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Abstract

The GFP folding reporter assay [1] uses a C-terminal GFP fusion to report on the folding success of upstream fused
polypeptides. The GFP folding assay is widely-used for screening protein variants with improved folding and solubility [2–8],
but truncation artifacts may arise during evolution, i.e. from de novo internal ribosome entry sites [9]. One way to reduce
such artifacts would be to insert target genes within the scaffolding of GFP circular permuted variants. Circular permutants
of fluorescent proteins often misfold and are non-fluorescent, and do not readily tolerate fused polypeptides within the
fluorescent protein scaffolding [10–12]. To overcome these limitations, and to increase the dynamic range for reporting on
protein misfolding, we have created eight GFP insertion reporters with different sensitivities to protein misfolding using
chimeras of two previously described GFP variants, the GFP folding reporter [1] and the robustly-folding ‘‘superfolder’’ GFP
[13]. We applied this technology to engineer soluble variants of Rv0113, a protein from Mycobacterium tuberculosis initially
expressed as inclusion bodies in Escherichia coli. Using GFP insertion reporters with increasing stringency for each cycle of
mutagenesis and selection led to a variant that produced large amounts of soluble protein at 37uC in Escherichia coli. The
new reporter constructs discriminate against truncation artifacts previously isolated during directed evolution of Rv0113
using the original C-terminal GFP folding reporter. Using GFP insertion reporters with variable stringency should prove
useful for engineering protein variants with improved folding and solubility, while reducing the number of artifacts arising
from internal cryptic ribosome initiation sites.
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Introduction

Classical approaches to improve protein solubility include

testing various expression conditions [14], varying promoter

strength [15], and fusion to various solubility enhancing partners

[16–18]. However, these strategies do not improve the intrinsic

stability and folding success of recalcitrant proteins. In contrast,

directed protein evolution can improve the long-term protein

stability and folding yield without affecting global protein structure

and activity [19]. In this process, mutagenesis is performed

randomly on a protein coding sequence and beneficial mutations

are selected or screened from the pool of protein variants. Widely-

used genetic screens for protein folding and stability include phage

display [20], ribosome display and mRNA display [21]. These

methods may be followed by additional in vitro screens for protein

stability and aggregation. These include resistance to proteolysis

[22], accessibility of an affinity tag [23], or screens for reduced

hydrophobicity [24]. More recently, an elegant method described

the use of the twin-arginine transporter (TAT) to screen for

correctly-folded protein variants. Folded proteins bearing a fused

beta-lactamase are exported into the periplasmic space, conferring

resistance to ampicillin [25]. In this approach, proteins are

‘‘sandwiched’’ between an N-terminal TAT transporter tag and C-

terminal selectable marker, helping to ensure that selected variants

are full-length. However the maximum size of the complexes, and

the type of proteins that can be exported by this pathway without

bias, remains to be determined.

An alternative for selecting folded proteins consists of fusions

with so-called ‘folding reporters’. One example is the use of

chloramphenicol acetyl transferase (CAT) to monitor protein

folding based on chloramphenicol resistance [26]. Earlier we

described a directed evolution approach that combines DNA

shuffling mutagenesis followed by selection of variants with

improved folding (optima) using the green fluorescent protein

(GFP) folding reporter [1]. This approach has been used with large

protein complexes, including the 24-subunit ferritin (ca. 450 kDal)

[1]. The selection is based on the observation that the fluorescence

of GFP fusions is positively correlated with folding of the target

protein expressed alone [1]. One explanation of this observation is

that poorly folded fusions trap non-productive folding intermedi-

ates of the fused GFP domain resulting in so-called ‘folding

interference (Fig. 1A, B). Directed protein evolution using cycles of

mutagenesis and selection via the GFP folding interference assay

has been used to engineer soluble variants of recalcitrant proteins

from several organisms [5,7,27] including the hexameric NDP

kinase from Pyrobaculum aerophilum [4]. The GFP folding interfer-

ence method has also proved useful for finding mutations that

reduce the aggregation of the Alzheimer Ab42 peptide [3,6], and

for identifying chemicals that suppress aggregation of the

Alzheimer Ab42 peptide [28]. Despite these successes, fluorescent
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‘false-positive’ truncation artifacts from cryptic internal ribosome

binding sites in full-length cDNA coding sequences may arise

during directed evolution using C-terminal folding reporters [9]. A

small, soluble, truncated polypeptide may be linked to full length

fluorescent GFP whether both test protein fragments are soluble

(Fig. 1C) or not (Fig. 1D). To help discriminate against these

artifacts, we engineered a so-called ‘‘circular permutant insertion’’

GFP reporter, with the test protein inserted between the native N-

and C-termini of a GFP circular permutant (Fig. 2A). Misfolding

by test proteins would be expected to interfere with the folding and

assembly of the two GFP domains (Fig. 2B).We hypothesized that

truncation artifacts or translation products from internal ribosome

binding sites should be reduced or eliminated when using GFP

insertions, since the resulting separated halves of the GFP

scaffolding are less likely to associate to form the fluorescent

GFP (Fig. 2C), especially when at least one of the fragments is

misfolded (Fig. 2D).

Since GFP circular permutants are more likely to misfold [10–

12] than the conventional topology, we reasoned that circular

permutant insertion GFP reporters should exhibit increased

sensitivity to target fusion protein misfolding relative to the

conventional C-terminal GFP reporter [1]. Moreover, the

likelihood of folding interference should decrease as the folding

robustness of the GFP domain increases. We recently described a

‘superfolder’ GFP that exhibits reduced folding interference from

upstream fused polypeptides compared to folding reporter GFP

[13]. GFP hybrid insertion reporters combining mutations from

folding reporter GFP [1] and ‘superfolder’ GFP [13] should

therefore be tunable to a desired stringency or sensitivity to test

protein misfolding. We show here that a set of several hybrid GFP

insertion reporters is indeed more sensitive to test protein folding

interference and provides a wider dynamic range of sensitivity to

test protein misfolding than the C-terminal folding reporter GFP.

