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Abstract: The standard D-G-2D pattern of Raman spectra of sp2 amorphous carbons is considered
from the viewpoint of graphene domains presenting their basic structure units (BSUs) in terms of
molecular spectroscopy. The molecular approximation allows connecting the characteristic D-G
doublet spectra image of one-phonon spectra with a considerable dispersion of the C=C bond
lengths within graphene domains, governed by size, heteroatom necklace of BSUs as well as
BSUs packing. The interpretation of 2D two-phonon spectra reveals a particular role of electrical
anharmonicity in the spectra formation and attributes this effect to a high degree of the electron density
delocalization in graphene domains. A size-stimulated transition from molecular to quasi-particle
phonon consideration of Raman spectra was experimentally traced, which allowed evaluation of a
free path of optical phonons in graphene crystal.

Keywords: sp2 amorphous carbons; amorphics with molecular structure; one-phonon and
two-phonon Raman spectra; electrical anharmonicity; graphene domains

1. Introduction

Raman scattering has become an overwhelming method of testing graphene-based solid carbons.
A comprehend review [1] could be recommended as a guide to the vast literature on the subject while
providing in-depth view on the physics when dealing with Raman spectroscopy of graphene-based
solids. The subject concerns two issues, each of which is highly peculiar and complicated. The first is
the theoretical background of Raman spectroscopy in the case, while the second is associated with
a broad meaning of ‘graphene-based solid’ under study. Thus, phonons of perfect as well as defect
and disordered crystals and molecular vibrations of nanosize samples are fundamentals of the first
part forming the ground for two theoretical approaches, namely: solid-state and molecular ones
(see Reviews [2,3] and references therein). On the other hand, graphene-based solids, ranging from
very well organized three coordinated sp2 graphite, graphene, nanotubes, and nanoribbons, down to
amorphous carbons, graphene quantum dots as well as various sp3-sp2 mixtures, and that is not all,
present the rich content of the second part. Because of this, the modern Raman spectroscopy of graphene
materials is a subtle art of a proper combination of the two components [1]. The problem is particularly
sharp when the solid is definitely nanostructured, which raises an evident question of whether the
phonon-based solid-state approach is applicable to the case or if its molecular counterpart should be
at play. The standard view of Raman spectra (RSs) of graphene-based species with main structural
features presented by dominating D, G, and 2D bands, have so far played a decisive role in the approach
selecting. A deep similarity of the spectra for a large set of samples of defect and disordered crystals of
graphite and graphene [4–10] has created a favorable basis for successful use and further improvement
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of the solid-state approach in its phonon-confinement format [11,12]. This format has legitimated
the use of RSs parameters, such as position, bandwidth and intensity of the D, G, and 2D bands
(particularly, largely exploited parameters ID

IG
, and ∆ωD) for the determination of the confinement

parameters, thus characterizing the carbon crystals nanostructuring (see a number of cases in [1]
and references therein). The same standard appearance of the RSs of crystalline and non-crystalline
graphene-based solids stimulated expansion of the phonon-confinement approach to amorphous
carbons, graphene quantum dot, and other non-crystalline species (see [13–16]), thus presenting the
latter now as the main stream in the consideration of the RSs of all graphene-based carbons “proposed
by international consensus” [1].

Nevertheless, recent detailed investigations have clearly revealed a molecular nature of sp2

amorphous carbons (ACs) (amorphics for simplicity) [17,18], again raising the question about the
choice between solid-state and molecular approach. Meeting this request, in the current article we
intend to inspect which new information about sp2 ACs can be obtained from their spectra analysis
based on the molecular spectroscopy background. To make the latter informative and convincing,
we conducted a comparative study of RSs of a set of specially selected sp2 amorphics, the structure
and chemical composition of which were carefully investigated. This study allowed us to make
conclusion about the type of the amorphicity of sp2 solid carbon, supporting its molecular character [19],
and to reveal the fundamental difference between the molecular ACs and nanostructured graphite and
graphene crystals subjected to size confinement.

The paper is composed as follows. Section 2 presents the description of the species selected
for the study. General comments concerning vibrational spectroscopy of amorphous carbons as
well as main concepts of the molecular approach related to graphene molecules are considered in
Section 3. Sections 4 and 5 present the interpretation of the obtained RSs in the framework of molecular
approximation, concerning one- and two-phonon fractures, respectively. The conclusion summarizes
the main essentials received.

2. Amorphous Carbons under Study

Solid carbon belongs to covalent compounds, crystalline and amorphous states of which depend
on the status of the relevant C–C bonds. The unique ability of carbon atoms to form three kinds
of the bonds, differing by the electronic configurations of the atom valence electrons, provides the
presence of sp3 and sp2 crystalline and amorphous allotropes that are strictly different concerning their
structure and properties [19]. In the current study, our attention will be concentrated on sp2 ACs,
which according to recent comparative studies [17,18], form a particular class of solids. As turned out,
the general architecture of both natural and synthetic species is common and can be characterized as
multilevel fractal one [20,21], albeit differing in details at each level. The first-level structure is similar
in all the cases and is presented by basic structure units (BSUs). The higher-level one depends on
the BSUs size. Thus, in the case of small-size natural amorphics, nanosize-thick stacks of nanosize
BSUs present the second-level structure. These stacks form globules—a structure of the third level,
characterized with pores of the first nanometers [22]. Further aggregation of globules leads to the
formation of micro-nanosize agglomerates with pores of tens nm [22]. Figure 1 presents, schematically,
the evolution of such an amorphic structure from a single BSU to macroscopic powder. Synthetic
amorphics are characterized by a large dispersion of BSUs size from units to tens and/over first
hundreds of nanometers. At the low-limit end of the dispersion, the amorphic structure is similar to
that of natural species described above. At the high-limit end, the BSUs size does not prevent from
BSUs packing in nanosize-thick stacks, while the latter laterally extended are further packed in a
paper-like structure exemplified in Figure 2.
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Figure 1. Schematic transformation from a single basic structure units (BSU) molecule (one of the BSU 
models C66O4H6 for shungite carbon [18]) to powdered solid amorphous carbon via BSU stacks and 
globule(s). The stacks consist of 4 to 7 BSU layers, differently oriented to each other. Planar view on a 
model globule composed of different stacks, with total linear dimensions of ~ 6 nm. Dark gray, red 
and blue balls depict carbon, hydrogen, and oxygen atoms, respectively. Three-dimensional atom-
force microscope (AFM) image of globular structure of shungite carbon obtained with atomic force 
microscope NTEGRA Prima (NT-MDT, Zelenograd, Russia). The size distribution of the observed 
nanoscale particles peaked at 25 nm. 

