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Abstract

Natural killer (NK) cell-based adoptive immunotherapy is an attractive adjuvant treatment option for patients with acute
myeloid leukemia. Recently, we reported a clinical-grade, cytokine-based culture method for the generation of NK cells from
umbilical cord blood (UCB) CD34+ hematopoietic progenitor cells with high yield, purity and in vitro functionality. The
present study was designed to evaluate the in vivo anti-leukemic potential of UCB-NK cells generated with our GMP-
compliant culture system in terms of biodistribution, survival and cytolytic activity following adoptive transfer in
immunodeficient NOD/SCID/IL2Rgnull mice. Using single photon emission computed tomography, we first demonstrated
active migration of UCB-NK cells to bone marrow, spleen and liver within 24 h after infusion. Analysis of the chemokine
receptor expression profile of UCB-NK cells matched in vivo findings. Particularly, a firm proportion of UCB-NK cells
functionally expressed CXCR4, what could trigger BM homing in response to its ligand CXCL12. In addition, high expression
of CXCR3 and CCR6 supported the capacity of UCB-NK cells to migrate to inflamed tissues via the CXCR3/CXCL10-11 and
CCR6/CCL20 axis. Thereafter, we showed that low dose IL-15 mediates efficient survival, expansion and maturation of UCB-
NK cells in vivo. Most importantly, we demonstrate that a single UCB-NK cell infusion combined with supportive IL-15
administration efficiently inhibited growth of human leukemia cells implanted in the femur of mice, resulting in significant
prolongation of mice survival. These preclinical studies strongly support the therapeutic potential of ex vivo-generated UCB-
NK cells in the treatment of myeloid leukemia after immunosuppressive chemotherapy.
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Introduction

Acute myeloid leukemia (AML) is a clonal disorder character-

ized by the accumulation of abnormal myeloid progenitor cells

and suppression of normal hematopoiesis [1]. With a median age

of ,70 years at diagnosis [2], AML is most common in the elderly

and its yearly incidence is expected to increase as the population

ages [3]. Current chemotherapeutic regimens lead to remission

rates of 60–85%. However, relapse occurs in the vast majority of

AML cases, resulting in a 5-year overall survival of 40% in patients

,60 years of age, which even drops to 10% in elderly patients due

the higher prevalence of bad risk cytogenetics and poor

chemotherapeutic tolerance [4]. Although allogeneic stem cell

transplantation (alloSCT) is potentially curative, mostly younger

patients can benefit from this therapeutic option due to high

association with transplant-related morbidity and mortality [5].

Therefore, adjuvant and alternative treatment options are urgently

needed.

Transfusion of allogeneic NK cells is a promising therapeutic

approach for patients with AML. NK cells are major effector cells

of the innate immune system and play a key role in control against

virus infection and tumor immunosurveillance [6,7]. In the setting

of haploidentical alloSCT, NK cell alloreactivity has proven to

decrease relapse rate and improve survival among AML patients

[8]. Therefore, there is an emerging interest in exploiting adoptive

NK cell transfer in the treatment of AML. Clinical studies

reported so far showed that infusion of haploidentical NK cells

derived from leukapheresis products resulted in objective clinical
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responses in high-risk AML patients [9,10], as well as long term

remissions in childhood AML [11].

However, further improvement of NK cell-based therapy is

needed to increase the clinical effect. In this regard, NK cells

generated ex vivo from hematopoietic progenitor cells (HPC) may

have significant clinical benefits over enriched NK cells from adult

donors, including the ability to choose an appropriate killer-cell

immunoglobulin-like receptor (KIR)-ligand or KIR B haplotype

alloreactive donor, as well as the capacity to reach high

therapeutic dosages. Recently, we reported a GMP-compliant,

cytokine/heparin-based culture protocol for the ex vivo generation

of highly active NK cells from CD34+ HPC isolated from

cryopreserved umbilical cord blood (UCB) units [12]. Expansion

in closed, large-scale bioreactors yields a clinically relevant dose of

NK cells with high purity and cytolytic activity against AML cells

in vitro [13].

In the present study, we aimed at evaluating the anti-leukemic

potential of UCB-NK cells in vivo in terms of biodistribution,

survival and cytotoxicity following adoptive transfer in NOD/

SCID/IL2Rgnull (NSG) mice. Therefore, we established an
111Indium labelling protocol that enables specific and sensitive

in vivo tracking of infused UCB-NK cells by single photon emission

computed tomography (SPECT) imaging. Besides generating

insight in UCB-NK cell trafficking, we demonstrated specific

accumulation of UCB-NK cells in the bone marrow (BM) that

matched their chemokine receptor profile. Moreover, we demon-

strated that a single infusion of UCB-NK cells resulted in potent

leukemia cell growth inhibition and significantly improved mice

survival. These findings strongly support ex vivo-generated UCB-

NK cells as promising immunotherapeutic products for the

treatment of AML.