We use this new insertion topology to discriminate against

truncation artifacts that appeared when using the C-terminal

GFP folding reporter during directed evolution of an Rv0113

protein variant from Mycobacterium tuberculosis. We selected soluble

and full-length mutants of the recalcitrant Rv0113 protein using

hybrid GFP insertion reporters with progressively increasing

stringency during successive rounds of evolution.

Results

Construction of GFP protein insertion circular permutants
We previously described a series of rationally designed GFP

circular permutants which start at an internal amino acid in GFP,

continue to the C-terminus of natural GFP, connect to the N-

terminus of natural GFP with a GGGS linker, and continue to

complete the circular permutant of GFP [13]. The most

fluorescent constructs started at amino-acid positions 157 or 173

for either the folding reporter GFP or superfolder GFP. We used

these GFP circular permutants as a starting point to create

chimeric GFP insertion (GFPi) constructs, where two GFP

fragments flank the protein of interest [29]. To receive the insert

gene, the GGGS linker sequence between the native N and C-

termini of the GFP template was replaced with a DNA cassette

containing a cloning site for test proteins (Fig. 3A). The so-called

‘‘GFP insertion’’ reporters are numbered according to the number

of the beta-strand corresponding to the circular permutant break-

Figure 1. Mechanism proposed for the GFP folding interfer-
ence assay using C-terminal GFP-based folding reporters. (A)
Fluorescence of GFP reflects correct folding of the test protein attached
to the reporter. (B) Misfolded fusion proteins interfere with the folding
of the downstream GFP domain rendering it non-fluorescent. (C)
Internal translation sites or proteolysis can give rise to soluble,
truncated polypeptides with new N-termini (N9, after scissors) that do
not interfere with GFP folding. (D) Truncation artifacts not fused to the
GFP escape detection.
doi:10.1371/journal.pone.0002387.g001

Figure 2. Circular permutant GFP insertion topology reporters.
(A) the protein of interest X is inserted between the native N and C
termini of GFP. Translation begins at an internal site in the GFP
scaffolding (N9), so that the back of GFP is translated first. Correctly
folded test inserts do not interfere with the folding and assembly of the
GFP fragments. (B) Misfolded inserted target proteins prevent correct
reconstitution of the two GFP fragments. (C) Truncations and new
internal translation sites produce two independent fragments of GFP,
reducing the amount of folded GFP. (D) Misfolded test protein
fragments can sequester the fused GFP domain in aggregates
preventing GFP assembly.
doi:10.1371/journal.pone.0002387.g002

Protein Folding Reporters
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point in the native topology of the eleven beta strand GFP

sequence [13]. For example, GFPi 9/8 designates the expressed

protein fusion [GFP (amino-acids 173 to 238)]-L1-[X]-L2-[GFP

(amino-acids 1 to 172)], where L1 and L2 are flexible (GGGS)2
linkers, X is the inserted protein, beta strand 9 starts at residue 173

and beta strand 8 ends at residue 172 (Fig. 3A). A similar circular

permutant insertion topology was created for the GFP circular

permuted variant 8/7 starting at residue position 157 (Fig. 3A). To

generate chimeric GFP insertion reporters with intermediate levels

of folding robustness, we combined GFP scaffolding fragments

from folding reporter GFP and from superfolder GFP, respectively

(Fig. 3B). The resulting GFPi 9/8_FR/SF construct contains five

folding mutations from superfolder GFP, whereas GFPi 9/8_SF/

FR contains only one folding mutation from superfolder GFP (Fig.

S1). GFPi 8/7_FR/SF and 8/7_SF/FR, contain 4 or 2 super-

folder GFP mutations, respectively (Fig. S2).

Effect of proteins with varying folding robustness on the
fluorescence of the GFP insertion fusions

To evaluate the folding robustness of all eight GFP circular

permutant insertion reporters, the coding sequences of four

Pyrobaculum aerophilum test proteins with known solubility and

folding yield [30] (see Table 1), were each inserted between NdeI/

BamHI restrictions sites of the cloning cassette (See Methods)

(Fig. 4A). To compare these results with previously published data

[13], the same test proteins were also fused to the N-terminus of

the native topology folding reporter GFP or superfolder GFP. E.

coli expressing the corresponding P. aerophilum GFP fusion proteins

were plated on nitrocellulose membranes on selective LB-agar

plates, incubated overnight at 32uC, and induced with isopropyl

thiogalactoside (IPTG) for 4 hours at 37uC (see Methods), then

colony fluorescence was imaged (Fig. 4A). Colony fluorescence

decreased as the solubility of the inserted protein decreased for the

C-terminal folding reporter GFP, as previously observed [1]

(Fig. 4A, column A). In contrast, colonies expressing proteins fused

to the C-terminal superfolder GFP were brightly fluorescent, even

for the fully insoluble test protein #4 (polysulfide reductase

subunit) (Fig. 4A, column B), consistent with the enhanced folding

robustness of superfolder GFP [13]. Whole-cell fluorescence was

lower for GFP insertion reporters compared to C-terminal GFP

reporter fusions, especially for GFP insertion reporters derived

from folding reporter GFP. Only the most soluble, well folded

protein #1 (sulfite reductase) (Fig. 4A, row 1) could be detected

using GFPi 9/8_FR/FR (Fig. 4A, columns C and G). As expected,

GFP insertion reporters based on superfolder GFP (Fig. 4A,

columns F and J) were far more tolerant to insertions than those

based on folding reporter GFP, with fluorescence levels between

the corresponding C-terminal GFP folding reporter (Fig. 4A,

column A) and C-terminal superfolder GFP fusions (Fig. 4A,

column B). Hybrid GFP insertion reporter constructs distinguished

subtle differences in test protein folding robustness via the

corresponding fluorescence levels. For example, GFPi 9/8_FR/

SF (Fig. 4A, column E) and GFPi 8/7_FR/SF (Fig. 4A, column I)

could detect differences in solubility between protein #3 (50%

soluble as non-fusion) and protein #2 (70% soluble as non-fusion).

