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Abstract
Purpose: Deformable image registration (DIR) of longitudinal liver cancer computed tomographic (CT) images can be challenging
owing to anatomic changes caused by radiation therapy (RT) or disease progression. We propose a workflow for the DIR of longitudinal
contrast-enhanced CT scans of liver cancer based on a biomechanical model of the liver driven by boundary conditions on the liver
surface and centerline of an autosegmentation of the vasculature.
Methods and Materials: Pre- and post-RT CT scans acquired with a median gap of 112 (32-217) days for 28 patients who
underwent RT for intrahepatic cholangiocarcinoma were retrospectively analyzed. For each patient, 5 corresponding
anatomic landmarks in pre- and post-RT scans were identified in the liver by a clinical expert for evaluation of the
accuracy of different DIR strategies. The first strategy corresponded to the use of a biomechanical model-based DIR
method with boundary conditions specified on the liver surface (BM_DIR). The second strategy corresponded to the use
of an expansion of BM_DIR consisting of the auto-segmentation of the liver vasculature to determine additional boundary
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conditions in the biomechanical model (BM_DIR_VBC). The 2 strategies were also compared with an intensity-based DIR
strategy using a Demons algorithms.
Results: The group mean target registration errors were 12.4 � 7.5, 7.7 � 3.7 and 4.4 � 2.5 mm, for the Demons, BM_DIR and
BM_DIR_VBC, respectively.
Conclusions: In regard to the large and complex deformation observed in this study and the achieved accuracy of 4.4 mm, the
proposed BM_DIR_VBC method might reveal itself as a valuable tool in future studies on the relationship between delivered dose
and treatment outcome.
� 2019 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
The incidence of liver and intrahepatic bile duct
cancers in the United States continues to increase with
42,220 estimated new cases in 2018.1 Resection of the
tumor remains the best therapeutic option but can be
offered to only a minority of patients who presents with
favorable tumor localization or size and health condi-
tion. In recent years, radiation therapy (RT) has
continued to gain interest as a treatment alternative
owing to the development of both highly conformal
techniques such as intensity modulated RT or stereo-
tactic body RT and image guidance techniques with
cone beam CT (CBCT) or CT on rails. The ability to
image the liver for proper alignment of the patient to the
linear accelerator has also enabled dose accumulation
using deformable image registration (DIR) during the
course of fractionated treatments.2-4 Accurate DIR be-
tween images acquired during the course of treatment
for dose accumulation, but also between images ac-
quired before and posttreatment, should lead to the
development of better models of the relationship be-
tween delivered dose and treatment outcome.

A very limited number of studies have evaluated the
accuracy of DIR methods for registration of longitudinal
images of liver cancer treated with radiation.5 Registration
of such images is challenging owing to tumor or normal
tissue responses to radiation and sometimes chemo-
therapy, which may create inconsistent content between
the images and perturb direct intensity or mutual
information-based DIR methods. In this case, methods
based on the registration of the liver surface only,
allowing to disregard changes in intensity, texture, or
complex tumor regression schemes, may prove them-
selves to be more robust. Among approaches using organ
contours, the use of a multiorgan biomechanical model-
based DIR method, Morfeus,6 has previously been pro-
posed for registration of liver images acquired in radiation
therapy treatment protocols.7 This method has been
evaluated for the mapping of the tumor from a planning
CT to daily CBCT. A similar approach has been inves-
tigated for tumor mapping between CT scans acquired
before and after thermal ablation.8 For dose accumulation,
Morfeus was also used to register different respiratory
phases of planning 4-dimensional CT or to register daily
CBCT onto the planning CT.2

