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The advent of massively parallel sequencing revealed extensive transcription beyond protein-coding genes, identifying tens

of thousands of long noncoding RNAs (lncRNAs). Selected functional examples raised the possibility that lncRNAs, as a

class, may maintain broad regulatory roles. Expression of lncRNAs is strongly linked with adjacent protein-coding gene

expression, suggesting potential cis-regulatory functions. A more detailed understanding of these regulatory roles may

be obtained through careful examination of the precise timing of lncRNA expression relative to adjacent protein-coding

genes. Despite the diversity of reported lncRNA regulatory mechanisms, where causal cis-regulatory relationships exist,

lncRNA transcription is expected to precede changes in target gene expression. Using a high temporal resolution RNA-

seq time course, we profiled the expression dynamics of several thousand lncRNAs and protein-coding genes in synchro-

nized, transitioning human cells. Our findings reveal that lncRNAs are expressed synchronously with adjacent protein-cod-

ing genes. Analysis of lipopolysaccharide-activated mouse dendritic cells revealed the same temporal relationship observed

in transitioning human cells. Our findings suggest broad-scale cis-regulatory roles for lncRNAs are not common. The strong

association between lncRNAs and adjacent genes may instead indicate an origin as transcriptional by-products from active

protein-coding gene promoters and enhancers.

[Supplemental material is available for this article.]

Large-scale transcriptomic studies, enabled by improvements in to-
tal RNA enrichment and high-throughput RNA profiling technolo-
gies, unexpectedly revealed extensive transcription outside the
boundaries of known protein-coding genes (Kapranov et al. 2002;
Okazaki et al. 2002; The FANTOM Consortium and RIKEN
Genome Exploration Research Group and Genome Science Group
2005; Djebali et al. 2012; The ENCODE Project Consortium et al.
2020). The class of products of this transcription are now known
as long noncoding RNAs (lncRNAs). Throughout the human ge-
nome, tens of thousands of these transcripts have been accurately
annotated (Derrien et al. 2012; Hon et al. 2017). Despite their ubiq-
uity, the biological significance ofmost lncRNAs remains unknown.

However, three consistently documented properties of these
transcripts hint at potential widespread regulatory roles. Firstly,
whereas lncRNA exon sequences are poorly conserved, their pro-
moter region sequences are conserved at levels equivalent to pro-
tein-coding genes (The FANTOM Consortium and RIKEN
Genome Exploration Research Group and Genome Science 2005;
Guttman et al. 2009; Derrien et al. 2012; Chen et al. 2016).
Second, lncRNAs display exquisite tissue specificity in their expres-
sion patterns (Cabili et al. 2011; Derrien et al. 2012; Djebali et al.
2012). Thirdly, lncRNA expression is often closely correlated
with neighboring protein-coding genes, both in developing
(Ponjavic et al. 2009; Herriges et al. 2014; Sarropoulos et al.
2019) and adult tissues (Derrien et al. 2012; Luo et al. 2016; Hon
et al. 2017). Taken together, these observations suggest that
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lncRNA transcriptionmay serve a functional role in promoting ac-
tivation of tissue-specific, adjacent protein-coding genes.

Reported lncRNA cis-regulatory mechanisms are diverse.
Detailed investigation of individual lncRNAs has revealed their in-
volvement in the recruitment of regulatory factors and chromatin
remodeling complexes through direct RNA–protein interaction,
whereas in other cases the process of transcription itself appears
to be sufficient, by either increasing the local concentration of
transcription-associated factors or establishing a permissive chro-
matin state (Wang et al. 2011; Cabianca et al. 2012; Anderson
et al. 2016; Engreitz et al. 2016). Although these studies of individ-
ual lncRNAs are illuminating, a genome-wide approach is required
to establish the generality of each mechanism. To address this
need, we turned to a relatively understudied dimension of regula-
tory RNA activity; the kinetics associated with their proposed cis-
regulatory mechanisms. Given their nature as noncoding tran-
scripts, a causal relationship suggests that lncRNA transcription
should precede changes in target gene expression—whether
through recruitment of regulatory factors or facilitating a more
permissive local chromatin structure. As transcription kinetics
are slow (Tennyson et al. 1995; Fuchs et al. 2014; Jonkers et al.
2014), relative to the rapid activation of inducible transcription
factors (Hager et al. 2009; Fowler et al. 2011), gene expressionmea-
surements of sufficient granularity should reveal the timing of
lncRNA transcription relative to target gene activation. Such de-
tailed dynamic information may provide insight into the most
likely mechanisms of action. Indeed, existing limited investiga-
tions of lncRNA dynamics in transitioning mammalian cells indi-
cate that lncRNAproduction precedes activation of protein-coding
genes (De Santa et al. 2010; Aitken et al. 2015; Arner et al. 2015),
providing evidence for lncRNAs as ubiquitous cis-regulators of
gene expression. However, these investigations have relied on
cap analysis of gene expression (CAGE), which captures only the
5′ end of a transcript, or have used time series of limited duration
and resolution.

Here, we aim to use high temporal resolution rRNA-depleted
total RNA-seq measurements to capture the genome-wide dynam-
ics of lncRNAs and protein-coding genes in transitioningmamma-
lian cells. Using these data, we will investigate the temporal
hierarchy of lncRNA and protein-coding gene activation to assess
the feasibility of broad-scale cis-regulatory roles for lncRNAs.