The next less stringent vector, GFP insertion SF/FR, was able to

detect protein #2 and still distinguish this candidate from the fully

soluble protein #1 (Fig. 4A, column D and H). In contrast, cell

fluorescence for these two proteins expressed as C-terminal GFP

Figure 3. GFP insertion constructs. (A) GFP insertion constructs
(GFPi) contain NdeI and BamHI cloning sites for accepting test proteins
(X) between the C and N-termini of a circular permutant of GFP. Flexible
amino acid linkers L1 and L2 GGGSGGGS separate the protein of interest
from the two GFP domains, (GFP1 and GFP2). GFPi 9/8 starts at amino-
acid position 173 (beginning of beta strand 9) and ends at amino-acid
position 172 (end of beta strand 8) of GFP (top). GFP insertion 8/7,
starts at amino-acid 157 (beginning of strand 8), and ends at amino-acid
156 (end of strand 7) (bottom). (B) Chimeric GFP insertion constructs of
folding reporter GFP (light gray) and superfolder GFP (dark gray)
scaffoldings (FR = folding reporter GFP, SF = superfolder GFP).
doi:10.1371/journal.pone.0002387.g003

Table 1. Liquid culture fluorescence data of the GFP insertion
constructs expressing four test proteins with progressively
decreasing solubility at 37uC.

Topologyc
Fraction
solubleb Test proteina

#1 #2 #3 #4

Scaffoldingd 1.00 0.70 0.50 0.00

Normalized fluorescencee

C-terminal FR 8230 5800 435 110

C-terminal SF 12425 12330 5580 1975

9/8 insertion FR/FR 840 300 30 30

SF/FR 1140 645 80 60

FR/SF 2200 1775 430 180

SF/SF 2575 1700 930 290

8/7 insertion FR/FR 470 330 35 20

SF/FR 2640 1800 105 90

FR/SF 4550 3635 640 225

SF/SF 3685 3700 2060 415

aProtein #1 sulfite reductase (dissimilatory subunit); protein #2 (translation
initiation factor), protein #3 (3-hexulose 6-phosphate synthase), and protein
#4 (polysulfide reductase subunit).

bFraction of non-fusion protein soluble expressed in E. coli at 37uC, as
determined by SDS-PAGE.

cScaffolding topology of GFP folding reporter.
dType of GFP domain used in reporter, SF = superfolder GFP, FR = folding
reporter GFP.

eThe measured fluorescence (488 nm excitation, 520 nm emission) normalized
by dividing by the optical density at 600 nm.

doi:10.1371/journal.pone.0002387.t001
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fusions was bright and indistinguishable (Fig. 4A, column A, rows

1 and 2), indicating that the conventional C-terminal GFP was

unable to discriminate between the folding robustness of these two

test proteins.

To more accurately quantify whole cell fluorescence, the same

cells expressing the four test proteins in all GFP reporters were

grown and induced in liquid culture at 37uC. E. coli cell

fluorescence was then measured and normalized by dividing

whole cell fluorescence by the cell culture optical density (O.D.

600 nm) (Table 1). The normalized fluorescence values were in

agreement with the apparent fluorescence of the colonies on

membranes (compare Table 1 and Fig. 4A). The liquid culture

fluorescence data also confirm the decrease in fluorescence as the

stringency of the GFP insertion construct increases. For example,

insertion of fully soluble protein sulfite reductase (protein #1) in

the GFPi 9/8_SF/SF resulted in a three fold decrease in

fluorescence levels compared to the original C-terminal folding

reporter GFP fusion. We concluded that the new insertion GFP

reporters are able to detect folding defects in different, unrelated

test proteins that are not readily observed using the original C-

terminal folding reporter.

Distinguishing protein sequence variants with varying
folding robustness

We tested the ability of the GFP insertion reporters to

distinguish between the insoluble wild type Rv2911 (putative

penicillin-binding protein) from Mycobacterium tuberculosis (Mtb)

H37Rv and a soluble evolved variant of Rv2911, previously

engineered using the conventional C-terminal folding reporter

(Waldo et. al., unpublished results). Following directed evolution in

the conventional C-terminal folding reporter GFP [1,4,31],

sodium dodecyl sulfonate polyacrylamide gel electrophoresis

(SDS-PAGE) of soluble and insoluble cell fractions indicated that

the evolved variant of Rv2911 was fully soluble when expressed at

27uC, but insoluble at 37uC (data not shown), suggesting that

latent folding defects in Rv2911 remained that became apparent

at the more stringent expression temperature. To further evaluate

the sensitivity of the insertion reporters, we measured the

fluorescence of cells expressing the wild-type and the evolved

protein Rv2911 as fusions with all eight GFP insertion reporters

and also the C-terminal folding reporter GFP at two temperatures,

37uC and 27uC (Fig. 4B). At both temperatures, the less stringent

GFP insertion reporters, GFPi 9/8_SF/SF, GFPi 9/8_FR/SF,

GFPi 8/7_SF/SF, and GFPi 8/7_FR/SF 9/8, behaved similarly

to the original C-terminal GFP folding reporter (Fig. 4B).