Quantification of the longitudinal DIR accuracy in terms
of target registration error (TRE) was not feasible in these
studies, as the visualization of the tumor and liver vascu-
lature was only possible on the planning CT usually ac-
quired after injection of contrast agent. Fukumitsu et al5

evaluated the use of 2 commercially available DIR solu-
tions for radiation oncology when registering contrast
enhanced-CT of the liver acquired before and after proton
beam therapy. The quantification of the DIR accuracy was,
however, limited for a series of patients to the measure of
the misalignment of a single metallic marker located close
to the tumor. Recently, an expansion of Morfeus to model
the volumetric response to the dose of the liver tissues was
proposed.9 The accuracy of the method to register CT scans
pre- and post-RT of liver cancer was quantified for 7 pa-
tients by measuring the TRE of vessel bifurcation points.
Modeling the dose response by adding dose boundary
conditions in the biomechanic model allowed to signifi-
cantly improve theDIR accuracy in comparison to using the
standard model based on boundary conditions only on the
liver surface. However, the TRE remained relatively large
with an average error of 7.7 mm, indicating that in the
presence of long-term dose-induced volumetric changes,
the displacement of internal tissues may present a limited
correlation with the displacements of the liver surface.
Another challenge for DIR can come from the complexity
of the tumor response, which can combine elastic shrinkage
and “erosion” as it has been previously illustrated for lung
tumors.10 To address this challenge for the registration of
longitudinal lung cancer images, a previous study proposed
to drive a biomechanic model of the lungs with boundary
conditions specified on the vessels surrounding the
tumor.11

The goal of this study was to propose a biomechanic
model to improve the accuracy and robustness of DIR
between pre- and post-RT of liver cancer images by
including in a standard biomechanical DIR workflow an
autosegmentation of the liver vasculature and the addition
of boundary conditions on its centerline. The evaluation
of the accuracy was performed on a data set of contrast-
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enhanced CTs from 28 patients who received radiation
therapy and chemotherapy for cholangiocarcinoma.
Materials and Methods

Patient data

Under an institutional review boardeapproved proto-
col, 28 patients treated for cholangiocarcinoma with
external radiation therapy were retrospectively analyzed.
Twenty-one patients received concurrent chemotherapy.
For each patient, contrast-enhanced CT scans were ac-
quired with breathhold pre- and posttreatment on average
113 � 35 days apart. The hepatic phases were selected for
image registration. The spatial resolution ranged between
0.66 � 0.66 mm and 0.98 � 0.98 mm in the axial plane.
For 22 of the patients, the slice spacing was 2.5 mm for
both images, 2.5 and 5 mm for 5 of them, and 5 mm for
one patient.

A fully convolutional neural network was used to
automatically segment the liver on all images.12 These
contours were manually edited for 11 patients. The tumor
volume was manually contoured on all images.

For each pair of images, a clinical expert was asked to
use the treatment planning system (RayStation version
6.99, RaySearch Laboratories, Stockholm, Sweden) to
manually pick 5 corresponding anatomic landmarks
spatially distributed in the liver as well as possible. These
landmark pairs were used to evaluate the accuracy of the
registration strategies.
Rigid alignment

For DIR of 3-dimensional (3D) images, the rigid
initialization of the transform defined by translation and
rotation parameters is well known to affect the result of
standard methods. Three in-house implementations of
different initial rigid registration strategies were consid-
ered in this study.

The first rigid registration method (Global) corre-
sponded to a global alignment of the patient abdomen
based on a classic maximization of the mutual informa-
tion directly between the 2 abdomen CT scans using a
gradient descent.

The second method (COM) corresponded to the
translation aligning the center of mass of the liver
volumes.

The third method (Chamfer) corresponded to the
alignment of the liver surfaces using a Chamfer matching
approach allowing rotations.13,14 A distance map was
calculated from the pre-RT liver volume while a surface
mesh of the post-RT liver was created. Iteratively, the
translation and rotation of the mesh were updated after a
gradient descent of the sum of the distances given by
linear interpolation of the distance map at the locations of
all points of the mesh.
Biomechanical model-based DIR of the liver

Standard biomechanical DIR (BM_DIR)
After any of the 3 rigid registration initialization, the

workflow used for deformable registration of the liver is
depicted Fig 1. First, the auto-segmentations of the liver
in the 2 images were converted into smooth surface
triangular meshes. The surface mesh corresponding to the
pretreatment image was used to generate a solid tetrahe-
dral finite-element model (FEM) of the liver and sur-
rounding anatomy with linear elastic properties. A surface
projection algorithm was used to determine the displace-
ment of the surface nodes of the liver FEM. The algorithm
considered in this workflow consisted of the computation
of signed Euclidean distance maps from the pre- and post-
RT liver segmentation and the deformable registration of
these maps with a variant of the Demons algorithm.15 For
each node of the liver surface in the FEM, a boundary
condition as a constrained displacement was obtained by
linear interpolation of the displacement vector field (DVF)
calculated with the Demons algorithm. A finite-element
analysis was then performed using the software Optis-
truct (Altair, Troy, MI) to solve the displacements of all
the nodes of the FEM. Those displacements were finally
resampled on the grid of the pre-RT CT to provide a
dense DVF.