Figure 1. Schematic transformation from a single basic structure units (BSU) molecule (one of the BSU
models C66O4H6 for shungite carbon [18]) to powdered solid amorphous carbon via BSU stacks and
globule(s). The stacks consist of 4 to 7 BSU layers, differently oriented to each other. Planar view
on a model globule composed of different stacks, with total linear dimensions of ~6 nm. Dark gray,
red and blue balls depict carbon, hydrogen, and oxygen atoms, respectively. Three-dimensional
atom-force microscope (AFM) image of globular structure of shungite carbon obtained with atomic
force microscope NTEGRA Prima (NT-MDT, Zelenograd, Russia). The size distribution of the observed
nanoscale particles peaked at 25 nm.

According to studies [17,18,23], BSUs of both natural and synthetic sp2 ACs present graphene
molecules, which are based on a honeycomb fragments, or graphene domains. Obeying the general laws
of chemistry of nanosize objects [24], the domains edge atoms are terminated by heteroatoms and/or
atomic groups, including hydrogen, oxygen, nitrogen, sulfur, halogens mainly, making heteroatom
necklaces. The molecules as a whole can be described by statistically averaged chemical formula
(such as C66O4H6 (or C6O0.36H0.55 per one benzenoid unit) in the case of shungite carbon (a model
BSU of which is shown in Figure 1), that corresponds to the chemical content of the sample obtained
experimentally. Size, shape, and heteroatom necklace of BSUs, the latter includes terminating atoms and
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atomic groups at particular disposition in the molecule circumference, greatly vary, due to which each
AC, classified usually by origin, is associated with a large class of specially framed graphene molecules.
At the same time, despite the complexity of the overall fractal structure of sp2 ACs, precisely BSUs
are the main players concerning the solids properties, thus stipulating molecular-structural approach
for their description. Firstly, successfully applied to vibrational spectra of the solids provided with
INS and DRIFT spectroscopies [18,25], in the current paper, the approach is extended over the Raman
scattering. The set of the selected sp2 ACs of the highest-rank carbonization involved shungite carbon
(ShC), anthraxolite (AnthX), and anthracite (AnthC), one chemically (Ak-rGO) and one thermal-shock
(TE-rGO) reduced technical graphenes, as well as two industrially produced Sigma-Aldrich carbon
blacks—699632 (CB632) and 699624 (CB624) (see detailed description of samples in [17,18]). The set
is complemented with two graphites of the best quality from Botogol’sk deposit [26], characterized
by mono- (mncr) and micronanocrystalline (µncr) structure. The structural and chemical data of the
samples are summarized in Tables 1 and 2. The data obtained earlier are supplemented in this study
by the results of the X-ray diffraction and EDS measurements for the two graphites. Necessary to
note, the data listed in both tables represent statistically averaged quantities. Actually, the positions of
hydrogen and oxygen atoms in the BUS circumference, shown in Figure 2, can vary.Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 23 
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Figure 2. SEM images of technical graphenes Ak-rGO [27] and TE-rGO [28]. Adapted from Ref. [18].

Table 1. Structural parameters of amorphous carbons 1.

Samples Interlayer Distance,
d (Å)

Lc
CSR, nm Number of

BSU Layers
La

CSR, nm Ref.

mncr Gr 2 3.35(X) 105 313 550 this work

µncr Gr 2 3.35(X) 49 146 184 this work

ShC 3.47(N); 3.48(X) 2,5(N); 2.0(X) 7(N); 5–6(X) 2.1(X) [17]

AnthX 3.47(N); 3.47(X) 2.5(N); 1.9(X) 7(N); 5–6(X) 1.6(X) [17]

AnthC (Donetsk) 3.50(X) 2.2(X) 5–6(X) 2.1(X) [17]

CB632 3.57(N); 3.58(X) 2.2(N); 1.6(X) 6(N); 4–5(X) 1.4(X) [17]

CB624 3 3.40(N); 3.45(X) 7.8(N); 6(X) 23(N); 17(X) 14.6 [17]

Ak-rGO 3.50(N) 2.4 (N) 7(N) >20(N) 4 [27]

TE-rGO 3.36(N) 2.9 (N) 8(N) >20(N) 4 [28]
1 Notations (N) and (X) indicate data obtained by neutron and X-ray diffraction, respectively. 2 The data are obtained
by the treatment of (002) and (110) reflexes using Scherrer’s relation LCSR = K·λ/B·cosΘ. Here λ is the X-ray radiation
wavelength (CuKα) 0.154 nm, Θ is the position of the (110) (La

CSR) and (002) (Lc
CSR) peaks, B is the half-height width

of the peak in 2Θ (rad) units, and constant K constitutes 0.9 and 1.84 for reflexes (002) and (110), respectively, in the
approximation of disk-shaped particles. 3 X-ray data were corrected in the current study. 4 La

CSR = 20 nm means the
low limit of the value accessible for the measurements performed.
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Table 2. Chemical content of amorphous carbons.

Samples
Elemental Analysis, wt% XPS Analysis, at%

C H N O S Ref. C O Minor Impurities Ref.

mncr Gr 1 99.0 - - 1.0 - this
work

µncr Gr 1 98.9 - - 1.1 - this
work

ShC 94.44 0.63 0.88 4.28 1.11 [17] 92.05 6.73 S—0.92; Si—0.20;
N—0.10 [17]

AnthX 94.01 1.11 0.86 2.66 1.36 [17] 92.83 6.00 S—0.85; Si—0.25;
N—0.07 [17]

AnthC 90.53 1.43 0.74 6.44 0.89 [18] 92.94 6.61 Cl—0.11; S—0.34 [18]

TE-rGO 84.51 1.0 0.01 13.5 1.0 [18] 86.77 10.91 F—077; S—0.86;
Si—0.70 [18]

Aк-rGO 89.67 0.96 0.01 8.98 0.39 [18] 94.57 5.28 S—0.16 [18]

CB624 99.67 0.18 0 0.15 - [17] 95.01 4.52 Si—0.46 [17]

CB632 97.94 0.32 0.04 1.66 0.68 [17] 93.32 6.02 Si—0.66 [17]
1 EDS measurements.