However, we observed some striking differences using the more

stringent GFP insertion reporters. At 37uC fluorescence of E. coli

colonies expressing the evolved Rv2911 protein was barely

detectable in GFP insertion vectors SF/FR and FR/FR (Fig. 4B,

columns B, C, F and G) whereas the C-terminal folding reporter

GFP fusions appeared very bright (Fig. 4B, column A), suggesting

that a folding defect in Rv2911 still remains after evolution with

Figure 4. Sensitivity of various GFP insertion constructs (columns A through J) to protein misfolding. (A) Images of E. coli cells on plates
expressing four test fusions proteins with decreasing folding robustness at 37uC. Protein #1 sulfite reductase (dissimilatory subunit) is fully soluble
(row 1); protein #2 (translation initiation factor) is 70% soluble (row 2), protein #3 (3-hexulose 6-phosphate synthase) is 50% soluble (row 3), and
protein #4 (polysulfide reductase subunit) is fully insoluble (row 4). Test proteins expressed as fusions with C-terminal folding reporter (X-FR) (column
A), superfolder (X-SF) GFP (column B), or inserted in the four GFPi 9/8 reporters (columns C–F), or GFPi 8/7 reporters (columns G–J). Designations above
each column designate the GFP variant from which each flanking GFP domain is derived (see Fig. 3). Exposure time is 2 s. (B) Fluorescent images of E.
coli colonies expressing GFP reporter constructs of wild-type insoluble Rv2911 from Mtb (rows marked WT) and its evolved variant engineered using
the C-terminal folding reporter GFP (rows marked EV) at two temperatures (27uC and 37uC). Columns and their designations correspond to the same
GFP topologies indicated in Fig. 4a (above). Fluorescence was imaged after IPTG induction at 37uC and 27uC. Exposure time is 2 s.
doi:10.1371/journal.pone.0002387.g004
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the C-terminal GFP folding reporter. Such a latent defect would

explain why directed evolution of Rv2911 using the less-stringent

C-terminal folding reporter GFP produced a variant of Rv2911

capable of folding under more permissive expression conditions

(27uC), but incapable of folding productively under more stringent

conditions (37uC). Consistent with this interpretation, for most of

the reporter topologies, colonies of E. coli expressing the fusions

were fluorescent at 27uC (Fig. 4B, last row), but only the least

stringent reporters were fluorescent at 37uC (Fig. 4B, second row,

columns D, E, H, and I).

Truncation artifacts arise when evolving Rv0113 wt using
the C-terminal GFP reporter

We cloned Rv0113, a putative phosphoheptose isomerase from

Mtb, from a cosMID library derived from Mtb H37Rv. We noted

that when several independent clones of Rv0113 derived by PCR

from the cosMID library were subsequently sequenced, each

contained a single base deletion at bp 537 and a two base deletion

at bp 572 (Sanger reference genome sequence numbering of M. tb

H37Rv (http://www.doe-mbi.ucla.edu/TB/)). These lesions re-

sulted in the replacement of a 13 amino acid residue block near

the C-terminal end of the original protein sequence by a frame-

shifted 12 amino acid block (Fig. S3) without the introduction of a

stop codon, while keeping the first and last amino acids in the

native frame. This lesion might have resulted from a random PCR

error during cloning, or from a mutation in the cosMID library

used as the template for the original PCR. The Rv0113 subclone,

termed ‘‘Rv0113 wt’’, was expressed as inclusion bodies in E. coli

(Fig. 5A, column A). Although this is not the natural protein, it

made a suitable test candidate for demonstrating directed

evolution. The Rv0113 wt target gene was subjected to directed

evolution using the C-terminal GFP reporter system [1,4,31].

After three rounds of DNA shuffling and selection at 37uC, one of

the brightest optima (Fig. 5A, column B, row 1) was subcloned into

a pET expression vector without GFP as previously described [1],

and its solubility measured by SDS-PAGE. Surprisingly, this

construct termed ‘Rv0113 trunc’ produced an insoluble truncated

protein (Fig. 5A, column B), although the DNA was full-length

(data not shown). The Rv0113 trunc was subcloned into a C-

terminal GFP fusion vector lacking the upstream vector-encoded

ribosome initiation sequence (Fig. 5A, DRBS_GFP vector) and

expressed in E. coli. Colonies were non-fluorescent, suggesting that

no internal translation had occurred from an alternate de novo

ribosome binding site (Fig. 5A, column B, row 2). Examination of

the DNA sequences revealed that a single base pair deletion had

changed the frame of expression of the protein, leading to a

premature stop codon at amino-acid 141 (Fig. 5B, bottom

sequence). We hypothesized that at least one of the three

methionine residues located near the new translation termination

site in the shift frame of the single base deletion mutant (positions

146, 181, 187) might instead function as new translation

reinitiation sites [32,33] resuming expression of the C-terminus

of Rv0113 and the fused GFP in the native frame (Fig. 5B). To test

this hypothesis, we mutated each individual methionine residue

into the closely-synonymous non-polar hydrophobic amino acid

leucine which is not typically recognized as a translation initiation

site. We analyzed the cell fluorescence after expression of the

single, double and triple leucine mutants of Rv0113 trunc in the

C-terminal GFP reporter vector at 37uC (Fig. 5C). Replacing

methionine 146 with leucine (variant Dmet1, Fig. 5C, column 3)

decreased whole-cell colony fluorescence more than did replace-

ment of either methionine 181 or 187 by leucine (variants Dmet2

and Dmet3, Fig. 5C, columns 4 and 5). Moreover replacing both

methionine 181 and 187 by leucine decreased cell fluorescence

only slightly (Fig. 5C, Dmet2+3, column 8) relative to Rv0113

trunc (Fig. 5C, column 2). This suggested that methionine 146 was

primarily responsible for reinitiating translation (Fig. 5C, column

3). Nonetheless, the reinitiation event seemed cooperative since

simultaneously replacing all three methionine residues (146, 181,

187) by leucine residues (Dmet1+2+3) further reduced GFP

fluorescence (Fig. 5C, column 9). To characterize the putative

translation reinitiation products in greater detail, we used TalonH
(Clontech) metal affinity resin (Methods) to bind proteins from

