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INTRODUCTION

Discovering that photobiomodulation (PBM) is neuroprotective and has augmentation effects
on human neurocognitive functions has been groundbreaking (1). Transcranial PBM with near-
infrared light at low irradiance (mW/cm2) and high energy density or fluence (J/cm2) modulates
neural functions in a non-thermal way that may have therapeutic effects on various neurological
disorders (2). Epilepsy is a brain disorder characterized by a persistent predisposition to generate
epileptic seizures and by neurological, cognitive, and psychosocial consequences (3), in addition to
postictal antinociception (4–7) and psychiatric comorbidities (8, 9). It is the fourth most common
neurological condition in the world. An estimated 70 million people are suffering from some type
of epileptic syndrome (10–12). We propose that transcranial PBM may be developed as a new
non-invasive therapeutic strategy for epilepsy based on the following: (1) its well-documented
mitochondrial mechanism of action relevant to epilepsy, (2) its beneficial neurocognitive effects in
humans, and (3) the promising findings from two recent PBM studies in different epilepsy models.

MITOCHONDRIAL DYSFUNCTION IN EPILEPSY

One hypothesis to explain the role of mitochondria in epilepsy is linked to metabolic and energy
changes after acute seizures and during chronic epilepsy (13–19). For example, Mueller et al. (14)
noted that redox status measured by reduced and oxidized forms of glutathione changes to a more
oxidized state in the brain and plasma of epileptic patients. During seizure activity, an acute increase
in glucose metabolism and cerebral blood flow is observed in patients with temporal lobe epilepsy
(TLE) (17), the most prevalent form of acquired epilepsies (20). In addition, in the study conducted
by Vielhaber et al. (19), it was noted that the hypometabolism observed in patients with epilepsy
is associated with low levels of mitochondrial N-acetyl aspartate in the CA3 hippocampal subfield.
Reduced levels of NAD(P)H were also observed in CA1, CA2, and the subiculum of patients with
TLE (21).

Studies performed in laboratory animals have suggested mitochondrial dysfunction and
oxidative stress as a key mechanism that follows seizures and contributes to epileptogenesis
(20, 22, 23). After seizures there are many changes related to mitochondrial dysfunction and
oxidative stress, including an acute increase in mitochondrial oxidative stress, excessive reactive
oxygen species (ROS) production, increased oxidation of cellular macromolecules, mitochondrial
DNA damage, decreased activity of the electron transport chain (ETC), and increased nitric oxide
(NO) generation in the cerebral cortex (24) and hippocampus (22, 25–27). Also, studies have shown
a decrease in hippocampal ETC complex I and IV activity and oxidative stress in CA1 and CA3
during chronic epilepsy (15, 16, 18).
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TABLE 1 | Recent evidence of PBM benefits in epilepsy models.

Reference Epilepsy model Light source Treatment/Parameters Outcomes

Tsai et al. (28) Sprague-Dawley rats,

Pentylenetetrazole-induced

epilepsy

GaAlAs diode laser Center wavelength: 808 nm

Operating mode: continuous

Average radiant power: 110 mW

Irradiance at aperture: 1.333 W/cm2

Beam spot size: 0.0825 cm2

Exposure duration: 100 s

Radiant exposure: 133.3 J/cm2

Number of sessions: 1

Total radiant energy: 11 J

Photobiomodulation attenuated the mean seizure

score and reduced the incidence of status

epilepticus and mortality.

Vogel et al. (29) Wistar rats,

Photothrombotic

stroke-induced epilepsy

LED Center wavelength:780 nm

Average radiant power: 10 mW

Irradiance at aperture: 0.083 W/cm2

Beam spot size: 0.12 cm2

Exposure duration: 120 s

Radiant exposure: 10 J/cm2

Number of sessions: 24

Total radiant energy: 1.20 J

Photobiomodulation reduced both electrographic

seizure duration and spikes number in the

ipsilateral and contralateral cortices and ventral

posteromedial thalamic nucleus.

In view of this, targeting mitochondrial dysfunction and
oxidative stress with PBMmay provide a new therapeutic strategy
to attenuate seizure activity, impairments linked to neuronal loss,
and cognitive function (30).

MITOCHONDRIAL MECHANISM OF
ACTION OF PHOTOBIOMODULATION

Generally, PBM, also known as low-level laser therapy
(31), is a non-invasive method that has been shown to
modulate neuronal functions, including mitochondrial energy
metabolism, proliferation, differentiation, and apoptosis
(32, 33). The mechanism of action of PBM primarily involves
a photonic biochemical effect on mitochondrial respiration
and oxidative stress (34). The major acceptor of red-to-near-
infrared photons inside cells is the mitochondrial enzyme
cytochrome c oxidase (CCO, also called ETC complex IV),
which is considered a fundamental molecule for the action of
PBM (35–38).