Biomechanic model expansion: addition of vessels
boundary conditions (BM_DIR_VBC)

The workflow for the determination of additional
boundary on the liver vasculature is shown in Fig 2, with
the additional steps detailed below.

Step 1 consisted of autosegmenting the vasculature on
the 2 CT scans to be registered. Numerous studies have
investigated the segmentation of 3D vessels in medical
images as reviewed by Lesage et al.16 A popular approach
corresponds to the analysis of the eigenvalues of the 3D
image Hessian matrix for each voxel. Different functions
of the eigenvalues have been proposed to compute a
vesselness image representing in each voxel the likeli-
hood for this voxel to belong to a tubular structure.17-20

To detect tubular structures of various diameters, the
vesselness image is usually computed after different
scales of a Gaussian smoothing of the original image. In
this study, a multiscale vesselness filter based on the
formulation by Frangi et al19 and available in the open-
source Insight Toolkit (www.itk.org) was applied to the
pre- and post-RT images with scales varying by steps of 1
mm from 3 to 7 mm. In a mask of the liver eroded by 5
mm, a first rough segmentation of the vasculature was
obtained from the 2 vesselness images by segmenting the
liver into 2 classes with an Otsu thresholding.21 Because

http://www.itk.org


Figure 1 Standard Biomechanical deformable image registration workflow.
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this segmentation overestimated the volume containing
vessels, a second thresholding was applied to it with a
Hounsfield Unit lower value set at the mean value minus
the standard deviation. A connectivity filter was then
applied to keep only segmentation parts with a volume
superior to 1000 voxels. Figure 2 shows an example of
the segmentation results on 2-dimensional slices and the
corresponding surfaces in 3D.

Step 2 consisted of using DIR to establish correspon-
dences between the segmented vasculature volumes. A
similar approach as the one described in the Biomechanic
model expansion: addition of vessels boundary conditions
section for the determination of correspondences on the
liver surface was used. Signed squared Euclidean distance
maps were calculated from each segmentation of the
vasculature and registered using a Demons algorithm.
Owing to frequent inconsistencies in the definition of the
vasculature obtained for the 2 images, a higher than
typical regularization of the DVF in the Demons algo-
rithm was considered by setting the iterative Gaussian
smoothing parameter to 2.5 mm.

In step 3, correspondences were selected to be used as
boundary conditions in the biomechanical model. For
this, the centerline of the vasculature of the pre-RT CT
was first obtained using a skeletonization algorithm
described by Lee et al.22 For all points of the centerline,
the corresponding displacement was obtained by linear
interpolation in the DVF calculated by the Demons. When



Figure 2 Workflow of the determination of boundary conditions on the liver vasculature.
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the displaced point fell in the segmentation of the
vasculature of the post-RT CT, the correspondence was
judged reliable and selected. The displacement was
otherwise considered uncertain and discarded. The
selected correspondences served to determine boundary
conditions to be applied to nodes of the liver tetrahedral
mesh. The new boundary conditions were added to the
ones determined previously on the liver surface before
finite-element analysis.
Intensity based-DIR with the Demons algorithm
To provide an assessment of the difficulty to align

the images with a typical intensity-based DIR image
algorithm, all the images were also directly first rigidly
aligned with the Global method and then registered
using the Demons algorithm using 3 resolutions
and the iterative Gaussian smoothing parameter set to
1 mm.
Comparison of the registration methods accuracy
For each patient, the Dice score of the liver and TRE

were measured after each rigid registration method and
after each combination of the rigid and deformable
methods. Student 2-tailed paired t tests were performed to
determine the statistical significance of the differences
between the means obtained for the different methods.
Results

Volume changes

Figure 3 represents the distribution of volume change
for the liver and tumor. Volumes changes ranged from
e329 to 306 mL and e176 to 44 mL for the total liver
and tumor, respectively. No clear relationship could be
observed for this population of patients between the
variations of the volume of the tumor and total liver,



Figure 3 Distribution of volume changes for the liver and tumor of the 28 patients.
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illustrating the existence of various kinds of anatomic
changes inside the liver.