Results

Capturing a dynamic transcriptome at high temporal resolution

To capture lncRNAandprotein-codinggene transcriptiondynamics
at high temporal resolution, a reliable method to obtain a homoge-
neous, synchronized cell population was required. To achieve this,
we took advantage of the unique growth characteristics of the im-
mortalized human glioblastoma cell line T98G. T98G cells retain
growth arrest mechanisms characteristic of untransformed cells
(Stein 1979). In response to growth factor deprivation, T98G cells
undergo reversible G0/G1 cell cycle arrest. Serum stimulation is suf-
ficient to induce exit from growth arrest, producing a population of
tightly synchronized cycling cells, without the need for drug treat-
ment (Canhoto et al. 2000; Takahashi et al. 2000; Tullai et al. 2007).
Following stimulation, the transition from quiescence to active cell
division is characterized by the induction of a complex transcrip-
tional cascade involving protein synthesis-independent induction
of immediate early genes, followed by synthesis-dependent second-
ary response genes (Tullai et al. 2007). To capture this transcription-
al program at high temporal resolution, synchronized transitioning
T98G cells were sampled at 10-min intervals, from 0min (unstimu-
lated) to 400 min (Fig. 1A).

To obtain gene expression estimates, rRNA-depleted total
RNA-seq was performed for all time points. Examination of ge-
nome-aligned sequencing reads revealed a large number of
lncRNAsweremissing fromexisting genome annotations. To over-
come this, de novo transcriptome assembly was performed (see
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Figure 1. Protein-coding genes and lncRNAs exhibit distinct expression dynamics. (A) Schematic representation of the experimental design. Following
stimulation, cells were harvested at evenly spaced 10-min intervals, yielding a total of 41 time points. (B) Heat map of lncRNA expression. Each row rep-
resents an individual z-score-normalized lncRNA expression profile. Colored bars indicate six clusters obtained through k-means cluster analysis, labeled
with the number of transcripts in each. (C) Heat map of mRNA expression, as in B. (D) Comparison of lncRNA and mRNA cluster centroids. Outer boxes
display cluster centroids, capturing the mean expression of all cluster members. Shaded regions represent the 5th–95th percentiles of all cluster member
expression profiles. Pearson correlation coefficients, displayed in the center boxes, were calculated between all lncRNA and mRNA centroid expression
profiles.
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Methods), identifying 2803 lncRNAs in addition to 3552 protein-
coding genes activated in response to serum stimulation. Of the
identified lncRNAs, 33.2% had no overlap with either GENCODE
(Derrien et al. 2012) or FANTOMCAT (Hon et al. 2017) annotated
lncRNA transcripts. Notably, 998 lncRNAs exhibited a rapid in-
crease in expression, peaking within the first 100 min of stimula-
tion, followed by an equally rapid decrease in expression (Fig.
1B). In contrast, protein-coding mRNAs displayed more gradual
dynamics, withmostmRNAs accumulating progressively through-
out the time course (Fig. 1C). To directly compare lncRNA and
mRNA expression dynamics, we examined the correlation be-
tween the prototypical responses displayed by the two transcript
classes (Fig. 1D). Notably, coding genes lacked the early rapid re-
sponse exhibited by 998 lncRNAs, consistent with previous obser-
vations of lncRNAs preceding the expression of protein-coding
genes in transitioning mammalian cells (De Santa et al. 2010;
Aitken et al. 2015; Arner et al. 2015).

However, we noted that activated protein-coding genes were
significantly longer than the class of lncRNAs (Supplemental Fig.
1). Longer transcription times could introduce delays in mature
mRNA accumulation. Protein-coding mRNA half-lives are also
known to vary over a wide range, whereas lncRNAs are generally
rapidly degraded by the RNA exosome (Preker et al. 2008;
Schlackow et al. 2017). The combination of gene length and
mRNA stability may mask the time of transcription initiation of
protein-coding genes (gene activation), impeding accurate com-
parison with lncRNA activation dynamics. To determine if these
effects were obscuring the true protein-coding gene induction
times, we next examined the contributions of these two factors
to mRNA expression dynamics.

Transcript stability shapes mRNA expression dynamics

To gain a quantitative understanding of the effect of transcript
stability on measured mRNA dynamics, we adapted a mathemati-

cal model of the transcriptional response proposed by Zeisel et al.
(2011) (see Methods), in which the rate of change of mRNA con-
centration is determined by a balance betweenmRNA degradation
and the production of new mRNA from unspliced precursor-
mRNA (pre-mRNA). RNA-seq reads originating from intronic re-
gions and captured in total RNA-seq have been demonstrated to
serve as a useful proxy for nascent transcription (Gaidatzis et al.
2015; La Manno et al. 2018) and were used to estimate pre-
mRNA concentration. Time-invariant splicing and degradation
rates were selected that minimized the deviation between model
predictions of mRNA concentration relative to measured levels.
This model provided a close fit to observed expression dynamics
(Fig. 2A–G), enabling estimation of transcript-specific half-lives
(Fig. 2H).

Genes with relatively unstable mRNA largely recapitulated
pre-mRNA dynamics with a short time lag. In contrast, longer
mRNA half-lives resulted in expression dynamics increasingly
divergent from the transient precursor. These results suggest
that, for genes encoding stable transcripts, mRNA expression pro-
files serve as a poor indicator of underlying gene induction dynam-
ics. Furthermore, the confounding effect of transcript stability can
be avoided by measuring pre-mRNA expression dynamics for each
mRNA transcript through quantification of intron-mapping RNA
fragments.