soluble and urea-unfolded insoluble cell fractions from E. coli

expressing the Rv0113 and various Rv0113 trunc constructs as

N6HIS-X-GFP fusions. Since the GFP moiety of GFP fusions

retains fluorescence when the GFP fusion is solubilized in 9M

urea, and 6HIS-tagged proteins bind to TalonH resin in 9M urea,

both the soluble and insoluble fractions could be examined for

potential binding to TalonH resin. As expected, a full-length

protein fusion with apparent molecular weight of ca. 55 kDal was

observed in the TalonH-resin-bound urea-denatured insoluble cell

fraction for Rv0113 wt as revealed by SDS-PAGE (Fig. S4). In

contrast, the Rv0113 trunc variant and its triple methionine-to-

leucine substituted variant produced only aberrant, low molecular-

weight insoluble proteins capable of binding TalonH beads when

denatured by urea as revealed by SDS PAGE (Fig. S4). These

truncations still had an N-terminal polyhistidine tag and so did not

come from internal de novo ribosome binding sites. On the other

hand, fluorescence measurements of soluble extracts indicated that

significant amounts of GFP were produced from the bright

Rv0113 trunc fusion clones (Fig. S4), though below the level

readily detectable by SDS PAGE (Fig. S4). Many proteins derived

from translation reinitiation are expressed at significantly lower

levels relative to the protein derived from the de novo ribosome

binding site of the requisite upstream open reading frame [32,33].

These fluorescent products did not bind TalonH, so likely arose

from internal translation sites (Fig. S4). As expected, we also

observed soluble GFP fluorescence from the Rv0113 trunc variant

with substituted methionine residues, but in lower amounts (Fig.

S4). Taken together, these observations support the notion that, in

the mutant of Rv0113 derived from the directed evolution using

the C-terminal GFP folding reporter, two aberrant protein

products are produced: a C-terminal truncated Rv0113 variant

with an intact N-terminus derived from the native frame of the

Rv0113 coding sequence but containing a frame-shift and stop

codon, and a shift-frame translation reinitation product from near

the C-terminus of the Rv0113 mutant gene in-frame with the

downstream fused GFP. Apparently the reinitiation products lead

to bright fusions in the context of the original C-terminal GFP

folding reporter (Fig. 5A, column B, row 1, and Fig. 5D, column

1). To assess if such reinitiation artifacts would have been detected

using the new GFP insertion reporters, we subcloned the bright

Rv0113 trunc variant into the set of four 9/8 GFP insertion

reporters. No fluorescence was observed after expression of the

fusion protein from the four vectors at 37uC (Fig. 5D, columns 2–

5). This suggested that the insertion topology of the new GFP

reporters could useful for discriminating against artifacts that result

from translation reinitiation.

Directed evolution schema of protein folding in GFP
insertion vectors and application to Rv0113 wt

We designed a general strategy that combines classical

mutagenesis methods with the suite of GFP insertion reporters

for screening protein variants with improved folding characteristics

(Fig. 6A). The protocol starts with the wild type gene (Fig. 6A, Step

1.0), in this case Rv0113 wt. Next, the GFP insertion vector with

the appropriate stringency is chosen. The starting gene is cloned

Protein Folding Reporters
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into the desired suite of GFP insertion vectors (typically the four 9/