Dice scores and target registration errors

Figure 4 A shows the distributions of the mean Dice
scores for the 28 patients after each rigid alignment andDIR
method using standard box and whisker plots, which show
the median value, interquartile range, minimum and
maximum values and outliers. For 2 patients, a very low
overlap of the liver was observed after the global rigid
alignment of the patient abdomens with Dice scores of 0.51
and 0.64. This could be explained by the large weight loss
of these 2 patients. Due to this low initial overlap of the liver
after a global rigid initialization, the Demons algorithm and
the surface projection method used in the biomechanical
DIRworkflow,which is also based on aDemons algorithm,
failed to match the liver surfaces for these 2 cases. The
performance of each method was assessed using the mean
and standard deviation and the statistical significance of the
differences was evaluated with Student 2-tailed paired t
tests. When using the liver contour for the rigid alignment,
allowing a rotation of the liver with the Chamfer method
significantly improved the mean Dice score in comparison
to the COM alignment from 0.88 � 0.04 to 0.91 � 0.03
(P < .01). The Demons algorithm significantly improved
the Dice score compared with the best rigid alignment
(PZ .01). Because the biomechanic DIRmethods used the
liver contours, they all yielded to a high Dice score of on
average 0.95 when a global rigid registration was consid-
ered and 0.97 for the 2 other rigid initialization methods.

Figure 4 B shows the box and whisker plot of the
corresponding mean TRE. The same order of performance
as suggested by the Dice score results could be observed
for the rigid alignment methods with mean TRE of 12.4 �
7.5, 10.1 � 4.3, and 7.7 � 2.8 mm for the Global, COM,
and Chamfer methods, respectively. However, the De-
mons algorithm, which provided significantly better Dice
scores yielded to a mean TRE of 11.9 � 6.9 mm. For 12
out of 28 patients, the TRE in the liver was worse after
applying the Demons than after the global rigid alignment
alone. Although using the contours in the standard
BM_DIR allowed to almost perfectly match the liver
surfaces with Dice score greater than 0.95, the corre-
sponding TRE remained high with averages of 9.0 � 5.6,
8.2 � 3.7, and 7.7 � 3.7 mm when considering the
Global, COM, or Chamfer initialization, respectively.
Considering the Chamfer method, no significant
improvement of the mean TRE was found after applying
standard BM_DIR (P Z .98). Whichever the considered
rigid registration, using the additional vessel boundary
conditions significantly improved the TRE (P < .01).
BM_DIR_VBC achieved TREs of 7.4 � 6.5, 5.8 � 3.8,
and 4.4 � 2.5 mm for the Global, COM, and Chamfer
initialization methods, respectively.

Figure 5 shows an example of complex tumor
change, the CT scans presenting a tumor area changing
in volume, densities, and textures. The mesh of the



Figure 4 (A) Box and whisker plots of the 28 mean Dice scores for all rigid and deformable registration methods. The outliers were
defined as the values distant from the 75th and 25th percentile by more than 1.5 times the interquartile range. (B) Corresponding box and
whisker plots of the 28 mean target registration errors (TRE) for all rigid and deformable registration methods. Abbreviation: VBC Z
vessels boundary conditions.
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liver and the vasculature surfaces are represented
after a Chamfer initialization and after applying
BM_DIR_VBC. The estimated deformation of the
tumor area resulted from the deformation of sur-
rounding vasculature and liver surface only, avoiding
to rely on an uncertain definition of the tumor area
boundaries.