Gene length introduces RNA production delays

Human gene length varies over awide range (Supplemental Fig. 1).
Protein-coding genes identified in this study ranged from less than
1 kb to more than 1 Mb in length, with a mean length of 51.8 kb.
In contrast, lncRNAswere observed to be significantly shorter than
most protein-coding genes, consistent with previous annotations
(Cabili et al. 2011; Derrien et al. 2012; Hon et al. 2017), with a
mean length of 16.6 kb (Supplemental Fig. 1). The time required
for Pol II to complete transcript elongation may delay the
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Figure 2. Gene-specific degradation rates shape mRNA dynamics. (A–G) Pre-mRNA (top panels) and mRNA expression profiles (bottom panels) of seven
representative genes with rapid pre-mRNA dynamics. Pre-mRNA and mRNA expression profiles (points) were obtained by quantification of RNA-seq reads
mapping to gene introns and exons, respectively. Pre-mRNA expression profiles are overlaid with impulse model fits (lines) to aid visualization. mRNA ex-
pression profiles are overlaid with the transcription model fits (lines) used to obtain gene-specific mRNA half-lives, presented in H.

Genes and nearby lncRNAs activated synchronously

Genome Research 1465
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276818.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276818.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276818.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276818.122/-/DC1


production of mature mRNA. These ef-
fects are expected to be more pro-
nounced for longer genes. This was seen
to be the case for the CACNA1C gene
(Fig. 3A). Visualization of RNA-seq cover-
age over intronic regions revealed a pro-
gressive wave of transcription across the
length of the 645 kb gene. Mature
mRNAproduction is correspondingly ob-
served to be delayed by several hours (Fig.
3B). Examination of shorter genes re-
vealed delays in mature mRNA accumu-
lation due to transcriptional delays in
proportion to gene length (Fig. 3C–E).

From these data, we estimated tran-
scription elongation to proceed at a rate
of ∼2.5 kb/min (Supplemental Fig. 2),
in line with previous estimates (Tenny-
son et al. 1995; Fuchs et al. 2014; Jonkers
et al. 2014). Assuming this constant rate,
the time required to complete transcrip-
tion elongation of an average length pro-
tein-coding gene is ∼21 min. These
results suggest that mature mRNA ex-
pression profiles may be a poor indicator
of induction dynamics, particularly for
long genes. Further, to negate the effects
of transcription delays due to gene
length, RNA-seq reads originating from
the 5′ end of a gene’s pre-mRNA would be most suitable for deter-
mining the timing of gene activation.

mRNA expression masks underlying gene induction dynamics

Taken together, our findings suggest that the combined effects of
gene length and transcript-specific degradation ratesmay combine
to mask protein-coding gene induction dynamics. To remove the
contributions of these effects, gene expression profiles were quan-
tified for all protein-coding and lncRNA transcripts using only the
expression of the first 10 kb of intron sequence. These gene expres-
sion measurements were used for all future analyses. Pre-mRNA
profiles (Fig. 4A) revealed that protein-coding gene activation is
significantly more rapid than indicated by mature mRNA expres-
sion levels (Fig. 1C). Within each pre-mRNA expression cluster,
genes were ordered by their mRNA expression dynamics (Fig.
4B). Genes with similar pre-mRNA profiles produced a broad range
of mature mRNA dynamics, suggesting that the combined effects
of gene length and transcript stability shape protein-coding gene
expression dynamics.

We next compared the prototypical responses revealed by
pre-mRNA with the expression profiles characteristic of lncRNAs
(Fig. 4C). In contrast to the relationship implied by mature
mRNA expression (Fig. 1D), pre-mRNA dynamics revealed that
the rapid responses exhibited by lncRNAs are also observed for
the induction of protein-coding genes.

LncRNAs mirror adjacent protein-coding gene expression

Having identified that lncRNAs and protein-coding genes exhibit
similar dynamics, we next sought to examine the spatial relation-
ship between lncRNAs and the expression profiles of adjacent
protein-coding genes. Before examining the genome-wide

relationship, we focused in detail on three well-studied genes acti-
vated early in the release from cell cycle arrest (Fig. 5).

We first considered the proto-oncogene FOS. Following serum
stimulation, canonical mitogen-activated protein kinase signaling
triggers rapid transcription of immediate early genes, including
FOS (Angel and Karin 1991). The encoded transcription factor sub-
unit, FOS, dimerizes with JUN to form the transcriptional activator
AP-1, stimulating further downstream transcriptional changes.
Examination of RNA-seq data from the FOS locus revealed rapid
and transient transcription of FOS and two adjacent lncRNAs.
Both lncRNAs were associated with regions of increased nuclease
sensitivity, revealed by a strongDNase-seq signal across diverse hu-
man tissues (Fig. 5A). These regions also overlappedH3K4me1 and
H3K4me3 histone marks characteristic of enhancer regions (Ernst
et al. 2011; Roadmap Epigenomics Consortium et al. 2015). The
expression profiles of both lncRNAs were captured and compared
with the adjacent protein-coding FOS. Despite the rapid dynamics
exhibited within this group, the high temporal resolution of the
RNA-seq time series allowed FOS pre-mRNA and mRNA dynamics
to be separated. Both lncRNAswere found tomirror the expression
dynamics of FOS pre-mRNA (Fig. 5D).

We next considered TGFBI, which encodes an excreted extra-
cellular matrix protein involved in cell adhesion and migration
(Fig. 5B). In contrast to the transient dynamics of FOS, TGFBI ex-
hibited gradual accumulation and increased separation of pre-
mRNA and mature mRNA expression profiles (Fig. 5E). Four
lncRNAs were identified, clustered upstream of TGFBI. Transcrip-
tion was observed to overlap enhancer-associated chromatin
marks. As was observed for FOS, comparison of expression dynam-
ics revealed that lncRNA expression mirrored the activation of the
adjacent protein-coding gene (Fig. 5E).

