 
important role as evidenced by the relation of tha-
lamic volume loss to white and gray matter lesions in 
general,5,27 and to lesions in thalamocortical projec-
tions, in particular.28 The importance of white matter 
lesions is further supported by the strong negative 
correlation we found between baseline T2 lesion 
volume and thalamic volume as well as the weak-to-
moderate associations with thalamic volume loss at 
the end of the DBP, especially in the comparator arms. 
However, no association or only a weak association 
was found between thalamic volume loss and T2 
lesion volume changes at the end of the DBP in RMS 
and PPMS, respectively. We could speculate that con-
current acute inflammation in the white matter, more 
predominant in RMS, had less direct impact on reduc-
ing the thalamic volume, while secondary neurode-
generation due to T2 lesions occurs more gradually, 

requiring years before appreciating an effect on tha-
lamic volume loss. Moreover, not only lesions, but 
other pathological mechanisms could affect the thala-
mus. Postmortem histopathology studies connected 
the presence of thalamocortical tract-specific pathol-
ogy, that is, myelin loss in non-lesional white matter, 
with the neurodegeneration of cortical and thalamic 
gray matter regions,29 as well as neuronal and tha-
lamic volume loss.5

It remains unclear whether other mechanisms might 
explain the difference between the treatment arms. For 
example, it is unknown whether ocrelizumab could 
create a milieu in which remyelination and tissue repair 
can be promoted, as suggested by the work by Vavasour 
et al.,30 showing increased myelin water fraction in 
“normal appearing” white matter corpus callosum and 
corticospinal tract of ocrelizumab-treated patients.

Independently from causes of thalamic volume loss, 
our results suggest common mechanisms between 
ocrelizumab-treated patients with RMS and PPMS 
that result in similar rates of thalamic volume loss, 
when new focal inflammation and relapses are essen-
tially abrogated. Regardless of common mechanisms, 
a treatment effect is evident from week 24 in RMS, 
but only from week 120 in PPMS, a difference most 
likely driven by the pseudoatrophy affecting patients 
treated with IFNβ1a31,32 and partially reversible when 
switching to ocrelizumab. Those common mecha-
nisms seem to be irreversible, despite the use of high-
efficacy therapy, underscoring the need to treat 
patients with MS with high-efficacy DMTs earlier to 
preserve brain tissue.

At baseline, thalamic volume was associated with 
EDSS, 9HPT, and T25FW in patients with RMS and 
PPMS, consistent with previous reports.28,33,34 
Baseline thalamic volume might also predict future 
treatment effect on disability progression as measured 
by 9HPT and CCDP occurring during the DBP in 
RMS. Across treatment groups, we found that a higher 
thalamic volume at baseline was associated with a 
decrease in progression events (measured by 9HPT 
and CCDP) in the IFNβ1a arm, but not in the ocreli-
zumab arm (Supplemental Table S1). For PPMS, 
instead, no association was seen between baseline 
thalamic volume and future risk of disability progres-
sion (measured by EDSS, 9HPT, T25FW, or CCDP). 
This may suggest that therapies with a high anti-
inflammatory effect could favorably change the pro-
gression trajectory and the relationship with MRI 
measures in RMS, but not in PPMS, where perhaps 
other mechanisms, more chronic and with a less direct 
impact, are more pronounced.
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In a previous work, Eshagi et al.34 found a connection 
between baseline thalamic volume and future EDSS 
changes. Others observed an association with EDSS 
worsening after 5 years with fractional anisotropy of 
the thalamus, but not with thalamic volume.35 The 
low number of progression events and different defi-
nitions of progression may underlie the discrepancy 
with our results.

Our study has limitations. We did not measure tha-
lamic lesions that could allow for the discrimination 
between direct and indirect effects on volume change. 
Inflammation within the deep gray matter is less 
intense, generating a lower contrast between affected 
and non-affected deep gray matter than inflammation 
in the white matter, making it difficult to appreciate in 
conventional MRI. Moreover, the RMS placebo group 
could have helped in further understanding the initial 
accelerated thalamic volume decrease in the IFNβ1a 
arm.

In conclusion, our results show that ocrelizumab 
effectively reduces thalamic volume loss in patients 
with RMS and PPMS, with the highest effect size 
compared with whole brain, white and cortical gray 
matter. Moreover, ocrelizumab helps preserve tha-
lamic volume when started earlier. These findings, 
together with the association between thalamic vol-
ume and disability, suggest that measurement of tha-
lamic volume loss may be a particularly useful 
biomarker for assessing treatment effects on the pre-
vention of tissue damage.
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