Materials and Methods

UCB-NK Cell Generation
UCB units were obtained at birth after normal full-term

delivery after written informed consent with regard of scientific use

from the cord blood bank of the Radboud University Nijmegen

Medical Centre (RUNMC, Nijmegen, The Netherlands). The use

of UCB units was approved by the RUNMC Institutional Review

board. NK cells were generated from cryopreserved UCB-derived

HPC as previously reported [12,13]. Briefly, expanded CD34+

UCB cells were differentiated and further expanded using NK cell

differentiation medium which consists of Glycostem Basal Growth

Medium (GBGMH) for cord blood (Clear Cell Technologies)

supplemented with 2% human serum (HS; Sanquin Blood Supply

Foundation, Nijmegen, The Netherlands), low-dose GM-CSF

(Neupogen), G-CSF, IL-6 (both CellGenix) and a high-dose

cytokine cocktail consisting of IL-7, SCF, IL-15 (all CellGenix) and

IL-2 (ProleukinH). The cell density was checked two times a week

and adjusted to .16106 cells/ml by the addition of GBGMH NK

cell differentiation medium. For experiments, CD56+CD32 UCB-

NK cells were used at the end of the culture process with .90%

purity, what was typically achieved within 3–4 weeks in GBGMH
NK cell differentiation medium.

Flow Cytometry
Cell numbers and expression of cell surface markers were

determined by flow cytometry. Anti-human CD45-ECD (J.33) and

CD56-PC7 (N901) antibodies (Beckman Coulter) were used to

follow cell number and NK cell differentiation during culture

using the Coulter FC500 flow cytometer (Beckman Coulter). The

population of living CD45+ cells was determined by exclusion of

7AAD (Sigma) positive cells. For phenotypical analysis, UCB-NK

cells were incubated with the appropriate concentration of

antibodies for 30 min at 4uC. After washing, cells were

resuspended in PBS/0.5% BSA and analyzed using the Coulter

FC500 or Cyan-ADP 9 color flow cytometers (Beckman Coulter).

The following conjugated monoclonal antibodies were used:

CCR2 (48607, R&D system), CCR5 (T21/8, eBioscience),

CCR6 (TG7), CCR7 (G043H7), CXCR3 (G025H7), CXCR4

(12G5), CXCR6 (TG3), CX3CR1 (2A9–1) and CD62L (DREG-

56, all Biolegend).

In vitro Cell Migration Assay
UCB-NK cells were resuspended in GBGM/2% HS and

loaded into transwell inserts (105 cells/well, 5 mm pore filter

transwell, 24-well plate, Corning). The human chemokines CCL4,

CCL20, CXCL10, CXCL11 and CXCL12 (all Immunotools)

were diluted at 10–250 ng/ml and added to the lower compart-

ment (600 ml/well) in triplicates. After 2 h at 37uC, inserts were

removed; cells in lower compartments were collected, stained for

CD56 and quantified by flow cytometry. Percentage of migrated

cells was calculated as the number of CD56+ cells in the lower

compartment divided by the total number of CD56+ loaded cells.

Mice
NOD/SCID/IL2Rgnull (NSG) mice were originally purchased

from Jackson Laboratories, and housed and bred in the RUNMC

Central Animal Laboratory. Male NSG mice were used from 6 to

12 weeks of age (weight was 20–30 g). All animal experiments

were approved by the Animal Experimental Committee of the

RUNMC and were conducted in accordance with institutional

and national guidelines under the university permit number

10300.

NK Cell Labeling with 111Indium, SPECT-CT Imaging and
Biodistribution Analysis

UCB-NK cells were labeled with 111Indium-oxinate (111In; GE

Healthcare) in PBS Tris 0.1 M HCl, pH 7.4 for 15 min at RT at

doses mentioned in the text. After incubation, cells were washed

twice with PBS/2% HS and resuspended in PBS before use.