As a third example, we examined the dynamics of the well-
studied transcription factor gene TGIF1, which mediates a critical

A
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Figure 3. Gene length delays mRNA production. (A) Transcription across the CACNA1C gene body.
Ridges display normalized RNA-seq coverage over 1-kb intervals tiled across CACNA1C introns. Color in-
tensity indicates the scaled expression of each 1-kb interval across the time course. A right-facing arrow at
the 5′ end of the gene schematic (top) indicates the direction of transcription. (B–E)mRNA and pre-mRNA
expression dynamics for four genes of varying length. Pre-mRNA expression is shown for the first and last
10 kb of each gene’s introns, indicated above each gene schematic by blue and red horizontal bars, re-
spectively. The approximate delay between transcription of the first and last 10 kb of pre-mRNA is indi-
cated by a left-right arrow between the two expression profile peaks. Expression profiles are overlaid with
impulse model fits (lines) and scaled to values between zero and one to facilitate visual comparison.
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role in attenuating transforming growth factor beta pathway
signaling (Wotton et al. 1999). In addition to the lncRNAantisense
to TGIF1, two lncRNAs were identified more than 100 kb
downstream (Fig. 5C). All lncRNAs overlapped chromatin marks,
of variable signal intensity, characteristic of enhancer regions.
Consistent with FOS and TGFBI, analysis of the expression
dynamics revealed that all lncRNAs mirrored the activation of
TGIF1 (Fig. 5F).

Protein-coding gene and lncRNA expression correlation is

genome-wide and exhibits synchrony

Close examination of FOS, TGFBI, and TGIF1 identified adjacent
lncRNAs that mirror protein-coding gene activation. To assess
the generality of this phenomenon in our data, we next examined
the relationship between distance and similarity in expression be-
tween all 3552 protein-coding genes and 2803 lncRNAs activated
across the human genome. Consistent with observations of indi-
vidual genes, lncRNAs andprotein-coding genes exhibited increas-

ing correlation with decreasing genomic distance (Fig. 6A).
Consistent with previous observations (Ebisuya et al. 2008), a
similar trend is observed within the two transcript classes
(Supplemental Fig. 3). Accordingly, a block bootstrap approach
was employed (see Methods) to assess uncertainty around the
trend between distance and correlation observed between the
two transcript classes. Strong deviation of the trend, summarized
by the generalized additive model (GAM) fit, from the obtained
confidence intervals suggests that associations between the expres-
sion of lncRNAs and adjacent protein-coding genes is generaliz-
able across our data.

To determine whether this trend was consistent between
lncRNAs uniquely identified in this study (930) and lncRNAs over-
lapping existing annotations (1873), the analysis was repeated sep-
arately for each group of lncRNAs. The trend between lncRNAs and
adjacent protein-coding genes was observed in both groups
(Supplemental Fig. 4). lncRNAs have also been classified as pro-
moter-associated or enhancer-associated according to the chroma-
tin status at the transcriptional initiation region (Marques et al.
2013), with emphasis that enhancer-associated lncRNAs are likely
to predominately function in cis (Li et al. 2016; Sartorelli and
Lauberth 2020). To determine whether the observed trend was
consistent between promoter-associated and enhancer-associated
lncRNAs, transcripts were classified based on the relative levels of
histone H3K4 trimethylation and H3K27 acetylation near their
transcription start sites (see Methods) and the analysis was repeat-
ed separately for each group of lncRNAs. The trend between
lncRNAs and adjacent protein-coding genes was observed in
both classes (Supplemental Fig. 5).

Having identified a genome-wide association between pro-
tein-coding gene and adjacent lncRNA expression, we next sought
to examine the sequence of events. To determine whether lncRNA
expression precedes or trails the activation of adjacent genes, time-
lagged lncRNA expression profiles were compared with protein-
coding pre-mRNA expression (Fig. 6B). Cross-correlation between
lncRNA and protein-coding expression profiles was found to be
maximal with a lag of 0min. These results suggest that lncRNA ex-
pression and coding gene activation are synchronous, consistent
with the observations of individual lncRNA–gene pairs (Fig. 5D–

F). In contrast, when lncRNA and coding gene dynamics were
compared using mature mRNA expression, lncRNA expression ap-
peared to significantly precede protein-coding gene activation
(Fig. 6C). These findings highlight the utility of measuring 5′ in-
tron expression to capture gene activation dynamics and provide
a possible explanation for the previously reported finding that
transcription of lncRNAs precedes protein-coding gene expression
(De Santa et al. 2010; Aitken et al. 2015; Arner et al. 2015).

Murine lncRNAs mirror adjacent protein-coding gene expression

In the T98G time series data, simultaneous initiation of lncRNA
and adjacent protein-coding expression is consistent across the
human genome. To evaluate whether this is also the case in the
mouse genome, we examined an RNA-seq time series capturing
the immune response of mouse dendritic cells to lipopolysaccha-
ride (LPS) captured at 15-min time intervals, from 0 to 180 min
(Rabani et al. 2014). To identify mouse lncRNAs, de novo tran-
scriptome assembly was again performed (see Methods), identify-
ing 1275 lncRNAs and 2882 protein-coding genes activated in
response to LPS stimulation. Of the identified lncRNAs, 34.4%
had no overlap with GENCODE-annotated lncRNA transcripts.