3. General Concepts of Molecular Approach Related to Graphene Molecules

Raman spectroscopy of sp2 ACs is generally aimed at determining their short-range structure [29,30].
However, the information obtained depends on theoretical motives laying the foundation of the spectra
analysis. Thus, the solid-state approach sees the studied amorphics as carbon honeycomb fragments,
which are presented by either flat or slightly curved [31] graphene sheets, with standard C=C
interatomic space of 1.42 Å in size [1]. In contrast, a molecular approach suggests the consideration of
these solids as honeycomb C=C covalent-bond compositions [32], with not fixed C=C bond lengths
thus exhibiting their sensitivity to both environment and other conditions of the body’s production and
storage as well making BSUs the main participants of the short-range structure. The next issue concerns
the spectra internal content. In contrast to the IR-inactivity of molecular vibrational modes, associated
with covalent homopolar bonds, caused by nil static moment [33], the electronic polarizability is quite
favorable for these bonds. Respectively, IR photoabsorption reflects mainly the structure and chemical
composition of the BSU heteroatom necklaces, and this has been recently successfully demonstrated by
studying DRIFT spectra of the amorphics under consideration [18], while Ramat scattering draws the
signature of the BSU graphene domains.

Vibrational spectrum of any polyatomic graphene molecule is multitudinous and multimode,
due to which a certain simplification is needed to make it discussable. In the previous study [18],
we suggested the spectrum of benzene molecule to be a benchmark. The list of benzene vibrational
modes and their assignment are given in Table 3 [34]. According to symmetry rules, modes 1–10
are active in Raman scattering, while modes 11–20—in IR absorption. Evidently, any lowering of
the molecule symmetry violates the double degeneracy and mixes the modes. Anyway, even with
these limitations, both Raman and IR spectra of benzene molecule should be quite rich. However,
in practice, both spectra of gaseous benzene are very simple and consist of small number of selected
modes. Among the latter, only ν1 and ν7 modes form the pattern of the observed RS [35,36]. When the
number of benzene rings increases, considerable growth of the vibrational modes occurs, and the
spectra patterns remarkably change. As for linear chains of benzene rings, the governing role in the
spectra, starting from naphthalene, goes to stretching mode ν8. The corresponding band is surrounded
by satellites due to the violation of the D6h symmetry of benzene and the removal of the degeneracy
of the initial mode, first weak in naphthalene and anthracene, and then comparable in intensity in
tetracene and pentacene [37]. At the same time, a scattering of noticeable intensity in the region of
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modes ν8 and ν19 arises in the spectrum of the last two molecules. Therefore, the transformation of
RS of benzene when going to pentacene consists in enhancing the role of C=C stretching vibrations,
originated mainly from e2g ν8 and e1u ν19 benzene modes. The shape of the spectrum in this region is
still rather complex.

Table 3. Vibrational modes of benzene molecule (composed of data from [34]).

Mode
Number

Symmetry
Assignment

Wavenumbers
cm−1 Covalent-Bond Attribution

1 a1g 993 Breathing
2 3073 C–H stretching in phase
3 a2g 1350 C–H in-plane in-phase bending
4 b2g 707 C–C–C puckering
5 990 C–H out-of-plane trigonal bending
6 e2g 606 C–C–C in-plane bending
7 3056 C–H stretching
8 1599 C–C stretching
9 1178 C–H in-plane bending
10 e1g 846 C–H out-of-plane C6 libration
11 a2u 673 C–H out-of-plane in-phase bending
12 b1u 1010 C–C–C trigonal bending
13 3057 C–H trigonal bending
14 b2u 1309 C–C stretching (Kekulé)
15 1146 C–H in-plane trigonal bending
16 e2u 404 C–C–C out-of-plane bending
17 967 C–H out-of-plane bending
18 e1u 1037 C–H in-plane bending
19 1482 C–C stretching

20a 3064 C–H stretching

A completely different feature is observed when going from polyacenes to polyaromatic
hydrocarbons (PAHs) with two-dimensional (2D) π conjugated planar structure. The latter represent
spatially extended compositions of benzenoid rings, forming restricted graphene domains framed by
hydrogens. The first objects were PAHs C78H32 [38] and C96H30 [39], synthesized by Prof. Müllen’s
team. Raman spectra of both molecules [40] drastically differ from the spectra of polyacenes, taking the
shape of a characteristic D-G-2D-three-bands pattern, which is pretty similar to the spectra of sp2 ACs.
Later on, the PAH set was enlarged including molecules of different shape, symmetry, and carbon
content from C24H12 to C114H30 [41,42], whose RSs are of the same shape. Certainly, the similarity
concerns the general pattern of the spectra, while ID

IG
, and ∆ωD parameters were quite individual.

Nevertheless, it was experimentally shown that just the presence of graphene domains in the 2D
planar structure of PAHs leads to the characteristic D-G-2D shape of the RSs, which does not depend
on the size and symmetry of the PAH molecules. The band triplet covers D-G one-phonon and 2D
two-phonon parts of the spectrum.

A profound theoretical analysis of one-phonon RSs performed by the Italian spectroscopists [40–50]
allowed both to reveal the reasons for the discovered uniqueness of the PAHs RSs, and to establish
their intimate connection with the spectra of graphite and/or graphene. It was found that the main
contribution to the spectra intensity is made by C=C stretchings, due to which the observed D-G-2D
set of bands is characteristic for the network of C=C bonds mainly. As for the stretchings themselves,
the modes, which determine G band, are originated from the e2g vibration of benzene, while the
modes responsible for D band come from the e1u vibration of the molecule (see Table 3). The modes
individuality is caused by peculiarities of the form of their vibration, which visualizes shifting from
the equilibrium each of the molecule atoms. As convincingly shown (see Figure 3), the vibrations of
G band correspond mainly to simultaneous in-plane stretchings of all C=C bonds, while those related
to D band concern both stretching and contraction of these bonds when carbon atoms move normally
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to them just imitating benzenoid ring breathing. The motion of carbon atoms has a collective character,
for which the planar packing of benzenoid units is obviously highly preferable. In contrast, as seen in
Figure 3a, the vibration forms of both e2g and e1u modes of benzene are local and differ much from
collective forms of PAH molecules.
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Polarization of molecules is highly sensitive to the vibration form. Actually, the quantity is
generally described as [34]

αt = α+
∑

i

(
∂α
∂Qi

)
0
Qi +

1
2!

∑
ik

(
∂2α

∂Qi∂Qk

)
0
QiQk + · · · (1)

where α is the polarizability in equilibrium position, Q’s are co-ordinates of individual normal
vibrations, sets {Qi} and {Qk} present vibration forms of the tth vibration, and the subscripts 0 of the
differentials refer to the equilibrium position. The third and subsequent members of the power series
represent the electrical anharmonicity. The intensity of one- and two-phonon Raman scattering is
governed by the second and third terms, respectively. As seen from the equation, the vibration forms
are directly involved into the intensity determination, differently for the Raman scattering of the first
and second order.