Viability was assessed by trypan blue exclusion and cell-associated

activity was quantified using a dose calibrator VDC-404 (Veenstra

Instruments, The Netherlands). Lysates were obtained after three

freezing/thawing cycles of 111In-NK cells previously resuspended

in distilled water. Whole body scans of isoflurane gas anesthetized

(2% in air) mice were acquired with a SPECT-CT dual-modality

scanner (U-SPECT II, MiLabs) for 30–45 min using a 1.0 mm

diameter pinhole mouse collimator cylinder. Scans were recon-

structed with MiLabs reconstruction software and analyzed using

Inveon Research Workplace software. For biodistribution analysis,

mice were euthanized by cervical dislocation, tissues of interest

were dissected, weighed, and analyzed for their 111In content using

a shielded 3-inch-well-type gamma counter (Wizard; Pharmacia

LKB). The 111In activity in each tissue was expressed as

percentage of the injected dose (%ID) per gram of tissue and

was normalized to the blood level. Values for the total blood and

BM fraction were extrapolated according to physiological values,

with blood being 6% of the total body weight, and one femur

being 6.7% of the total BM fraction [14].

Intra-femoral K562 Model, Bioluminescence Imaging and
UCB-NK Cell Adoptive Transfer

The NK-sensitive leukemia cell line K562 (ATCC) was cultured

in Iscove’s modified Dulbecco’s medium (IMDM; Invitrogen)

containing 50 U/ml penicillin, 50 mg/ml streptomycin and 10%
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fetal calf serum. Green fluorescent protein (GFP) and Luciferase

expressing K562 cells (K562.LucGFP) were generated by stable

transduction of parental cells with lentiviral particles LVP20

encoding the reporter genes under control of the CMV promoter

(GenTech). To establish a preclinical AML xenograft model, adult

NSG mice were injected in their right femur with 105

K562.GFPLuc cells (injection volume = 5 ml), by insertion of a

25G Hamilton needle through the knee joint of isoflurane gas

anesthetized mice. Using this procedure, leukemia cell growth

remained localized to BM up to 5 weeks. Thereafter, tumor cells

eventually overgrow outside the bone forming a palpable tumor.

Mice were sacrificed (cervical dislocation) when the palpable

tumor reached 1 cm in diameter or when one of the following

criteria was observed: severe weight loss, poor coat and skin

condition, static activity or paraplegia. Leukemia load was

monitored by bioluminescence imaging (BLI) following injection

of Luciferine (3.5 mg per mouse, Caliper Life Science) using the

IVIS system (Xenogen). Images were analyzed using Living Image

Software 2.5 (Xenogen). Leukemia load was quantified in the

region of interest with subtraction of background signal, and

expressed as photons per second. For adoptive transfer, UCB-NK

cells were resuspended in PBS and injected i.v. via the tail vein of

Figure 1. Homing receptor expression profile of UCB-NK cells. (A–B) The expression level of homing receptors was analysed by flow
cytometry on UCB-NK cells at the end of the culture process. (A) Dot plots gated on CD56+ cells from one representative donor; (B) Summary of 6
different donors analysed. (C) The capacity of UCB-NK cells to respond in vitro to gradients (10 to 250 ng/ml) of the chemokines CCL4 (CCR5 ligand),
CCL20 (CCR6 ligand), CXCL10, CXCL11 (both CXCR3 ligand) and CXCL12 (CXCR4 ligand) was evaluated in transwell migration assays as described in
materials and methods. Mean 6 SEM of three independent experiments are shown, each performed with different UCB-NK cell donors. Migration
towards specific chemokines was compared to non-specific migration (0 ng/ml) using a one way-ANOVA followed by Dunnett’s multiple comparison
post-hoc test, *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0064384.g001
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adult NSG mice. Recombinant human IL-15 (Miltenyi Biotech)

was administrated intra-peritoneally (i.p.) at the dose of 0.5 mg/

mouse (i.e. 2.500 Units/mouse) the day of UCB-NK cell infusion

and thereafter every 2–3 days for 2 weeks.

Statistical Analysis
Statistical analyses were performed using Graphpad Prism 5

software. Biodistribution of 111In-associated activity following
111In-NK cell infusion was compared to that observed after lysate

or free 111In injection using one way-analysis of variance

(ANOVA) and Dunnett’s multiple comparison tests. Two way-

ANOVA followed by Bonferroni post-hoc test, and log rank

Mantel Cox tests were used in anti-leukemic studies as indicated in

the figure legends. Differences were considered to be significant for

p values ,0.05.