A

C

B

Figure 4. mRNA expression fails to capture gene induction dynamics.
(A) Heat map of protein-coding gene induction dynamics. Expression pro-
files were captured using the first 10 kb of gene introns and z-score normal-
ized. Colored bars (left) indicate cluster membership to one of six clusters
obtained through k-means cluster analysis. Clusters are labeled with the
number of transcripts in each. (B) Heat map of protein-coding mRNA ex-
pression dynamics. Rows within each expression cluster are ranked by
the time of peak expression. Rows within A and B correspond to the
same genes. (C) Comparison of protein-coding gene pre-mRNA and
lncRNA expression dynamics. lncRNA cluster centroids (left) are the same
as in Figure 1B, whereas protein-coding pre-mRNA centroids (top) corre-
spond to the colored bars in B. Centroids represent the mean expression
of all cluster members, whereas shaded regions represent the 5th–95th
percentiles. Pearson correlation coefficients calculated between all
lncRNA and protein-coding pre-mRNA centroids are presented.

Genes and nearby lncRNAs activated synchronously
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Consistent with lncRNAs examined in the human T98G time
series data set, mouse lncRNA expression was significantly associ-
ated with activation of adjacent protein-coding genes (Fig. 7A).
Comparing lagged lncRNA gene expression with nearby protein-
coding expression profiles, measured using 5′ intron expression,
correlation was again found to be maximal with a time lag of 0
min (Fig. 7B). When gene expression dynamics were measured us-
ing mature mRNA, lncRNA expression appeared to precede pro-
tein-coding gene activation (Fig. 7C). These results suggest that
synchronous activation of lncRNAs and neighboring protein-cod-
ing genes is a general phenomenon in transitioning mammalian
cells.

Discussion

Our findings establish a robust relationship between lncRNAs and
the expression of adjacent protein-coding genes. Through
genome-wide comparison of lncRNA and coding-gene activation
dynamics, we have demonstrated that, within the temporal

resolution of our measurements,
lncRNA and protein-coding gene activa-
tion appears to be synchronous.

This observation contrasts with pre-
vious reports identifying lncRNA expres-
sion as preceding activation of protein-
coding genes in transitioning mammali-
an cells (De Santa et al. 2010; Aitken
et al. 2015; Arner et al. 2015). Our find-
ings suggest that this discrepancy may
be attributed to the reliance of previous
investigations on measurement of ma-
ture mRNA to capture gene expression.
We have shown that gene length intro-
duces considerable delays in mRNA
accumulation.When combined with dif-
ferences in transcript stability, our results
indicate that mRNA levels are an unreli-
able indicator of gene activation times.
In contrast, we have demonstrated that
measurement of pre-mRNA expression
levels from RNA-seq data reliably cap-
tures the timing of gene activation.

Reports of delays between lncRNA
andmRNA transcriptionhave been inter-
preted as evidence supporting functional
roles for lncRNAs as pervasive transcrip-
tional regulators (De Santa et al. 2010;
Schaukowitch et al. 2014; Arner et al.
2015). This reasoning is consistent with
noncoding transcripts that must be tran-
scribed prior to any regulatory activity.
Regardless of the specific cis-regulatory
mechanism employed, where a function-
al regulatory relationship exists in which
a lncRNA activates the expression of a
neighboring gene, lncRNA expression is
expected to occur in advance of changes
in target gene expression. Our findings
indicate that, with an average length of
16.6 kb and transcription elongation
rate of 2.5 kb/min, a typical lncRNA

would take 6.6 min to be transcribed, excluding the time
required for recruitment of regulatory complexes or other pro-
posed cis-regulatory roles. The high temporal resolution of the
time courses described in this study did not reveal such a delay. In-
stead, lncRNA and protein-coding gene activation appear to be
synchronous.

These findings do not support the existence of broad-scale cis-
regulatory roles for lncRNAs. Both human and mouse lncRNAs
identified in this study arise as transient, low-abundance transcrip-
tion mirroring adjacent gene activation. These observations are
consistent with proposals that the majority of lncRNAsmay repre-
sent the nonspecific initiation of transcription at active regulatory
elements (Wang et al. 2004; Struhl 2007; Palazzo and Lee 2015).
Indeed, our findings indicate lncRNAs are associated with chroma-
tin marks characteristic of enhancer elements. This close associa-
tion of lncRNAs with active enhancers may clarify several
observationswidely construed as suggestive of biological function.
These include the widespread sequence conservation of lncRNA
promoter regions (The FANTOMConsortium and RIKEN Genome
Exploration Research Group and Genome Science Group 2005;