Detailed consideration of the PAHs polarizability performed in the extensive study [40–50] showed
that parallel-to-bond vibration forms, attributed by the authors to the type Ia [42]), promote a steady
intense one-phonon Raman signal G in all the studied molecules. The feature does not depend on the
molecules’ symmetry and shape, and is caused by the ∂α

∂Qi
derivatives, which all are positive. In contrast,

normal-to-bond vibration forms of type A [42] promote, in this case, both positive and negative ∂α
∂Qi

derivatives, due to which the intensity of D band is tightly connected with the “quality” of C=C bonds,
which is reflected in the vibration forms. Therefore, if the bonds are identical, the contribution of
A modes into the one-phonon signal is nil. In the opposite case, the signal is not nil and is bigger,
the bigger the difference between the bonds [43]. This conclusion has been approved on a number of
PAH molecules, whose RSs were obtained and analyzed [40–43,48,50], as well as by latest theoretical
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studies [32]. The extension of the above consideration over graphene crystal have revealed that e2g
mode at Г point of the first Brillouin zone is typical Ia-mode, while A’1 mode at K point clearly reveals
A character (Figure 3d). The findings undoubtedly evidence a peculiar collective character of the
graphene phonons caused by benzenoid-hexagon structure. Therefore, until the honeycomb packing of
benzenoid units is not broken, the graphene molecules and/or supramolecules are characterized by the
D-G patterned Raman spectra. Only a complete destruction of the sheet leads to this feature loosing,
which was really observed for graphene after its extremely strong bombardment by Ar+ ions [51].

4. One-Phonon Raman Spectra of sp2 Amorphous Carbons

Despite RSs of sp2, ACs were recorded countlessly (suffice to say that Raman scattering is
an indispensable participant in testing each natural and synthetic graphene material), a detailed
investigation of a set of different-origin representatives under the same level of knowledge about their
structure and chemical content has not yet been performed. In the current study, nine products of
such kind described in Section 2 were examined. Raman spectroscopy was carried out with a LabRam
HR800 instrument (Horiba, Jobin Yvon, Villeneuve-d’Ascq, France) at room temperature. The system
was equipped with an Olympus BX41 optical microscope (Olympus, Tokyo, Japan) and a Si-based CCD
detector (1024 × 256 pixels) (New Jersey, USA). A 50× objective (working distance ~3 mm, numerical
aperture 0.75) was used. Spectra were recorded in the 100–4000 cm−1 range, using a spectrometer
grating of 600 g/mm, with a confocal hole size of 300 µm and a slit of 100 µm. External laser exciting
radiation in the region 270–520 nm was used. The obtained RSs reveal the expected dependence on
the radiation frequency typical for nanostructured graphite and or graphene (see [1] and references
therein), as well as for PAHs [31]. Figure 4 presents a collection of RSs of the studied samples excited by
the radiation of Ar+ laser (514.5 nm, 1.2 mW). This radiation is used in the majority of Raman scattering
experiments, which makes it possible to compare the obtained spectra with the data available in the
literature. Each spectrum in the figure is the result of three accumulations with a 10 s exposure.

The spectra are grouped in two columns related to natural (left) and synthetic (right) samples.
Looking at this collection, we would like to start with the first features that concern fine-structured
spectra located in the first row in the figure. Among the latter, there are two lineaments which require
particular attention. The former is related to the RSs of graphites. A scrupulous analysis of the
available RSs reveals that a single G-band-one-phonon spectrum is a rarity, once characteristic for
“the best” graphites such as Madagascar flakes and Ticonderoga crystals [4], Ceylon graphites [52],
Botogol’sk graphites [52,53], and some others. In contrast, in the predominant majority of cases,
researchers are dealing with highly structured samples with a characteristic D-G doublet pattern of
their RSs. However, even in these cases, graphite rocks are not structurally homogeneous, consisting
of microscale monocrystalline (mncr) blocks surrounded with micronanocrystalline (µncr) graphite
domains. Graphite spectra in Figure 4a exhibit these two constituents. Expectedly, BSUs of the studied
graphites are of submicron lateral size (see La

CSR data in Table 1), once terminated mainly by oxygen,
the weight content of which constitutes generally ~1 wt% (see Table 2). Similarity of the spectrum of
amorphous CB624 and that of the µncr graphite convincingly evidences that not only in the depth
of the Earth core, but also in industrial reactors producing carbon black a significant graphitization
of amorphous carbon may occur. D-G doublet of narrow band structure in µncr graphite and CB624
amorphic becomes the dominant feature of RSs of other studied ACs, both natural and engineered
ones, but significantly broadened.

In the covalent-bond language of graphene molecules, the conversion of a single G band,
corresponding to a solitaire optical G phonon of graphene crystals in a regular structure with strictly
fixed C=C bond value at 1.42 Å, into a broadband D-G doublet of amorphous solid, is caused by two
things. The first concerns an unavoidable generation of non-zero dispersion of the C=C bonds length
(bond length dispersion (BLD) below), ∆{lCC}, in restricted graphene domains of amorphous solid.
The second is a consequence of the graphene domain symmetry lowering, just resolving not only e2g,
but e1u benzene-naming C=C stretchings discussed in the previous Section. Each of these groups
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covers a large number of C=C modes in polyatomic molecules like BSUs, thus splitting the total BLD
into two sets, ∆{lCC}e2g

and ∆{lCC}e1u
. Among the latter, the modes with a considerable extent of the Ia

and A character might contribute into the broad G and D bands.Nanomaterials 2020, 10, x FOR PEER REVIEW 10 of 23 
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Figure 4. One-phonon Raman spectra of sp2 amorphous carbons at room temperature: shungite carbon
(ShC), anthraxolite (AnthX), anthracite (AnthC), technical graphene TE-rGO [27] and Ak-rGO [26],
carbon blacks CB632 and CB624, as well as mono- (mncr) and micronanocstructured (µncr) graphites,
respectively; additional (a–h) marking facilitates the spectra description. Intensities are reported in
arbitrary units.