8 or 8/7 vectors) (Fig. 6A, Step 2.1). We chose GFPi 9/8 insertion

reporters in this case because they appeared slightly more stringent

than the GFPi 8/7 series (Table 1). Next the panel of GFP

insertion vectors containing the gene(s) is expressed at two

temperatures, i.e. 27uC or 37uC, and the fluorescence evaluated

(Fig. 6A, Step 2.2). The combination of vector/temperature giving

the minimum detectable fluorescence signal is chosen for the first

round of evolution (Fig. 6A, 2.3). The GFPi 9/8_FR/SF reporter

was chosen for the first round of evolution based on the

fluorescence of the wild-type Rv0113 gene expressed within the

four GFPi 9/8 reporters (Fig. 6B, column A, row 3). Following the

flow chart Fig. 6A, Steps 3.1–3.3, libraries of shuffled Rv0113 were

cloned in the insertion site of GFPi 9/8_FR/SF. About 20,000

clones were plated and expressed at 37uC, and 96 of the brightest

clones were picked. During the first two rounds, the overall colony

fluorescence levels of the top 16 optima continued to increase

relative to the previous round (Fig 6A, Step 3.3), and the 16

optima were recombined after each round of evolution for a new

cycle of shuffling and selection in the same GFP insertion reporter

(GFPi 9/8_FR/SF). At the third round, the fluorescence of the

GFP insertion fusions did not improve (Fig. 6A, Step 3.3) and

following the flowchart Fig. 6A, Step 3.4, we assessed the solubility

of one of the best optima by SDS-PAGE. The variant subcloned

without the fused GFP was expressed as a full-length protein but

was insoluble (Fig. 6B, see SDS gel under column B). Despite the

low solubility of this Rv0113 variant expressed without the fused

GFP domains, the GFPi 9/8_FR/SF fusion appeared brightly

fluorescent (Fig. 6B, column B, row 3). Following the flowchart

(Fig. 6A, Step 3.5), since the subcloned non-fusion Rv0113 protein

was insoluble, we screened for a more stringent vector to continue

addition rounds of directed evolution. We tested the current

Rv0113 optimum in all four GFPi 9/8 vectors (Fig. 6A, Steps 2.1–

2.4). Colonies expressing the Rv0113 optimum in the more

Figure 5. Characterization of a translation reinitiation artifact variant of Rv0113 isolated by directed evolution using C-terminal
GFP FR. (A) Directed evolution of insoluble wild-type Mtb protein Rv0113 (WT, row 1, column A) produced a truncated protein variant that appeared
bright as a GFP fusion (EV, row 1, column B). The same variant subcloned into a GFP fusion vector without a vector-encoded ribosome initiation
sequence (DRBS-GFP) failed to produce bright colonies (row2, column B). Soluble fraction (S), pellet fraction (P). (B) DNA sequence of wild type
Rv0113 (top) and truncated Rv0113 (bottom) GFP fusions. A single base pair deletion in the original frame at codon 134 (boxed in wild type Rv0113
sequence) (top), (arrow head below Rv0113 trunc sequence), (bottom) resulted in a new stop codon at amino acid 141. The frame-shifted residues
(italic script above the Rv0113 sequence) (bottom). First methionine codon in the frame with GFP following the artifact (bold script) (bottom). Amino-
acid positions shown above the sequences (C) Images of E. coli colonies expressing N-terminal polyhistidine fusions with C-terminal fused GFP for
wild-type Rv0113 (wt), evolved truncated variant (trunc), and the evolved truncated variant with directed methionineRleucine substitutions at
methionine 146 (Dmet1), methionine 181 (Dmet2), and methionine 187 (Dmet3). Double and triple methionineRleucine substitutions are also shown
(Dmet1 1+1, Dmet 1+3, Dmet 2+3, Dmet 1+2+3). Exposure time is 2 s. Bar graph (top) of liquid culture fluorescence after expression of the same
constructs in shake cultures at 37uC. Fluorescence values were normalized by dividing by optical density at 600 nm. (D) Fluorescence of E. coli
colonies expressing Rv0113 truncated variant with original C-terminal GFP and indicated GFPi 9/8 reporters. The colonies expressing the C-terminal
fusions (FR) are brightly fluorescent (left image). Colonies expressing the corresponding GFPi fusion constructs (last four images). Exposure time is 2 s.
doi:10.1371/journal.pone.0002387.g005
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stringent reporters GFPi 9/8_SF/FR and GFPi_9/8 FR/FR

(Fig. 6B, column B, row 4 and row 5) were clearly fainter than

colonies expressing the Rv0113 optimum in the 9/8_FR/SF

vector (Fig. 6B, column B, row 3). Based on these observations, we

screened the next pool of mutants in the most stringent vector

GFPi 9/8_FR/FR. After two rounds of evolution using the GFPi

9/8_FR/FR reporter, one performed at 27uC and a second round

at 37uC (Fig. 6A, Steps 3.1–3.4), the library of clones appeared

homogenously bright (Fig. 6B, column C, row 5) with little or no

variation in the levels of fluorescence throughout the population of

colonies.

Following the flowchart (Fig. 6A, Step 3.5), DNA coding for the

Rv0113 variant of a single bright optimum colony was subcloned

into a C-terminal polyhistidine pET vector as previously described

[1,4]. The Rv0113 was fully soluble and full-length as determined

by SDS-PAGE (Fig. 6B, bottom inset, column C). DNA

sequencing of several optima clones obtained after evolution in

GFPi 9/8_FR/SF or after continued evolution using the more

stringent GFPi 9/8_FR/FR, revealed consensus mutations V12E,

N54D, G109R, and S176F (Fig. S5). The mutation N54D

occurred only after the additional rounds in the most stringent

vector GFPi 9/8_FR/FR at 37uC, and is likely the key to the

improved solubility relative to the first rounds in GFPi 9/8_FR/

SF reporter (Fig. S5).

We were able to successfully evolve a soluble, well-expressed

variant of Rv0113 using the GFP insertion reporters. If further

improvement in folding had been desired, the current pool of

optima would again be evaluated in the suite of GFP insertion

vectors at two temperatures (Fig. 6A, Steps 2.1–2.4) and the

directed evolution cycles continued with the more stringent

conditions. Optima with improved folding may be then screened

for solubility using the split-GFP solubility reporter [34]. If

solubility does not improve or no further increase in stringency is

possible, an alternative strategy may be indicated (Fig. 6A, Step

5.0) such as screening for co-expression with a folding partner, or

alternative hosts, for example.

Discussion

Previously described protein folding assays used C-terminal

fused fluorescent proteins such as jellyfish fluorescent protein [1,4]

or reef coral fluorescent proteins [35] to report on the folding

robustness of upstream fused polypeptides. Heddle et. al screened

four reef coral proteins using a panel of test proteins of known

solubility and determined that a single fluorescent protein,

ZsGreen, provided the best compromise between detection

(overall fluorescence and signal-to-noise) and dynamic range

(difference in fluorescence of cells expressing ZsGreen fusions to

the best-folding and poorest-folding test proteins). Since the other

coral proteins tested varied significantly in folding properties,

sequence, and color, it is unclear whether they might nonetheless

be useful alternatives to tailor reporter sensitivity to misfolding by a

particular fusion protein.

In contrast, we have generated a panel of eight folding reporters

all derived from GFP, each with a distinct sensitivity to test protein

misfolding, by changing the circular permutant start site in the

GFP scaffolding and number of superfolder mutations [13]. Since

they are all derived from very closely related variants of the same

basic fluorescent protein scaffolding, our panel of GFP insertion

reporters provides a well-characterized and graded sensitivity to

misfolding by test proteins cloned between the N- and C-termini of

the reporter. Our results show that fluorescence of GFP insertion

reporters containing different test proteins (Fig. 4A) reflects the

robustness of the GFP variant scaffolding from which the reporters

are derived (Fig. 3B). The more stringent GFP insertion constructs

derived from folding reporter GFP should be useful for evolving

proteins with subtle folding defects that would evade detection by

C-terminal GFP folding reporter (Fig. 4A and Fig. 4B). Although

Figure 6. Directed evolution of protein folding using GFP insertion reporters and application to Rv0113. (A) General strategy for
improving protein folding from multiple reporters with increased stringency (see text for detailed explanation). (B) Directed evolution of Rv0113
variant in GFPi 9/8 vector family. Constructs evaluated in X-FR (row 1) and the four GFPi 9/8 constructs (rows 2–5). Images of E. coli colonies expressing
wild type Rv0113 in the indicated reporters (column A), brightest optimum after three round of evolution in GFPi 9/8_FR/SF expressed in the
indicated reporters (column B), and brightest optimum after two additional rounds in GFPi 9/8_FR/FR (column C). All constructs expressed at 37uC.
Exposure time is 2 s. The SDS-PAGE gel (bottom) shows soluble (S) and pellet (P) fractions for each variant (columns A, B, C) cloned without the fused
GFP domains in a C-terminal polyhistidine pET vector, expressed in shake cultures at 37uC.
doi:10.1371/journal.pone.0002387.g006