A
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Figure 5. Human lncRNAs mirror adjacent protein-coding gene pre-mRNA expression. (A–C) NIH
Roadmap Epigenomics data for loci surrounding protein-coding genes; FOS, TGFBI, and TGIF1. A sche-
matic of each locus is presented, with GENCODE-annotated protein-coding genes shown in black and
lncRNAs in green. NIH Roadmap Epigenomics DNase-seq, H3K4me1, and H3K4me3 histone modifica-
tion ChIP-seq data from 111 uniformly processed human epigenomes are presented. Lines depict
mean −log10(P-value) signal, with dark shaded regions indicating 25%–75% percentiles, and lighter
shaded regions the 10%–90% percentiles. (D–F) Line plots of z-score normalized protein-coding gene
and lncRNA expression values. LncRNA and pre-mRNA were quantified using the expression of the first
10 kb of intronic regions. Mean expression (dark green) and the range of all expression values (shaded
light green) is shown for adjacent lncRNAs. Mature mRNA expression is included for comparison.
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Guttman et al. 2009; Derrien et al. 2012; Chen et al. 2016), strong
cell type– and developmental stage–specific expression (Cabili
et al. 2011; Derrien et al. 2012; Djebali et al. 2012), and phenotypic
changes observed following ablation of lncRNA loci (Sauvageau
et al. 2013; Dimitrova et al. 2014; Hacisuleyman et al. 2014). Se-
quence conservation of enhancer regions and their regulation of
cell type–specific transcriptional control are well-documented
(Heinz et al. 2015; Roadmap Epigenomics Consortium et al.
2015). Conservation of sequence immediately adjacent to lncRNA
transcription start sites, previously viewed as lncRNA promoters,
may alternatively be interpreted as conserved enhancer regions.
Similarly, the characteristic tissue-restricted expression of lncRNAs
may reflect activity of the adjacent enhancer. Phenotypes ob-
served following ablation of lncRNA loci may equally be due to
loss of underlying regulatory DNA regions, as was recently ob-
served to be the case for a number of zebrafish lncRNAs (Goudarzi
et al. 2019). Similarly, two recent investigations employing inser-
tion of transcriptional terminator sequences to separate the role
of the genomic locus from its RNA products reached similar con-
clusions (Engreitz et al. 2016; Paralkar et al. 2016). In both cases,
cis elements were identified as functional, whereas the associated
lncRNAs were dispensable.

However, the observations presented in this study do not pre-
clude the possibility of lncRNA cis-regulatory roles that occur fol-
lowing the activation of gene expression. A protein-coding gene
and lncRNAwith a shared promoter regionmay result in coexpres-
sion of both transcripts. Following this, the lncRNA transcriptmay
interact with the shared promoter, affecting both mRNA and
lncRNA expression at the same time. In this scenario, due to the
shared promoter region, both transcripts could remain coex-
pressed with the same dynamics. However, synchronous activa-
tion was observed between pairs separated by genomic distances
that far exceed the boundaries of both human and mouse gene
promoters. This suggests that functional cis-regulatory roles that
rely on coexpression from shared promoter regions are unlikely
to account for the observed lncRNA expression dynamics.
However, the potential functional consequences of lncRNA autor-
egulation are intriguing and warrant examination in future stud-
ies. Importantly, our observations also do not preclude potential
trans-regulatory functions, unrelated to activation of adjacent
gene expression.

Further, this study focuses on a narrow range of cell types and
biological stimuli. Additional studies of other dynamic processes,
such as cellular differentiation, would strengthen the generality
of these findings. The current study also relies on bulk RNA-seq
measurements which obscure the timing of transcriptional re-
sponses within individual cells. Future studies focused on
lncRNA dynamics may benefit from inclusion of gene expression
measurement at single-cell resolution. Measurement of gene acti-
vation dynamics using pre-mRNA also restricts the analysis to
genes containing introns.

The findings of this study also provide an additional criterion
bywhich future studiesmaydistinguish subsets of functional non-
codingRNAs. Ifmost lncRNAs originate as transcriptional by-prod-
ucts, examples that violate this trend and are transcribed
independent of the activity of neighboring protein-coding gene
loci may represent functional transcripts. Further research is re-
quired to determine whether such independently regulated
lncRNAs are associated with characteristics such as localization
with chromatin-associated or gene-silencing factors, increased
abundance, stability, or sequence-level conservation that may in-
dicate a subset of functional lncRNAs.

A

B C

Figure 6. Human lncRNAs mirror adjacent protein-coding gene expres-
sion. (A) Violin plot of Pearson correlation coefficients between protein-
coding gene and lncRNA expression profiles, binned by distance between
transcripts’ transcriptional start sites. A generalized additive model (GAM)
fit summarizes the relationship between distance and correlation of pro-
tein-coding/lncRNA pairs (e.d.f. = 8.197, P<2−16). A simulation envelope,
generated using a block-bootstrap approach and presented as a red shad-
ed band (see Methods), demonstrates the expected trend under the null
hypothesis that distance and correlation are unrelated. The trend in corre-
lation against separation distance lies well outside the simulation envelope,
indicating a relationship unlikely to be due to chance. Continuous GAM fit
and simulation envelope values were overlaid by plotting themean of each
distance bin. (B) Similarity between expression profiles of coding/lncRNA
distance-binned pairs, at time lags of −200–200 min. Solid lines represent
the mean correlation coefficient calculated between distance-binned pairs
at varying time-lags of lncRNA expression profiles relative to coding gene
expression. Simulation envelopes generated using a block bootstrap ap-
proach show the expected cross-correlations versus time trends where
there is no relationship with separation distance. (C) Produced as in B,
with coding gene expression profiles replaced with mature mRNA expres-
sion, rather than pre-mRNA.
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Methods

Cell culture and RNA extraction

Human glioblastoma T98G cells obtained from the American Type
Culture Collection were cultured in Gibco Dulbecco’s Modified
Eagle Medium (DMEM) supplemented with 10% fetal calf serum
(FCS) at 37°C in humidified atmosphere with 5% CO2. For each
time point, two million cells were seeded and allowed to equili-
brate for 24 h, followed by a 72-h incubation in serum-free
DMEM. Cells were stimulated with 20% FCS/DMEM at specified
time points, lysed with TRIzol reagent (Ambion), homogenized,
and frozen for subsequent RNA isolation. RNA extraction and pu-
rificationwas performed using amiRNeasyMini kit andRNase-free
DNase (Qiagen).