According to the vibrational dynamics of molecules, dispersion of any valence bond length ∆{li} is
naturally transformed into that of force constants ∆

{
fi
}

related to the relevant stretching. To evaluate the
BLD value appertaining to the C=C stretchings of the studied amorphics BSUs, we perform quantum



Nanomaterials 2020, 10, 2021 10 of 22

chemical calculations of the ground state structure of a set of BSU models related to commensurate
small-size ACs with La

CSR of 1.4–2.1 nm (see Table 1) [18]. All the models, shown in Figure 5, have the
same graphene domain, consisting of 66 carbon atoms, of which only one (model 3), two (model 4),
and four (model 2) atoms are substituted by oxygen. The structure set is complemented with the C=C
bond length distribution related to each molecule. As seen in the figure, these distributions are quite
similar for all the molecules, albeit remarkably varying in response to varying compositions of the
models’ heteroatom necklaces, thus evidencing a different assortment of both bonds and vibrational
frequencies of each amorphic. As seen in the figure, the C=C bond lengths cover the region from 1.5 Å to
1.3 Å in all the cases, thus determining the total dispersion of the bonds as ∆{lCC} ≥ 0.2 Å. Unfortunately,
because of a large number of vibrational modes, exact solution of the dynamical problem for the BSU
molecules does not permit to distinguish ∆{lCC}e2g

and ∆{lCC}e1u
BLDs correctly [54]. So, we must

limit ourselves by the discussion of the total value ∆{lCC}. Following Badger’s rule [55], vibrational
frequency and bond length of C=C stretching are interconnected so that fi = 3.0(li + 0.61)−3 [56] for
constant and length units in 102 Nm−1 and 10−10 m, respectively. According to this relation, changing
the length lCC from 1.5 Å to 1.3 Å corresponds to frequency growing from 1300 cm−1 to 1700 cm−1,
which completely covers the frequency region of the D-G plottings for the studied solids.
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Figure 5. Equilibrium structure of BSU models related to shungite carbon (1), anthraxolite (2), anthracite
(3), and carbon black CB632 (4). Distribution of C=C bond lengths of the model graphene cores. UHF
AM1 calculations.

The discussed above allows suggesting that the broadbandness of the D-G doublet structure of
the RSs of sp2 ACs is caused by the length dispersion of the C=C bonds that configure the graphene
domain structure of the relevant BSUs. Besides, the BSU mandatory termination by heteroatoms clearly
exacerbates the latter, thus making it dependent on a BSU size and the relevant chemical necklace [54].
It is known as well [57–59] that the multilayer packing of graphene sheets significantly influences RS
of each of them as well, pointing to the additional redistribution of C=C bonds in the layers. Therefore,
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Raman scattering features of sp2 ACs concern two first levels of their multilevel structure, namely,
BSUs and stacks of them. Apparently, there are other factors affecting Raman scattering, such as,
say, anharmonic contribution of which is expected to be quite strong in graphene molecules (see next
Section). In what follows, we will analyze the obtained RSs in terms of the empirical triad involving
size and chemical necklace of BSUs, as well as their packing.

Let us start from the RSs of natural amorphics in Figure 4b–d, BSUs of which are commensurate
with PAH C114H30, RS of which was carefully analyzed [43]. As should be expected, the spectra of
amorphics and PAH are well similar. The PAH spectrum consists of well isolated D and G bands
with FWHM of 30 cm−1, due to which the gap between the band is well pronounced. The D band is
accompanied with four clearly distinguished low-intense satellites around the main peak. The satellite
surrounding is characteristic for the D band in all the studied PAHs [32,40,50]. As for amorphics
spectra, the FWHM of both main D and G peaks is doubled comparing with that of the PAH, while the
satellite escort of the PAH D band is transformed into marked pedestal of different fine structure for
amorphics, significantly broadening the band in contrast to the G band.

In the light of the analytical triad described above, the spectrum of the PAH molecule contains
information about the size of the graphene domain and the termination of the dangling bonds of
its edge atoms with hydrogens. A detailed theoretical analysis of the spectra of similar PAHs was
performed in terms of the totality of its C=C bonds in the presence of terminating hydrogen atoms [32],
however, the contribution of the latter to the RS shape was not distinguished. Since, nevertheless,
the spectrum of the C114H30 molecule consists of narrower bands than the spectra of the amorphics
under consideration, it is quite reasonable to take it as the reference spectrum of a graphene domain
of 1.5–2 nm in size. Respectively, the observed additional broadening of the amorphics RSs can be
attributed to either heteroatom necklace of their BSUs or the BSUs packing.

Neutron and X-ray powder diffraction of shungite carbon and anthraxolite showed that the
configurations of the solid stacks formed by the relevant BSUs were identical and the closest to the
packing in graphite crystal (see [18] and references therein). Accordingly, these solids RSs broadening
with respect to that of the PAH can be attributed to stronger effect of the BSU heteroatom necklace
on the C=C BLD ∆{lCC} in comparison with that of hydrogen atoms. Additional broadening can be
caused by the variety of the necklace structure at fixed chemical content. Therefore, the difference of
the ShC and AntX RSs in Figure 4b,c can be attributed to the different disturbance of the BLD ∆{lCC}

by different heteroatom necklaces, which is supported with the bond length distributions shown in
Figure 5. Similarly, the difference of the AnthC RS in Figure 4d from the spectra of ShC and AntX can
be attributed to the changes in the relevant necklace. Nevertheless, the structure study of the latter
revealed much stronger deviation of BSUs packing from the graphite one [18] due to which the RS
shape, particularly in the D band region, may additionally reflect the changing of BSUs packing in this
case towards a turbostratic one [60].

To the most extent, the influence of the turbostratic packing is seen when comparing the RS of
carbon black CB632 in Figure 4h, with the spectra of natural amorphics discussed above. As seen in
the figure, the CB632 spectrum drastically differs from those of natural species despite all the BSUs are
commensurate and the influence of the BSU heteroatom necklace is also comparable (see Figure 5).
At the same time, structural data clearly evidence the turbostratic packing of the BSUs in this case
(see [25] for details), which causes such a strong broadening of the spectrum thus manifesting the effect
of neighboring layer on the C=C BLD in each individual layer.

Based on the conclusions made when analyzing RSs of small-size natural amorphics and carbon
black CB632, we can proceed with the interpretation of RSs of technical graphenes Ak-rGO and
TE-rGO, as well as carbon black CB624, related to large-size amorphics. As seen in Table 1, amorphous
technical graphenes are characterized by large BSUs of submicron size, bigger than that one of carbon
black CB624. Nevertheless, their RSs in Figure 4f,g differ drastically from the spectrum of the latter
in Figure 4e, clearly evidencing strong disordering and large BLD ∆{lCC} in the relevant graphene
domains. It is important to note that the two spectra strongly differ in between as well. At the same
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time, the Ak-rGO spectrum is similar to that of AntX, while the same can be said about the spectra
pair of TE-rGO and CB632. In both cases, the similarity is observed despite more than one order of
magnitude difference in the BSUs size.