Protein Folding Reporters

PLoS ONE | www.plosone.org 7 June 2008 | Volume 3 | Issue 6 | e2387



C-terminal fused superfolder GFP is relatively insensitive to

misfolding by upstream polypeptides [13] (Fig. 4A, column B),

circular permutation is sufficiently destabilizing such that inser-

tion-type reporters based on superfolder GFP (Fig. 4A, column F

and column J) behave similarly to the C-terminal GFP folding

reporter (Fig. 4A, column A). Consequently, insertion folding

reporters based on superfolder GFP are useful for screening very

poorly folded proteins (Fig. 4A). Proteins with intermediate folding

defects are efficiently screened by using chimeric GFPi constructs

that combine folding reporter GFP and superfolder modules

(Fig. 4A).

For a given circular permutant topology, i.e. either GFPi 8/7 or

GFPi 9/8 (Fig. 3a), sensitivity of the four reporters to test protein

misfolding is well-correlated with the number of superfolder

mutations in the corresponding GFP domains (Fig. 4A, see also

Fig. S1). Cell fluorescence of GFPi 8/7_FR/SF and SF/SF fusions

was generally brighter than the corresponding 9/8 variants (See

Table 1 and Fig. 4A). This is consistent with our previous

observation that the parent GFP circular permutants (containing

no test insert) starting at 157 (corresponding to 8/7) are

intrinsically more fluorescent than those starting at 172 (corre-

sponding to 9/8) [13]. Alternatively, the GFP insertion 8/7 FR/

SF variants might be less sensitive to test protein folding

interference due to the shorter length of the 8/7 reporter C-

terminal GFP domain compared to the longer 9/8 C-terminal

GFP domain (Fig. 3A). We hypothesize that the GFP folding

reporters function by a so-called ‘folding interference’ mechanism,

involving the formation of non-productive, non-fluorescent

trapped folding intermediates of the GFP moiety and fused test

protein domains. In this model, a larger GFP domain might

exhibit a more complex folding trajectory than a shorter GFP

domain, increasing the probability for interaction between the

folding intermediates of the GFP domain and the upstream (N-

terminal) domains of the protein of interest. These hypotheses are

being tested in our laboratories.

Application of the C-terminal folding reporter GFP and

insertion circular permutants to several test proteins demonstrated

that the new generation of insertion reporters can detect

misfolding defects that were not detectable using the original C-

terminal folding reporter GFP (Fig. 4). For example, the evolved

Rv2911 is insoluble at 37uC, even though the C-terminal folding

reporter GFP fusion is brightly fluorescent (Fig. 4B). In contrast,

fusions of the evolved Rv2911 to the high-stringency insertion

vectors 8/7_FR/FR and 9/8_FR/FR are not fluorescent (Fig. 4B).

This indicates that evolution of Rv2911 in the C-terminal folding

reporter GFP produced species with temperature sensitive folding

defects, i.e they fold productively at 27uC but not at 37uC. One

would expect that additional cycles of molecular evolution in GFP

insertion vectors with increasing stringency would likely produce a

more robust and soluble Rv2911 variant. The folding trajectory of

the GFP insertion provides a new basis for discriminating

truncation artifacts generated during a mutagenesis process. We

have demonstrated that evolution of Rv0113 as a C-terminal

fusion to GFP folding reporter produced a truncation artifact

while reinitiating expression of full-length GFP (Fig. 5A). This

translation reinitiation event appeared to be primarily dependent

on nearby methionine residue located 10 bp downstream from the

stop codon in artifact Rv0113 and in the GFP coding frame. This

internal translation site did not function as a de novo ribosome

binding site. Instead, translation of the truncated peptide appeared

to be dependent on the functional upstream vector-encoded

ribosome binding site 59 to the Rv0113 open reading frame, an

example of translation reinitiation [32,33]. When the artifact was

expressed in any of the GFPi vectors, E. coli colonies were not

detectably fluorescent (Fig. 5D). As previously described in the

literature, translation reinitiation occurs in at least 5% of in-frame

expressed proteins [36]. In the GFP insertion topology, it is less

likely that sufficient amount of folded downstream GFP domain is

produced to reconstitute the full-length GFP in minimum

detectable quantities, especially if at least one of the expression

products fused to a GFP fragment is poorly folded (Fig. 2).

Similarly, one would expect that other types of artifacts such as de

novo cryptic ribosome-binding site(s) will produce two separate

translation products that are less likely to complement and

fluoresce, particularly if one of the two GFP fragments is attached

to a poorly folded target protein domain, such as Rv0113.

We have devised a new strategy for performing directed

evolution experiments (Fig. 6A) by increasing stringency of

screening while enriching the population in sequences with a

desired phenotype, roughly analogous to increased stringency/

cycle frequently used in display experiments for selecting high

affinity binders [20,37–39]. Instead of modifying the conditions in

which the selection is performed (more stringent washes in the case

of phage display) we used a panel of GFPi vectors exhibiting

different susceptibility to test protein folding interference (Fig. 4).