RNA sequencing

RNA samples were depleted of ribosomal RNA (rRNA) using Ribo-
Zero biotinylated, target-specific oligos (Illumina) combined with
RNAClean XP beads (Beckman Coulter). Following purification,
rRNA-depleted samples were prepared for sequencing using an
Illumina TruSeq Stranded Total RNA library prep kit. After individ-
ual library QC, the sample pool size and concentration were deter-
mined using a LabChip GX DNA High Sensitivity assay and qPCR
using a KAPA Library Quantification kit (Roche). Uniquely in-
dexed samples were pooled in equimolar concentration, diluted
and denatured as one, clustered across eight flow cell lanes, and se-
quenced at 125-bp paired-end resolution using an Illumina HiSeq
2500 v4.0 sequencing system to provide amean sequencing depth
of 37.2 million reads per time point sample.

Bioinformatic analysis

In addition to the descriptions provided below, all code used to
produce the presented analyses and figures, along with links to ex-
ternal data sets, are provided in the associated GitHub repository
(https://github.com/WalterMuskovic/lncRNA_time_course).

RNA sequencing data analysis

Sequencing data for the mouse dendritic cell LPS response time
course were obtained from NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession
GSE56977. A detailed description of the sample preparation and
sequencing can be found in the associated publication (Rabani
et al. 2014). Both human glioblastoma T98G and mouse time
course reads were trimmed to remove Illumina adapter sequences,
with cutadapt, version 1.11 (Martin 2011). Trimmed reads were
aligned to the GRCh38 and GRCm38 primary genome assemblies
using STAR (Dobin et al. 2013), version 2.5.2a. Aligned reads from
all time points were combined for de novo transcriptome assembly
with StringTie, version 2.1.3 (Pertea et al. 2015). Subsequent stat-
istical analysis was performed with R (R Core Team 2020). Read
counts were quantified for each time point using the Rsubread R
package (Liao et al. 2014), version 1.34.6. Counts were normalized
using the median of ratios method implemented in the DESeq2 R
package (Love et al. 2014), version 1.24.0. For each gene, the tran-
script with the highest (length-adjusted) counts was selected. To
identify human and mouse genes activated in response to serum
stimulation, each gene was tested for autocorrelation using a
Ljung–Box test with the stats R package, version 4.0.2. Genes
with an adjusted P-value cut-off below 0.01 were retained, follow-
ing correction for multiple-testing with Benjamini-Hochberg ad-
justment. To assist visualization, protein-coding genes and
lncRNAs with similar expression profiles were grouped by k-means
cluster analysis. To determine the optimal cluster number (k), the

A

B C

Figure 7. Murine lncRNAs mirror adjacent protein-coding gene expres-
sion. Spatial and temporal relationship between protein-coding genes and
lncRNAs activated in mouse dendritic cells responding to stimulation with
lipopolysaccharide (Rabani et al. 2014). (A) Violin plot of Pearson correla-
tion coefficients between protein-coding gene and lncRNA expression
profiles, binned by distance between transcripts’ transcriptional start sites.
A GAM fit summarizes the relationship between distance and correlation of
mouse protein-coding/lncRNA pairs (e.d.f. = 7.007, P<2−16). A simulation
envelope, presented as a red shaded band, generated using a block-boot-
strap approach (seeMethods) demonstrates the expected trend under the
null hypothesis that distance and correlation are unrelated. The trend in
correlation against separation distance lies well outside the simulation en-
velope indicating a relationship unlikely to be due to chance. Continuous
GAM fit and simulation envelope values were overlaid by plotting the
mean of each distance bin. (B) Similarity between expression profiles of
coding/lncRNA distance-binned pairs, at time lags of from −90 to 90
min. Solid lines represent the mean correlation coefficient calculated be-
tween distance-binned pairs at varying time-lags of lncRNA expression
profiles relative to coding gene expression. Simulation envelopes generat-
ed using a block bootstrap approach show the expected cross-correlations
versus time trends where there is no relationship with separation distance.
(C ) Produced as in B, with coding gene expression profiles replaced with
mature mRNA expression, rather than pre-mRNA.

Muskovic et al.

1470 Genome Research
www.genome.org

https://github.com/WalterMuskovic/lncRNA_time_course
https://github.com/WalterMuskovic/lncRNA_time_course
https://github.com/WalterMuskovic/lncRNA_time_course
https://github.com/WalterMuskovic/lncRNA_time_course
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


total within-cluster sumof squares (WSS)was calculated for a range
of values of k. Examining a curve ofWSSs according to the number
of clusters k, a value was chosen such that adding additional clus-
ters did not greatly reduce the total intra-cluster variation. For all
transcript classes, a value of k =6was determined to be appropriate.

Inference of transcript-specific half-lives

Following the method described by Zeisel et al. (2011), we model
transcription dynamics with the following differential equation:

dM
dt

= bP(t)− aM(t),

in which the rate change in mRNA concentration
dM
dt

( )
corre-

sponds to the balance between transcription and degradation. β
denotes the splicing rate coefficient of the pre-mRNA P(t) to ma-
ture mRNA M(t), which degrades at a rate captured by α.