Figure 6 shows overlays of registered image slices for
the same patient. The slice representing a normal part of
the liver illustrates the ability of the method to align both



Figure 5 Axial and coronal slices of pre- and post-RT computed tomographic scans of a patient showing the tumor area. (A) The blue
mesh represents the liver surface of the pretreatment image; the plain blue surface represents the vasculature of the same image; the liver
and vasculature corresponding to the posttreatment image are represented in white; the tumor area corresponding to the pretreatment
image is represented in green. (B) The surfaces of the tumor in green and of the liver and vasculature in blue represents the result of the
deformation estimated with biomechanical model-based deformable image registration with boundary conditions specified on the
vessels and liver surface.
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the liver surface and internal vasculature. The slice rep-
resenting the tumor area illustrates the ability of the
method to provide an apparent reasonable alignment of
that region by ignoring image intensity or texture
changes, which are challenging to interpret.
Discussion

A deformable image registration method has been
proposed for the registration of pre- and postradiation
therapy contrast-enhanced CT of cholangiocarcinoma
cases. Based on a biomechanical model of the liver driven
by boundary conditions on the surface and vasculature,
the method demonstrated significantly higher accuracy
than a previously proposed approach based on boundary
conditions on the liver surface only. The previous
approach actually failed to provide significantly better
accuracy than a rigid alignment based on a chamfer
matching of the liver surface. DIR approaches guided by
the information of liver surface only should be reserved to
the registration of images presenting physiologic-based
anatomic variations inside the liver, such as 4-
dimensional CT and image guidance at treatment frac-
tions during a course of radiation therapy. Images pre-
senting long-term radiation-induced changes or large
disease progression in the liver appeared much more
challenging to align.



Figure 6 Colored overlays of 2 slices of the pre- and post-RT computed tomographic scans of a patient after a rigid Chamfer
alignment (left) and after deformable image registration with boundary conditions specified on the vessels and liver surface (right). Top:
slice showing normal tissues in the liver; bottom: slice showing the tumor area.
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To assess the difficulty in aligning these images, the
accuracy obtained with a Demons algorithm was also
reported. Although the Dice score improved for all pa-
tients with the Demons in comparison to the initial
abdomen alignment, the TRE was worse in 43% (12 out
of 28) of patients. Other intensity-based DIR methods
may prove themselves more accurate, but we believe that
all would show poor robustness for the estimation of in-
ternal liver deformations.

These results justify the need for defining corre-
sponding landmarks by clinical observers for DIR accu-
racy evaluation. In this study, the best DIR method
provided an accuracy of 4.4 � 2.5 mm, which has to be
relativized considering the slice spacing of 2.5 or 5 mm
and the uncertainties in manually picking up landmarks.
For the 6 patients who had at least one CT scan with a
slice spacing of 5 mm, the mean TRE was 5.0 mm for the
best method, which was close to the results for the rest of
the patients. This could be explained by the fact that
vessel bifurcation points were selected for each patient
only when appearing identically in the lower resolution
image and other image. For DIR methods relying on the
intensity information in the liver, such as the Demons or
BM_DIR_VBC in this study, this method of accuracy
evaluation remains the most reliable but may be biased
and overestimate the accuracy in large areas that are ho-
mogeneous in intensity.

Better accuracy than the achieved 4.4 mm may be
desirable, for example if the goal of DIR is to map a dose
distribution to the posttreatment image for analysis of the
dose response or planning a new course of treatment.
More advanced segmentation techniques of the vascula-
ture than the method adopted in this study have previ-
ously been proposed. However, we believe that this part
of the workflow, which could be improved in future work,
has little effect on the final achieved TRE. The proposed
vessel tree matching method, when combined to a
Chamfer matching of the liver surface, seemed very
robust to inconsistencies between the segmented vessel
trees of the 2 images. Focus will be given to the expan-
sion of the biomechanic model complexity. Future in-
vestigations will include the assignment of heterogeneous
elastic properties in the liver based on the auto-
segmentation of the vasculature and the initialization of
the deformations based on the simulation of the effect of
locally delivered dose on local volume changes as
recently proposed.9
Conclusions

A DIR solution has been proposed for the registration
of pre- and postradiation therapy CT scans of the liver
presenting long-term anatomic changes. The method was
based on a biomechanical model of the liver driven by
boundary condition on the liver surface and auto-
segmented vasculature. For evaluation of the method,
corresponding anatomic points were identified between
the image pairs of 28 patients. By achieving an average
TRE of 4.4 � 2.5 mm in the presence of the complexity of
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the anatomic changes owing to treatment response or
disease progression, the proposed workflow should prove
itself to be a valuable tool for studies of liver cancer dose
response.
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