Discussing RSs of natural amorphics, we referred to the spectrum of the PAH C114H30 as the
reference related to small-size graphene domains. In the case of large-size domains, evidently,
the spectrum of CB624 in Figure 4e can play the role. The comparison of the Ak-rGO spectrum with
the reference reveals the doubling of FWHMs for both D and G bands at maintaining the general D-G
appearance of the spectra as a whole. The feature is similar to that one resulted from the comparison of
the PAH C114H30 and AnthX spectra. Since the additional broadening of the AnthX spectrum, which is
similar to that of Ak-rGO, we attributed to the changing of the BLD ∆{lCC} caused by complicated
heteroatom necklace of the relevant BSUs, it is reasonable to replicate this conclusion with respect to
the Ak-rGO–CB624 pair of spectra. The model necklace related to Ak-rGO amorphic, suggested on
the basis of extended neutron scattering and DRIFT studies [18], is shown in Figure 6 (left). As seen
in the figure, it is quite cumbersome, while causing the broadening comparable with that of AnthX.
Additionally, despite the fact that the necklace is much more complex with respect to that of AnthX, the
D band in the RS of Ak-rGO is more symmetric without traces of the satellite surrounding structure.
Similarly, the D band in the RS of CB624 in Figure 4e is symmetric, which apparently is resulted from
the large size of the relevant BSUs. In contrast to Ak-rGO, RS of the TE-rGO is drastically different,
despite the commensurate BSU and similarity of the complex chemical necklace (see Figure 6 (right)).
A close resemblance of RSs of this amorphic and CB632, discussed earlier, leads to the conclusion
that in both cases, a particular packing of the BSU layers is responsible for the spectra broadening.
Actually, as in the case of CB632, neutron and X-ray powder diffraction reveals the turbostratic packing
of paper-like sheets of TE-rGO [28], the consequences of which are clearly visible in Figure 2 when
comparing the external view of the Ak-rGO and TE-rGO solids.
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(right). Light gray, red and black circles mark carbon, oxygen and hydrogen atoms.

The analysis performed above convincingly shows that the C=C bond length distributions are
responsible for the complicated broadband structure of the observed D-G spectra of sp2 ACs. As seen
in Figure 5, the distribution is not homogeneous over the length scale and can be grouped. Evidently,
grouping of C=C bonds in the studied amorphics causes a similar response of the C=C stretchings
frequencies, thus laying the foundation of ‘multiband’ origin of their broadband D-G RSs. To stress
the attention on such grouping, Figure 7 (top) presents the bond length distributions, shown for
exemplary models in Figure 5, in a different way. As seen in the figure, C=C bonds actually form
distinguished groups. It is natural to expect that in the real RSs each of these groups should be
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associated with a relatively narrow band, because of which the observed spectrum represents a
convolution of such bands.Nanomaterials 2020, 10, x FOR PEER REVIEW 15 of 23 
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Figure 7. C=C bond sets of the model graphene domains (top) and deconvoluted Raman spectrum of
shungite carbon (bottom) (see text).

Intuitively, the multiband character of the D-G spectra was taken into account and adopted
by spectroscopists from the first studies of Raman scattering by amorphous carbon and graphites
(see, for example, [53,61] and references therein). Standard programs of spectra deconvolution, such as
LabSpec 5.39 in the current study, were widely used for experimental spectra decomposition. A typical
example of such treatment is presented in Figure 7 (bottom). The set of D1–D4 bands complemented
with G band presents the usual basis for decomposing. Quite narrow spectral region and governing
role of D1 and G bands provide a rather small dispersion in the maximum positions and FWHMs of
D2–D4 bands, thus giving a possibility to use the D1–D4 and G bands features when comparing RSs of
different samples. Until now, it has been a comfortable formal language only facilitating the spectra
description, while any changing of the D-G spectrum shape directly exhibits the reconstruction of the
C=C bonds sets of the samples BSUs graphene domain.

Concluding the analysis of one-phonon D-G spectra, one should focus on the connection of
widely used parameter ID

IG
with the real size of graphene domains. The advantage of the current study
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is the availability of independent data on the size of the studied BSUs obtained previously [17,18]
and presented in Table 1. Based on these data, we come to unexpected results. So, for natural
amorphics (spectra in Figure 4b–d), the BSU sizes of which are approximately the same, the ID

IG
doubles.

The parameter for CB632 (Figure 4h) of practically the same lateral size is close to that for AnthX, but is
different from both ShC and AnthC. The same can be said about the parameters for spectra CB624,
TE-rGO, and Ak-rGO (Figure 4e–g) with commensurate size parameters. Thus, the parameter ID

IG
can

hardly be considered as an indicator of the graphene domains size in this case. The same conclusion
was reached by the Italian researchers on the analysis of the D-G spectra of PAHs [42]. At the same time,
on the experimental field of Raman spectroscopy of materials with elements of a graphene structure,
there is a widespread belief in the unambiguous relationship of this parameter with the size of graphene
domains. At the time, this statement was confirmed by joint studies of the structure (X-ray diffraction)
and Raman spectra with the determination of the ratio for nanostructured graphite and graphene
crystals (see [6–9] and references therein). The first ID

IG
via La relation proposed by Tuinstra and Koenig [4],

gradually changed its appearance, supplemented by new parameters. The largest recognition in
practice has received the relation suggested by Conçado et al. [62]. Based on a spatial confinement
model applied to phonons in disordered graphene-based carbons [11,12], this approach works quite
satisfactorily in the cases of microstructured solids. Encouraged by this success, practitioners of Raman
spectroscopy began to use these relationships in the case of nanostructured objects as well (see [61]
and references therein), for most of which there are no independent structural data. Actually, only in
this work such data are presented, which allows us to call into question the validity of using the ratio
to determine La. Table 4 shows the La data obtained by processing the spectra shown in Figure 4 using
the relations ID

IG
via La from [4,62].

Table 4. Spectral characteristics of one-phonon Raman spectra of sp2 amorphous carbons and
a comparison of the data-treated and independently obtained size of graphene domains La.

Samples FWHM G,
cm−1

FWHM D,
cm−1

ID
IG

1
La According to

Cançado et al.
[62]

La According to
Tuinstra and

Koenig [4]
La XRD 2

ShC 3 40–45 50–70 2.2–2.7 6.5–7 1.5–2 2.1
AnthX 4 40–47 90–110 1.3–2.0 8–11 2–3.3 1.6
AnthC 40 100 2.0 8.3 2.1 2.1
CB632 85 110 1.1 15 3.9 1.4
CB624 34 45 0.6 29 7.6 14.6
TE-rGO 76 130 1.05 16 4.27 >20
AK-rGO 56 93 2.2 7.5 2 >20

1 Integral intensities are considered. 2 See sources of the data in Table 1. 3 Data average over 7 samples [53].
4 Data averaged over 8 samples [53].