Results

Characterization of the Homing Receptor Expression
Profile of UCB-NK Cells

We reported previously that the cytokine-based culture system

that we established allows generation of CD32CD56+ NK cells

with high purity, that express typical inhibitory and activating NK

receptors and display similar cytotoxic gene expression profile to

peripheral blood NK cells [15]. To further characterize UCB-NK

cell products and to investigate their biodistribution potential upon

Figure 2. SPECT-CT imaging provides good sensitivity and specificity to track 111In-labeled UCB-NK cells in vivo. To address the
feasibility of UCB-NK cell tracking in vivo, adult NSG mice were injected i.v. either with increasing doses of 111In-NK cells (1, 5 or 126106 111In-NK cells
per mouse equivalent to 1, 5 and 12 MBq respectively, n = 5 in total), with a lysate obtained from 111In-NK cells (111In-lysate, n = 2) or with 111In-
oxinate (n = 3). (A) Representative whole body SPECT scans acquired 1 h and 24 h after injection of 111In-NK cells with major visualization of lungs
(Lu), liver (Li), spleen (Sp, arrowhead) and bone marrow (BM, arrow). (B) Representative whole body SPECT scans acquired 24 h after injection of 111In-
NK cell lysate or 111In-oxinate; kidneys (Ki), heart (He). (C) Quantitative biodistribution analysis performed 24 h after injection. For comparison, the
relative 111In-content of each tissue of interest was normalized to blood. Data are shown as mean 6 SD. *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0064384.g002
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adoptive transfer, we examined the expression and functionality of

a panel of receptors that were previously described to participate

in the regulation of human NK cell trafficking in vivo [16,17]. As

shown in Figure 1A–B, the chemokine receptors CCR2, CCR5,

CCR7, CXCR6 and CX3CR1 were virtually absent. However,

high proportion of UCB-NK cells expressed CCR6 (52612%) and

CXCR3 (65621%). Expression of CXCR4 as well as the adhesion

molecule CD62L (L-selectin) were also detected typically on 10–

20% of UCB-NK cells at the end of the culture process. Results

obtained from in vitro migration assays were consistent with this

chemokine receptor profile (Figure 1C). Notably, the proportion of

CD56+ UCB-NK cells migrating in response to the chemokine

CXCL12 was similar to level of CXCR4-expressing cells, and

specific migration towards the chemokines CCL20 (CCR6 ligand),

CXCL10 and CXCL11 (both CXCR3 ligands) were confirmed.

These data indicate that UCB-NK cells functionally express

CXCR4, what could trigger BM homing in response to its ligand

CXCL12. In addition, data suggest that UCB-NK cells have the

capacity to migrate to inflamed tissues via the CXCR3/CXCL10–

11 and CCR6/CCL20 axis.

Development of in vivo UCB-NK Cell Tracking
Next, we aimed to establish a method using 111In-oxinate as

radiolabel and SPECT-CT imaging that could be exploited both

at the pre-clinical level in mice and for clinical studies in humans,

to monitor early distribution of UCB-NK cell following infusion in

relation to anti-leukemic potency in BM. To address the feasibility

of this methodology, increasing doses of UCB-NK cells previously

labeled with 111In-oxinate (111In-NK cells; 2MBq of 111In-oxinate

was added per 106 cells and labeling efficiency was 55%) were

injected i.v. into NSG mice. Whole body scans acquired 1 and

24 h after infusion showed that the 111In-activity first localized in

the lungs, and thereafter redistributed to the spleen, liver and BM

(Figure 2A). At 24 h, liver and spleen were visible at all doses of

infused 111In-NK cells, while the activity present in BM was

detected only in mice injected with $56106 111In-NK cells. To

address the specificity of 111In-NK cell in vivo imaging, we also

analyzed the distribution of 111In-activity following injection of

either a lysate obtained from 111In-NK cells or 111In-oxinate

(Figure 2B). In both cases, after 24 h, the activity was mainly

visualized in kidneys. Weak uptake of 111In was noticed in liver

and lungs following injection of 111In-lysate and 111In-oxinate,

respectively.

After imaging, mice were euthanized, organs were collected,

weighted, and used to analyse quantitatively the distribution of the
111In-activity as described in materials and methods. All tissues

examined following injection of 111In-oxinate exhibited similar

level of 111In compared to that measured in blood, indicating that

the 111In activity remained in the circulation, resulting in

visualization of well perfused organs. In mice injected with
111In-lysate, the activity mainly accumulated in the kidneys,

representing ,20% of the injected dose (data not shown). Slightly

enhanced 111In activity levels were also measured in liver and

lymphoid organs. In contrast, following infusion of 111In-NK cells,

the proportions of activity quantified in BM, spleen, liver and

lungs were strongly increased compared to blood level. Values

were also significantly higher compared to those determined

following injection of 111In-lysate and 111In-oxinate (Figure 2C),

indicating that the accumulation of 111In activity in these organs

could be attributed to the accumulation of 111In-NK cells.