Photonic oxidation of CCO by transcranial PBM with
a near-infrared laser has been demonstrated in vivo in
the human brain (39, 40). PBM can induce a series of
beneficial cellular events, such as the increase in oxidative
phosphorylation for ATP production, increased permeability
of the mitochondrial membrane, a brief increase in ROS,
and activation of mitochondrial signaling pathways linked
to neuroprotection and cell survival (2, 41). In addition, NO
released by CCO is able to stimulate ATP production by
increasing mitochondrial membrane potential and oxygen
consumption (35, 36, 38, 42–44), as well as triggering a
physiological hemodynamic response to increasing delivery of
oxygen to the human brain (39, 40). However, mechanisms other
than CCO may mediate PBM effects under certain conditions,
as suggested by the extensive metabolomic effects of PBM on the
rat brain (45).

NEUROCOGNITIVE EFFECTS OF
PHOTOBIOMODULATION IN HUMANS

Many human studies have demonstrated the potential of
transcranial PBM for the augmentation of neurocognitive
functions under several conditions (1, 46–54). Studies using
laboratory animals have also documented interesting results
of brain PBM (45, 55, 56). For example, our research group
submitted aged rats to PBM with transcranial laser for 58
consecutive days and we noted that laser treatment was able
to rejuvenate the spatial mnemonic damage of the aged rats
and modulate brain levels of inflammatory markers (56). In
addition, this same laser treatment protocol increased the
brain metabolic pathways of young rats and restored the brain
metabolic pathways of aged rats to the levels of younger rats (45).

STUDIES OF PHOTOBIOMODULATION IN
EPILEPSY MODELS

Regarding epilepsy, there have been two recent pre-clinical
studies showing beneficial effects of PBM in different epilepsy
models (Table 1).

First, Tsai et al. (28) noted that transcranial PBM at wavelength
808 nm was able to attenuate pentylenetetrazole-induced status
epilepticus in peripubertal rats. In addition, PBM reduced
the apoptotic ratio of parvalbumin-labeled interneurons and
alleviated the aberrant extent of parvalbumin-labeled unstained
somata of principal cells in the hippocampus. Second, Vogel
et al. (29) observed that PBM reduces epileptiform discharges
after a stroke (29). They showed that a 780 nm wavelength
laser treatment for 2 months after induction of photothrombotic
stroke reduced late epileptic electrographic seizures, as well as the
number of spikes in the ipsilateral and contralateral cortices and
in the ventral posteromedial thalamic nuclei. Although there is a
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possibility that PBM could trigger epileptic seizures, there is no
evidence in support for this, and the two studies evaluating PBM
effects on seizure models have found that PBM reduces seizures.

Although these studies present interesting behavioral findings
on PBM in epilepsy (28, 29), evidence regarding mitochondrial
functions is still lacking. This line of reasoning would be
interesting since studies show that mitochondrial damage under
various conditions is restored by PBM. Furthermore, this
restoration is accompanied by an improvement in behavioral
performance (57–59). In fact, PBM increases mitochondrial
membrane potential, contributing to an increase in ATP
production and a brief increase in ROS (34, 60, 61). In
addition, ROS and other mediators of PBM, such as NO and
cyclic adenosine monophosphate (cAMP), activate transcription
factors. In this sense, after PBM, CCO stimulates ATP synthesis
(62, 63). Extracellular ATP is also a neurotransmitter (64) that
participates in many signaling pathways, known as purinergic
signaling (65). NO acts by stimulation of guanylate cyclase to
form cyclic-GMP (cGMP), which induces Ca++ reuptake and
the opening of calcium-activated potassium channels via protein
kinase G (66). ROS is a mediator that at low concentrations
and brief exposures is beneficial, and at high concentrations
and long exposure, periods are harmful (67). When induced
by PBM, ROS activates nuclear factor kappa B (NF-kB),
which contributes to the increase in gene transcription, and
consequently cellular processes, such as proliferation, migration,
and cell death (60). cAMP can down-regulate the LPS-induced
TNF-α synthesis at the transcriptional level (68–70). Also, cAMP
exerts its cellular effects through the signaling of protein kinase A
(PKA), cyclic nucleotide-gated channels (CNGC), and exchange
proteins directly activated by cAMP (Epac) (71–73). Together,
the upregulation of mitochondrial respiration that triggers these
metabolic signaling cascades suggests that the long-term effects of
PBMmight be beneficial to treat the mitochondrial deficits found
in epilepsy.

Although these results are promising, much more evidence
of the effects of PBM on the epileptic brain is needed.
When this evidence becomes available, then PBM may be

translated to the clinic, but the evidence is too limited at
this time.

CONCLUSION

Transcranial PBM may treat the mitochondrial dysfunction
in epilepsy by upregulating CCO, which is the terminal
enzyme in mitochondrial respiration. This mitochondrial
mechanism of action of PBM might benefit epilepsy
because transcranial PBM is neuroprotective and improves
human neurocognitive functions affected by epilepsy. This
fascinating new intervention is safe and non-invasive and
should be tested further to confirm if augmenting neuronal
mitochondrial respiration is a neurotherapeutic strategy
for epilepsy.
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