As seen from the table, according to X-ray data, La should be the largest for shungites among the
ShC-AnthX-AnthC-CB632 group. In contrast to these expectations, the value, obtained from Raman
spectra, turns out to be the smallest, so the inverse X-ray dependence is observed. As seen from the
table, the wished correspondence violates when the domain size is of the first tens of nanometers as
well. In the present case, the situation does not seem unexpected, since, as was shown earlier, not only
the size of graphene domain of the amorphics BSUs, but also the relevant heteroatom necklaces, as well
as the BSUs packing determine the RS intensity distribution between its constituent bands.

5. Two-Phonon Raman Spectra of sp2 Amorphous Carbons

Second-order RSs of graphene materials have a long and rich history. Initially discovered in
different graphite materials in the form of doublet of bands at ~2720 cm−1 (strong) and 3248 cm−1

(very weak) [63,64], designated as G′(then 2D) and 2G, respectively, this region of the spectrum,
demonstrating interesting properties, since that has been actively analyzed [65–68] (references are
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representative rather than exhaustive). Referring the reader to an excellent review of the state of art
in this area [6], we will focus only on two features of the 2D band, which are important for further
discussion. The first concerns the fact that there are no bands in the one-phonon spectrum of ideal
graphite [64] and graphene [66] crystals, whose overtones or composites can be assigned as the 2D
band. Only in graphite and/or graphene materials, which are obviously devoid of an ideal structure,
the source of the overtone is attributed to the band D. This feature of “no one-phonon source” is
tightly connected with the origin of the two-phonon spectrum of graphene materials. According
to the fundamentals of Raman scattering [34], anharmonic dependence on normal coordinated of
both vibrational and electronic energies (so called mechanic and electric anharmonicities) leads to the
appearance of IR and Raman vibrational spectra beyond one-phonon. Mechanic anharmonicity is
described with the third derivatives of potential energy, while the electric one results from the second
derivatives of the object polarizability in Equation (1). The two features influence the band-shape of the
two-phonon spectra differently. Thus, the inconsistency of “no one-phonon source” and two-phonon
spectra found in the case of RS of graphene crystals convincingly evidences a predominant role of the
electric anharmonicity (el-anharmonicity below).

The second peculiarity of the 2D band concerns the surprising variability of its intensity with
respect to the G band. Thus, in graphite crystal, the ratio of the total intensities I2D

IG
is ~1; in graphene

crystal, it is equal to ~6 [67]; and in graphene whiskers, it exceeds 13 [66]. Such large values and
sharp fluctuations of the intensity, as well as the observation of 2D bands in graphite whiskers with
an ideal crystal structure of not only intense 2D band, but also a broad high order RS located in the
high-frequency region up to 7000 cm−1, indicate an exceptionally big role for el-anharmonicity in this
case. We are not aware of other examples of such a striking effect. Apparently, this property should be
added to the treasure-box of graphene materials uniqueness.

Despite the huge number of publications concerning RS of graphene materials and the 2D band,
in particular, the relationship of the 2D band with el-anharmonicity has not been yet considered. At the
same time, modern vibrational spectroscopy attaches great importance to both mechanical and electrical
anharmonicity, a joint participation of which provides good agreement between the experimental
and calculated spectral data without fitting parameters [69–71]. Currently, this new approach can
be applied to mid-size molecules such as thiophene or naphthalene, but the work on computational
modules continues, so that graphene molecules of the first nm in size will be apparently able to be
considered in the near future. Nevertheless, already obtained data on the quantitative accounting of
anharmonicity in small molecules allow suggesting that the above-described behavior of the 2D band
intensity in ideal graphite and/or graphene crystals at a qualitative level is quite expected, if to assume
the anharmonic behavior of the vibrational and electronic spectra of these structures to be peculiar.
We dare to suggest that the highly delocalized character of the electron density of the graphene crystal
and domains [72] contributes to such a pronounced anharmonicity. Moreover, the role of this feature
in mechanical effect is evidently not direct. In contrast, the second derivatives of polarizability are
directly determined by the state of the electronic system, which, possibly, determines the special role of
el-anharmonicity in graphene. When the article was already written, it became known [73] that the
intensity of G and 2D bands in graphene depends on the laser intensity in opposite way—it increases
(G) and decreases (2D) with increasing the power, respectively. The authors explained the feature with
asymmetric Fermi–Dirac distribution at the different optically resonant states contributing to Raman
scattering stimulated with high electronic temperatures reached for pulsed laser excitation. Evidently,
the distribution is tightly interrelated with the delocalized character of the electronic state.

Delocalization of electron density is not a prerogative of crystalline structure, but lays the
foundation of specific properties of graphene molecules as well [74]. Supposing its particular role in
RSs of the species, the observation of the second-order RS in such molecules as PHAs becomes obvious.
It is this kind of spectrum that was recorded in the case of two PAH molecules [40] (C78 and C96 [43]).
Looking at the spectra from this standpoint, we see that, actually, both of them consist of the doublet
of well-defined and narrow bands G and D located at 1603 and 1316 cm−1, accompanied by a rather
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intense broad band with weakly expressed maxima at ~2610, ~2835, and ~2910 cm−1. The first and last
frequency markers are in good agreement with the frequencies of 2D and D + G bands. The appearance
of the second maximum is obviously associated with the combination bands whose sources in the
one-phonon spectrum have yet to be determined, thus supporting the el-anharmonicity origin of the
spectra. In general, the band-shape of the two-phonon RSs of both molecules is similar to those of
the studied sp2 ACs shown in Figure 8. Similar to one-phonon RSs, the spectra are grouped in two
columns related to natural (left) and synthetic (right) samples.
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As seen in the figure, a characteristic four-component structure, clearly distinguished in the
spectra of two graphites (Figure 8a) and amorphous carbon black CB624 (Figure 8e), can be traced
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in the spectra of all other amorphics. Three frequency markers at ~2700, ~2940, and ~3200 cm−1,
convincingly attributed to 2D, D + G, and 2G combinations, are steadily observed in all the spectra.
The fourth marker at 2440 cm−1, whose assignment remains unclear, is hidden in the low-frequency
tails. It is important to note that this marker involves at least one fundamental mode with frequency
less than that of the lowest D mode. This mode has never been observed in the one-phonon spectra.
This “no- one-phonon-source” feature is one more argument in favor of the el-anharmonic origin of the
second-order Raman scattering of the studied sp2 ACs.