Notably, the distribution of 111In activity was similar at all doses

of infused 111In-NK cells (Figure S1). Moreover, human

CD45+CD56+ NK cells were clearly identified in the same organs,

except kidneys, by ex vivo flow cytometric analysis performed 24 h

after infusion of UCB-NK cells (Figure 3). All together, these data

show that SPECT-CT imaging allows tracking of 111In-NK cells

in vivo with good sensitivity and specificity, and that UCB-NK

cells, after a brief period of retention in the lungs, rapidly traffic to

the liver, spleen and BM.

A Consistent Proportion of UCB-NK Cells Accumulates in
Mouse BM Following Adoptive Transfer

After demonstrating the feasibility of 111In-NK cell tracking

in vivo, we aimed to determine quantitatively the biodistribution of

UCB-NK cells in 2 independent experiments. To this end, we first

optimized the labelling procedure by incubating increasing

numbers of NK cells with 2 MBq 111In. Good 111In labelling

efficiency and cell recovery were achieved using .46106 cells

(Figure 4A). Based on these findings, 0.4 MBq of 111In-oxinate was

added per 106 cells for subsequent experiments where labeling

efficiency always exceeded 80%, cell viability .90% and cell

recovery .95% (data not shown). In addition, this procedure did

not affect the migration capacity of UCB-NK cells towards the

prototypic BM-chemokine CXCL12 in vitro (Figure 4B).

As observed in the pilot studies, we found the highest activity

concentration in the spleen, followed by liver, BM and lungs at

24 h after infusion. Taking into account total organ weights,

nearly 70% (64.962.1) of the ID was present in liver, while spleen

and lungs contained 3.161.2%ID and 3.961.9%ID, respectively

(Figure 4C). For BM, 0.3260.05%ID was quantified per femur

(data not shown). Assuming that one femur accounts for 6.7% of

the total BM in adult mouse [14], we estimated at ,5% the

fraction of 111In-NK cells accumulating within 24 h in the total

BM compartment. Accordingly, a homogenous 111In-signal was

visualized by SPECT-CT imaging in all bones (Figure 4D). These

data indicate that a significant percentage of UCB-NK cells are

able to migrate to the mouse BM following adoptive transfer.

Low Dose Human IL-15 Drives UCB-NK Cell Expansion
in vivo

Next to BM homing, we aimed to evaluate the survival potential

of UCB-NK cells following adoptive transfer. Indeed, clinical

responses reported so far always occurred with concomitant donor

NK cell persistence and even expansion within the first two weeks

after infusion. Interestingly, conditioning regimens that allowed

successful alloNK cell engraftment also resulted in transient

elevation of endogenous IL-15 [9]. Therefore, we examined UCB-

NK cell survival potential upon adoptive transfer in NSG mice in

the presence of low dose IL-15 support. In a first experiment, we

observed that daily administration of IL-15 mediated efficient

expansion of infused UCB-NK cells in vivo (Figure S2). In contrast

to mice injected with UCB-NK cells alone, a clear population of

human CD45+CD56+ cells could be visualized in mice co-injected

with IL-15, representing 3.5% of total leukocytes at day 7, which

Figure 3. Ex vivo flow cytometric analysis confirmed trafficking of UCB-NK cells through lymphoid tissues, liver and lungs following
adoptive transfer in NSG mice. Two adult NSG mice were infused i.v. with 106106 UCB-NK cells. The day after, mice were sacrificed, organs
collected and used to prepare cell suspension for ex vivo flow cytometric analysis following erythrocyte lysis. One additional non-injected mouse was
used as control. Presence of human CD45+CD56+ NK cells was confirmed in all examined tissues except kidneys. Dot plots gated on total living cells
are shown.
doi:10.1371/journal.pone.0064384.g003
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further increased till 4.5% at day 14. Nevertheless, NK cell

numbers rapidly declined after removal of IL-15 (Figure S2). We

next intended to confirm these findings with a different UCB

donor and to examine UCB-NK cell engraftment level in

lymphoid tissues. To this end, mice received a single infusion of

56106 UCB-NK cells, and percentages of circulating human NK

cells were monitored in peripheral blood collected at 1, 7 and

14 days later. Here, NSG mice were given intermittent injections

of IL-15, thereby reducing the IL-15 support compared to the first

experiment. Consistent with previous observations, human NK

cells were almost absent at day 7 in mice co-treated with PBS. In

contrast, mice co-injected with IL-15 displayed stable levels of NK

cells from day 1 to day 7, which even increased in 4 out 5 mice at

day 14 (Figure 5A). In addition, significant percentages of UCB-

NK cells were identified in spleen and BM by day 14 (Figure 5B).