Transcript-specific mRNA half-lives are given by T1/2 = ln2
a

. To

determine the time-invariant model parameters (β and α), normal-
ized mRNA and pre-mRNA counts were fit using least squares. Pre-
mRNA expression was captured using only reads mapped to the
last 10 kb of a gene’s introns. This was done to remove the effects
of transcription delays due to gene length. We note that, for all
other analyses, pre-mRNA expression was measured using the first
10 kb of intron sequence from the TSS, excluding any exon se-
quences. Model parameters were selected as those minimizing
the difference between model predictions of mRNA dynamics rel-
ative to measured levels.

Impulse model fits to time course data

To assist with visualization, lines were fit to the pre-mRNA profiles
presented in the upper panels of Figure 2 and the first/last 10 kb of
pre-mRNApresented in Figure 3. Fits were obtained using the para-
metric impulse model described by Chechik and Koller (2009), de-
signed to capture gene expression responses that exhibit an abrupt
early response before settling at a second steady-state level. The six-
parameter model function described by Chechik and Koller (2009)

f (t) = 1
h1

h0 + (h1 − h0)× 1
1+ e−l(t−t1)

( )

× h2 + (h1 − h2)× 1
1+ el(t−t2)

( )

describes two transitions, both with the same slope, captured by λ.
We generalized the model slightly to allow two transitions with
different slopes, defined by λ1 and λ2:

f (t) = 1
h1

h0 + (h1 − h0)× 1
1+ e−l1(t−t1)

( )

× h2 + (h1 − h2)× 1
1+ el2(t−t2)

( )
.

Optimal model parameters were determined by least squares, min-
imizing the sum of squared error between the impulse model fit
and measured pre-mRNA levels.

Roadmap Epigenomics Project and ENCODE chromatin-

accessibility and histone modification data

The DNase-seq and histone modification ChIP-seq data for
GRCh38 genomic regions presented in Figure 5 were obtained
from the NIH Roadmap Epigenomics Project (Roadmap
Epigenomics Consortium et al. 2015). Data from genomic regions
of interest were extracted from genome-wide −log10(P-value) sig-

nal tracks containing uniformly processed data from 111 consoli-
dated epigenomes, representing a diverse range of human cell
types and tissues (Roadmap Epigenomics Consortium et al.
2015). To classify lncRNAs as enhancer-associated or promoter-as-
sociated, the Search Candidate cis-Regulatory Elements by
ENCODE (SCREEN) registry of candidate cis-Regulatory Elements
(cCREs) v3 was used (The ENCODE Project Consortium et al.
2020). SCREEN cCREs are classified as promoter-like or enhanc-
er-like based on the presence of strong DNase and H3K4me3 sig-
nals versus strong DNase and H3K27ac but low H3K4me3 signal,
respectively. lncRNAs were classified based on the presence of a
cCRE within 300 bp of their transcription start site.

Block bootstrap

We sought to assesswhether coding/lncRNApairs that are close to-
gether are more correlated in their expression profiles than would
be expected by chance by plotting a simulation envelope around
the relationship between Pearson’s correlation and separation dis-
tance to show the 1st and 99th percentiles under the null hypoth-
esis. If the trend is outside the simulation envelope, then it
indicates there is a relationship between the two that is beyond
what is expected by chance. A naivemethod for the simulation en-
velope involves creating pseudosamples by randomly permuting
the separation distances (but not the Pearson correlations) and us-
ing these to recreate the “null” trend—where coding/lncRNA cor-
relation and separation distance are not correlated. However, both
classes of transcripts are spatially correlated (Supplemental Fig. 3)
and naive permutation would ignore this dependence. Hence, a
block bootstrap approach was employed to create the pseudosam-
ples for the simulation envelope (Lahiri 2013). To perform the
block bootstrap, pseudochromosomes were created by splitting
chromosomes into sublengths of a determined block size for
each transcript class. Sublengths were then sampled with replace-
ment to obtain the pseudochromosomes, with a GAM subse-
quently fit to the trend in Pearson correlation versus separation
distance on all the coding/lncRNA pairs in the pseudochromo-
some. A simulation envelope was obtained by taking the 1st and
99th percentiles from 1000 iterations of the block bootstrap. A
schematic of the method along with the code used to implement
it is provided in the accompanying GitHub repository. To deter-
mine the appropriate block size for each transcript class, separation
distances were randomly shuffled 1000 times and generalized ad-
ditive models were fit to the relationship between distance and
correlation to obtain 1st and 99th quantiles. The distance at which
the GAM fit to the unpermuted data exceeded the 99th quantile
was taken as the block size, so that the expression profiles between
sublengths of chromosome could be considered approximately
independent.

Cross-correlation

The ccf function from the R stats package, version 3.6.1, was used
to compute the cross-correlation between lncRNA and coding ex-
pression profiles, with time lags ranging from −200 to 200min for
the T98G time course and from −90 to 90 min for the mouse LPS
time course. The lncRNA expression profile is lagged, while the
coding gene expression profile is held constant. To negate any ef-
fects of transcription delays due to gene length or transcript half-
lives, coding gene pre-mRNA and lncRNA expression was calculat-
ed using only the first 10 kb of intron regions. Themeanwas taken
for all coding/lncRNA pairs within the specified separation
distance. To gain an estimate of uncertainty in the trend (account-
ing for autocorrelation in expression profiles along the chromo-
some), the above procedure was repeated 1000 times on
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pseudochromosomes generated using the block bootstrap meth-
od, from which the 1st–99th quantiles were obtained in each sep-
aration distance category.

Data access

All raw andprocessed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE138662. All code used to produce the analysis presented in
this work are available in the GitHub repository (https://github
.com/WalterMuskovic/lncRNA_time_course) and as Supple-
mental Code.
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