Among the studied amorphics, the spectrum of black carbon CB624 occupies a central place.
Thus, its close similarity with the spectrum of µncr graphite indicates that, despite the obvious
difference in size of the short-range order region in the graphite and amorphic BSU, in both cases,
we are dealing with well-ordered structures making it possible to consider the spectra band-shape in
the quasi-particle phonon approximation (widely reviewed in [67,68]). As known from the solid-state
physics, quasi-particle description, based on the conservation of translational symmetry, is applicable
with respect to size-confined bodies when the size of the latter exceeds a critical value characteristic to
the particle under consideration. In the case of phonons, the phonon free path determines this critical
size (see the discussion of the issue for amorphics with molecular structure in [75,76]). The crystal-like
band-shape of the RS of the carbon black CB624 under consideration evidences that the free path of the
high frequency optical phonons in graphene crystal is ~15 nm, as follows from Table 1. This conclusion
is fully supported by the crystal-like behavior of the one-phonon spectra of this solid shown in Figure 4.

Since the theory of high-order RSs of large molecules is still being formed, a rigorous interpretation
of their spectra, similar to proposed for one-phonon spectra in terms of molecular dynamics [5]
is difficult. In connection with that, we propose to look at the spectra in Figure 8 from the viewpoint of
analytical triad: the size and heteroatom necklace of the relevant BSUs, as well as the BSUs package—as it
was done with the one-phonon spectra in the previous section. As seen in the figure, the spectra form
two distinguished groups, which join spectra of natural amorphics and Ak-rGO, on the one hand,
and spectra of TE-rGO and CB632, on the other. This grouping replicates that one of one-phonon
spectra in Figure 4, clearly evidencing common reasons providing a significant likeness of the spectra
within the group and a pronounced dislikeness between the groups. Obviously, the discussed features
are in line with the concept on the governing role of the C=C BLD, thus allowing one to attribute the
RS shape of the first group solids to the effect of heteroatom necklace of individual BSUs, while that
one of the second group—to the BSUs turbostratic packing effect. Evidently, not the C=C BLD ∆{lCC}

itself, as in the case of one-phonon spectra, but its manifestation through the el-anharmonic action is
responsible for the 2D spectra broadening. Despite the theory that el-anharmonic RS [69–71] has not so
far been allowed to formulate general regularities that govern the selection of particular modes for
two-phonon spectra, it is evident that the action concerns a group of modes and, when the modes pool
is large, this leads to a significant broadening of the two-phonon bandshape. It should be noted that the
two-phonon spectra turned out to be more sensitive to the triad components than one-phonon ones.

Concluding the analysis, one more thing should be mentioned. The frequency range of the
studied two-phonon spectra coincides with the region of characteristic group frequencies (GFs) [77,78],
related to C-H stretching vibrations. Since, as seen in Table 2, all the studied amorphics, besides
carbon blacks, are significantly hydrogenated, we tried to find the evidence of the hydrogen presence.
However, none of the features related to the spectra observed can be attributed to characteristic GFs,
such as 3050 cm−1 related to methine groups [34] of natural amorphics, as well as 2870–2970 cm−1 and
2920–2980 cm−1 of methylene and methyl groups [34] of technical graphenes TE-rGO and Ak-rGO,
respectively. If hidden inside the broad bands, they might be revealed by a particular technique to
be developed.

6. Conclusions

Long-time and numerous studies of amorphous solids have led researchers to the conclusion
that a confident interpretation of their Raman spectra is inseparable from the consideration of the
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nature and type of the solids amorphization. Previous structural and analytical studies of amorphous
carbons were analyzed from this viewpoint, in course of which it was subsequently established that
the solids should be attributed to molecular amorphics of a new type of amorphicity, which can be
called the enforced fragmentation of honeycomb canvas [19]. Chemical reactions occurring at the
fragment edges are suggested to be one of the most important causes of the fragmentation stabilization.
Thus originated fragments, becoming the basic structural units (BSUs) of AC, are of a particular kind,
presenting size-restricted graphene domains in the halo of heteroatom necklaces. The weak wdW
interaction between the BUSs makes them responsible for the numerous properties of solids, including
their IR absorption and Raman scattering.

Raman spectra of sp2 ACs are considered at the molecular level, which is perfectly suitable to the
case. The molecular approximation is confirmed by a detail similarity of the spectra of the studied
solids and polyaromatic hydrocarbons examined earlier. The similarity convincingly evidences a
governing role of the extended graphene domains, of both BSUs and PAHs, due to which a standard
D-G-2D three-band image of the sp2 ACs Raman spectra presents the graphene domain signature and
remains until the domain structure is fully destroyed. The theory of Raman spectra of PAHs molecules,
proposed by a team of Italian authors and confirmed in a number of convincing computational
experiments, laid for the approach foundation. In the current study, it is proposed to extend the
conceptual results of the theory to the case of the BUSs of the studied amorphics and to supplement the
analysis of their Raman spectra by the concept of the governing role of the C=C bond length dispersion
(BLD). The issue explains the appearance of the D band as well as the spectra broadening as a whole.
Besides, the available structure and chemical content data of the studied amorphics allowed suggesting
an analytical triad: the size and heteroatom necklace of the BSUs, as well as the BSUs packing—as an
additional tool for the sp2 ACs spectra interpretation. This approach was applied to the interpretation
of the one-phonon (D-G) and two-phonon (2D) spectra of the studied solids separately.

One-phonon spectra. Evaluated computationally, the C=C BLD for the studied amorphics constitutes
~0.2 Å attributing to the change of bond length from 1.5 Å to 1.3 Å. The corresponding dispersion
of the C=C stretching frequencies is of ~400 cm−1 from 1300 cm−1 to 1700 cm−1, thus covering the
main spectral region of the amorphics RSs. The distribution of the bonds within the dispersion region
depends on the BSU size, the composition of heteroatom necklace, and the BSUs multilayer structure.
In light of this triad, the shape of the D-G spectra of natural amorphics and chemically reduced
technical graphene is provided with the BSU size, over which a significant heteroatom-necklace
effect is put on. In addition, the spectra of temperature-shock exfoliated technical carbon and one of
the engineered carbon blacks exhibit a marked contribution of the BSU packing effect caused by a
turbostratic composition of the BSU stacks.

Two-phonon spectra. The C=C BLD concept allows explanation of the broadband 2D spectra of
the studied solids as well, albeit not so straightforwardly as in the case of one-phonon ones since the
spectra origin is provided with the electric anharmonicity of the BSU molecules. Nevertheless, size,
heteroatom necklace, and packing effects are definitely exhibited in this case as well, thus making
D-G-2D spectra of sp2 ACs to be a highly characteristic graphene domain signature. It is this last
circumstance that connects details of the Raman spectra of the AC BSUs in question with the history of
the origin, production, and storage of the studied solids.
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