Moreover, examination of the NK cell phenotype in these tissues

revealed high expression level of CD16 and KIR receptors, which

were strongly increased compared to the infused UCB-NK cell

product (Figure 5C). All together, these data demonstrate that low

dose IL-15 mediates efficient UCB-NK cell survival and expansion

in vivo, and that further differentiation of UCB-NK cell products

occurs rapidly following adoptive transfer.

Adoptive Transfer of UCB-NK Cells Inhibits Growth of BM-
residing Human Leukemia Cells in Mice

Finally, to evaluate the cytolytic activity of UCB-NK cells in vivo,

we developed a leukemia xenograft model by injecting adult NSG

mice with leukemia cells intra-femorally (i.f.), therefore requiring

BM homing by infused UCB-NK cells to achieve anti-leukemic

response. For this, we used K562 leukemia cells expressing

Figure 4. Organ-distribution of UCB-NK cells following adoptive transfer. (A) For optimization of NK cell labelling procedure, increasing
number of UCB-NK cells were incubated with 2MBq 111In. Graphs show mean 6 SD of three experiments performed each with a different UCB donor.
Good labelling efficiency and cell recovery were achieved using .46106 cells per 2 MBq. Subsequently (panels B-D), 0.4MBq 111In was added per
106 UCB-NK cells to label. (B) The capacity of 111In-NK cells to migrate in response to the chemokine CXCL12 was evaluated in vitro and compared to
that of unlabeled UCB-NK cells. The same experimental procedure was employed to assess the transwell migration of unlabeled and 111In-NK cells as
described in materials and methods, except that the proportion of 111In-labeled cells present in bottom chambers were quantified using a shielded 3-
inch-well-type gamma counter (Wizard; Pharmacia LKB). (C) Biodistribution analysis of 111In-NK cells 24 h after i.v. infusion, expressed as a percentage
of injected activity per gram of tissue of interest or per organ. Combined results from two experiments expressed as mean 6 SD (n = 6) are shown.
*Extrapolated values according to physiological parameters. (D) Representative 2D-reconstruction analysis of SPECT-CT illustrating the accumulation
of 111In-NK cells (orange) in bones (grey).
doi:10.1371/journal.pone.0064384.g004
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Luciferase (K562.LucGFP cells) to allow longitudinal monitoring

of tumor growth in living animals by bioluminescence imaging

(BLI). In this model, mice received a single infusion of UCB-NK

cells the day after K562.LucGFP cell i.f. injection, in combination

with low dose supportive IL-15 (Figure 6A). A dose of 206106 NK

cells per mouse was defined based on biodistribution studies to

approach an effector to target ratio of 1:1 in vivo. The anti-

leukemic potential of UCB-NK cells to target K562.LucGFP cells

was evaluated in two independent experiments with similar

outcomes (Figure 6B). Comparable K562 cell engraftment was

observed in both experiments and all control mice treated with

PBS and IL-15 except one displayed detectable i.f. tumors by day

15 (Figure 6B–C). In striking contrast, 8 out of 12 mice treated

with UCB-NK cells had undetectable tumor load by day 15.

Significant inhibition of K562.LucGFP cell progression following

UCB-NK cells infusion was demonstrated by BLI in time

(Figure 6D). Most importantly, a single infusion of ex vivo-

generated UCB-NK cells in combination with low-dose IL-15

prolonged survival of K562 i.f. injected mice of which 25% showed

long-term protection (Figure 6E–F). These results demonstrate

that UCB-NK cells are functional following adoptive transfer, and

that they are able to target and eliminate BM-residing leukemia

cells in vivo.

Discussion

To date, it is well established that NK cells mediate efficient

graft-versus-leukemia reactivity with improved control of relapse

in AML patients following alloSCT. This raises the interest in

exploiting NK cells for adoptive immunotherapy, particularly as

an adjuvant treatment approach to chemotherapy for elderly,

high-risk and refractory AML patients. Most trials reported so far

employed peripheral blood derived-NK cells enriched by CD3

depletion with or without CD56 selection from donor apheresis

products, and showed that enriched NK cell infusions are well

tolerated, without induction of GVHD or severe toxicity [9–

11,18]. Nevertheless, the clinical impact of NK cell-based therapy

remains inconsistent and several issues need to be optimized to

achieve clinical efficacy. In addition to conditioning regimens that

prevent rapid graft rejection and supply of exogenous cytokines

Figure 5. Low-dose IL-15 mediates efficient UCB-NK cell survival and expansion in vivo. Adult NSG mice were injected i.v. with 56106

UCB-NK cells with or without supportive IL-15. Recombinant human IL-15 was administered every 2–3 days for 2 weeks at the dose of 0.5 mg/mouse/
injection, starting the day of UCB-NK cell infusion. (A) Percentages of circulating human CD45+ cells in all CD45+ cells were quantified by flow
cytometry at the indicated time points. Each line corresponds to one mouse. (B) Percentages of human CD45+ cells in all CD45+ cells quantified in
spleen and bone marrow (leg bones) 2 weeks after UCB-NK cell infusion. (C) Expression of CD16 and CD158a/h,b,e on UCB-NK cells before and 2
weeks after infusion into NSG mice. Percentages were determined on human CD45+CD56+ NK cells isolated from spleen and bone marrow. Graphs
show the mean 6 SD of 5 mice.
doi:10.1371/journal.pone.0064384.g005
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Figure 6. A single infusion of UCB-NK cells inhibits growth of BM-residing human leukemia cells. The potential of UCB-NK cells to attack
human leukemia in vivo was evaluated in NSG mice bearing K562 intra-femoral (i.f.) tumors. (A) Experimental study design: adult NSG mice were
injected in their right femur with 105 K562.LucGFP cells. The day after, mice were treated with 206106 UCB-NK cells i.v. in combination with IL-15
administration (0.5 mg/mouse i.p. every 2–3 days for 14 days), or received PBS or IL-15 alone as control (n = 6 per group). Tumor load was monitored
by BLI from day 8 after K562.LucGFP cell inoculation and next every 3–4 days for 2 weeks. At later time points, only mice with undetectable tumor
load were imaged. (B) Two independent anti-leukemic studies were performed with similar outcomes. Tumor load per mouse measured at day 15
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like IL-2 supporting NK cell survival upon adoptive transfer, the

purity, the activation and the number of cells that can be infused

in patients are critical factors determining clinical response [9,11].

Since, new methodologies are currently emerging to generate

higher numbers of activated NK cells, including in vitro expansion

of donor-derived NK cells before infusion [19], as well as NK cell

generation from CD34+ hematopoietic stem/progenitor cells

[12,20,21]. In particular, the availability of cryo-preserved UCB

units and the development of GMP-compliant culture systems

constitute a very attractive approach to exploit the potential of NK

cell-based adoptive immunotherapy, with generation of a clinically

relevant dosages of UCB-NK cells with high purity and cytolytic

activity in vitro [13].

The present study was designed to pre-clinically evaluate the

in vivo anti-leukemic potential of UCB-NK cells generated with our

GMP-compliant culture system. To this end, we developed a

mouse model in which human K562.LucGFP leukemia cells are

directly implanted into the femur of NSG mice, thus requiring

BM-specific homing of infused UCB-NK cells to achieve anti-

tumor response. In this model, we showed that treatment with

UCB-NK cells in combination with supportive IL-15 potently

inhibited progression of K562 cells, thereby demonstrating that

UCB-NK cells are functional in vivo and have the capacity to

target leukemia cells within BM upon adoptive transfer. Impor-

tantly, prolongation of mice survival including complete and

persistent response in 25% of the mice was achieved following a

single infusion of UCB-NK cells and in the presence of low dose

IL-15 support. Considering that complete protection against K562

cells in vivo was mostly reported following multiple NK cell

infusions and/or prolonged high-dose IL-2 administration [21–

24], we believe that our results nicely illustrates the therapeutic

potential of UCB-NK cells in the clinic. In addition, biodistribu-

tion analysis showed that a relatively small proportion of our

current UCB-NK cell product accumulates in one femur within

24 h (,0.3% of 206106 cells, i.e. ,16105 UCB-NK cells per

femur), suggesting that inhibition of leukemia cell growth primarily

happened at a low effector to target ratio what also illustrates the

high cytolytic potential of ex vivo generated UCB-NK cells.

Our phenotypical analysis and in vitro migration studies support

that UCB-NK cells can actively home to BM following adoptive

transfer. Consistent expression of the chemokine receptor CXCR4

was detected on UCB-NK cells at the end of the culture process,

and robust migration in response to its ligand CXCL12 was shown

in vitro. Implication of the CXCR4/CXCL12 axis in regulating the

migration of human T and NK cells to BM has been reported in

several studies [25,26], including in human metastatic prostate

cancer [27]. Therefore, it is likely that UCB-NK cell homing to

BM is CXCR4/CXCL12-dependent. Nevertheless, we also

showed that UCB-NK cells display high expression of CXCR3

and CCR6, two receptors that could also regulate UCB-NK cell

trafficking to inflamed tissues in vivo. Future studies are now

warranted to demonstrate the role of the CXCR4/CXCL12 axis

in UCB-NK cell homing to BM and to examine its implication in

patients among other inflammatory pathways like CXCR3/

CXCL10–11. Also, trafficking of adoptively transferred NK cells

has not been addressed in leukemia patients yet. Use of 111In for

in vivo tracking of adoptively transferred NK cells has already been

reported in patients with renal cell carcinoma and liver metastases

[28,29], and at the pre-clinical level in xenograft mouse models of

leukemia [23]. Similar to our findings, early distribution of NK

cells in the lungs, and later in the liver, spleen and eventually BM

was visualized following systemic infusion. However, detailed

organ distribution of NK cells as well as demonstration of the

specificity of the visualized signal, particularly in BM, were not

available. Here, we showed that 111In-based NK cell tracking

provides good specificity and sensitivity, and will constitute a useful

method to study and correlate effective BM targeting with clinical

response in patients.

We reported previously that UCB-NK cells generated with our

GMP-compliant culture system display a relatively low expression

level of CD16 and KIRs at the end of the culture process [12].

However, we observed that the proportions of UCB-NK cells

expressing these markers were strongly increased two weeks after

adoptive transfer, indicating that UCB-NK cells can further

differentiate in vivo into a more mature cell population. These data

are in agreement with Huntington et al. who showed that rapid

IL-15 driven-transition of human CD56hiCD162KIR2 to

CD56dimCD16+KIR+ NK cells occurs in vivo [30]. Since KIR-

ligand mismatch triggers NK cell alloreactivity towards AML,

such phenotypic modifications might have important implications

in patients. In that view, UCB-NK cell reactivity towards AML

in vivo should be further addressed using HLA-expressing AML

cells in our i.f. NSG model.

In conclusion, our results strongly support that UCB-NK cells

constitute promising immunotherapeutic products to improve the

treatment of AML, as demonstrated by their capability to migrate

to BM and to inhibit progression of human leukemia cells

following adoptive transfer. In addition, we demonstrated efficient

UCB-NK survival in vivo in the presence of low dose human IL-15.

Transient elevation of IL-15 plasma levels was reported in AML

patients following immunosuppressive Cy/Flu conditioning [9,10],

what could favor in vivo expansion and maturation of UCB-NK

cells as well as clinical responses following UCB-NK cell adoptive

transfer. Since BM is the primary site of AML development and

encloses niches essential for leukemic stem cells causing relapse

[31], we believe that BM targeting is essential for elimination of

minimal residual disease and induction of optimal and persistent

clinical responses against AML. Strategies that aim at increasing

BM-specific chemokine receptors, like CXCR4, on UCB-NK cells

are now considered to enhance BM targeting. In addition, the

methodologies that we report here for UCB-NK cell tracking and

anti-leukemic effect monitoring will be instrumental to validate

future findings and to fully exploit the potential of UCB-NK cells

against AML and other hematological malignancies.

Supporting Information

Figure S1 The biodistribution of 111In-NK cells upon
adoptive transfer is reproducible between animals and
independent of the dose of injected cells. Five adult NSG

mice (mice M1 to M5) were infused i.v. with increasing number of
111In-NK cells (1MBq per 106 cells) and euthanized the day after

for organ collection and biodistribution analysis. For comparison,

proportions of activity quantified per gram of tissue of interest

were normalized to blood.

(TIF)

following K562.LucGFP cell IF injection from experiment 1 (black circles) and 2 (open circles). (C) BLI pictures acquired at day 15 after tumor cell i.f.
injection, and (D) tumor load in time (mean 6 SD, n = 6 per group). **p,0.01 UCB-NK cells+IL-15 vs. PBS and IL-15. Data of experiment 2 are shown.
(E) Time to first tumor detection by BLI and (F) mice survival analysed according to Mantel Cox test. One mouse from the IL-15 group (experiment 1)
died at day 19 after luciferine injection and was excluded from the survival analysis.
doi:10.1371/journal.pone.0064384.g006
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Figure S2 Low-dose IL-15 mediates efficient UCB-NK
cell survival and expansion in vivo. Adult NSG mice were

injected i.v. with 106106 UCB-NK cells with or without

supportive IL-15. Recombinant human IL-15 was administered

daily for 2 weeks at the dose of 0.5 mg/mouse/injection, starting

the day of UCB-NK cell infusion. Human NK cells were

quantified weekly in peripheral blood by flow cytometric analysis.

(A) Percentage of human CD45+CD56+ cells in blood of mice

injected with UCB-NK cells alone (dotted line, n = 5) or UCB-NK

cells with IL-15 (straight line, n = 6) over time. (B) Representative

dot-plots obtained 2 weeks after UCB-NK cell infusion.

(TIF)
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