For very poorly-folded proteins, one can start with a low-

stringency insertion vector, such as 9/8_FR/SF or GFPi 9/8

SF/SF, to begin the directed evolution trajectory. Further cycles of

evolvtion can be performed if necessary, using increasingly

stringent GFPi reporters. At the end of the evolution strategy,

the most stringent insertion reporters enable selection of only the

best folded variants. Following the scheme outlined in Fig. 6A, we

successfully evolve a soluble variant (Fig. 6B) of a putative

phosphoheptose isomerase (Rv0113) from Mtb.

Taken together, the suite of eight GFPi vectors provides a wide

range of sensitivity to test protein misfolding, and the insertion

topology provides better discrimination against internal translation

products relative to the original C-terminal GFP folding reporter.

The GFP insertion topology folding reporters should be useful

additions to the tools available for measuring and engineering

protein folding and solubility.

Materials and Methods

Construction of GFP insertion reporters
A cloning cassette was synthesized by PCR extension of the

GFP fragments. Specific primers P1 (59-CCCGCCCGACCCAC-

CGCCTTTGTAGAGCTCATCCATGCCATG-39), P2 (59-TG-

AACCGCCACCCATATGGGAGCCCCCGCCCGACCCAC-

CGCC-39) were used for extension of the 39-end of fragment

GFP1. Primers P3 (59-GTGGAGGGTCAGGGGGCGGAT-

CAAGCAAAGGAGAAGAACTTTT-39), P4 (59-CATATGGG-

TGGCGGTTCAGGATCCGGTGGAGGGTCAGGGGGCG-39)

were used to extend the 59-end of fragment GFP2. Reassembly

between homologous sequences of P2 and P4 lead to the full-

length amplification of the NH2-GFP1-GGGSGGGSHM-GGGS-

GSGGGSGGGS-GFP2-COOH sequence. GFP 1 corresponds to

amino-acid residues 174–238 and GFP2 to amino-acid residues 1–

173 in GFPi 9/8 topology. The 8/7 topology consists of GFP1:

157–238 and GFP2: 1–156. A frame shift stuffer (FS1) (59-

CATATGTAATTAATTAATTGGATCC-39) was inserted be-

tween NdeI/BamHI to guard against false-positives arising from

undigested plasmid. The whole cassette was inserted using SphI/

KpnI of the GFP folding reporter vector [1]. To create hybrid

reporters, GFP domains 1 and 2 were exchanged from one variant

to another using SphI/NdeI and BamHI/KpnI restriction sites,

respectively.
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Cloning of test inserts in GFP insertion
Four proteins from Pyrobaculum aerophilum (See reference [30] for

complete data) were selected. Protein #1, a sulfite reductase

(dissimilatory subunit), is fully soluble; protein #2, a translation

initiation factor, is 70% soluble; protein #3, a 3-hexulose 6-

phosphate synthase, is 50% soluble; protein #4, a polysulfide

reductase subunit is fully insoluble. Mtb Rv0113 (putative

phosphoheptose isomerase) and Rv2911 (putative penicillin-

binding protein) wild-type and mutant DNAs were restricted

using NdeI and BamHI restriction enzymes (NEB) and gel purified

by agarose electrophoresis. C-terminal GFP folding reporter [1],

GFP insertion reporters and DRBS_GFP vectors were all

restricted using NdeI and BamHI and dephosphorylated using

0.2 ml of calf intestinal alkaline phosphatase (CIP) (NEB) to receive

inserts. Ligations were performed using 3.8 ml of DNA insert,

1.0 ml of vector, 1.0 ml of 56T4 DNA ligase buffer (Invitrogen),

and 0.3 ml of T4 DNA ligase 400 U/ml (NEB). 2.0 ml of ligated

product was transformed in 40.0 ml of E. coli BL21(DE3) strain

made chemically competent.

Expression screening of GFP fusions on nitrocellulose
membranes

Single clones expressing test proteins as GFP fusions (insertion

topology or C-terminal GFP) were grown in liquid culture in Luria-

Bertani (LB) media plus kanamycin (35 mg/ml) and frozen in LB,

20% glycerol at OD600nm = 1.0. For single colony dilution on

membrane, 1.0 OD (600 nm) frozen stocks were diluted using two

400-fold serial dilutions in 1 ml LB. 50 ml was used to plate cells on

a 468 grids printed on 130 mm diameter nitrocellulose membranes

on selective LB/agar Bauer plates containing 35 mg/ml kanamycin.

After overnight growth at 32uC, the membrane was moved onto a

LB/Agar plus kanamycin (35 mg/ml) and 1 mM isopropyl-b-D-

thiogalactopyranoside (IPTG), and incubated for 4 h at 37uC or

27uC. After induction, the colonies were illuminated using an

Illumatool Lighting SystemH (LightTools Research, Encinitas, CA )

equipped with a 488 nm excitation filter, and photographed with a

DC290 digital camera (Kodak) through a colored glass filter

(520 nm long pass, LightTools Research).

Metal affinity resin binding assays of Rv0113 N6HIS GFP
fusions

Expression, lysis, and SDS-PAGE analysis of insoluble wild type

Rv0113, truncated Rv0113 selected by evolution using C-terminal

GFP reporter, and truncated Rv0113 with methionine-to-leucine

substitutions (Dmet1+2+3) cloned as N6HIS-Rv00113-GFP fu-

sions was performed as previously described [1]. Small scale

binding assays were performed in 1.5 ml eppendorf microcen-

trifuge tubes. 50 ml of a 50% (v/v) slurry of TalonH (His)6 affinity

resin beads (Clontech, Palo Alto, CA) in 100 mM Tris HCl

pH 7.4, 0.1 M NaCl, 10% glycerol v/v (TNG buffer) was

incubated with 50 ml of soluble protein extract. After centrifuga-

tion, the unbound fraction (U) was saved and the beads were

washed twice with 500 ml of TNG buffer. Excess supernatant was

removed by pipetting, and then 50 ml of 26SDS buffer was added

to the dried beads. The beads were heat-denatured in an MJR

Research PCR machine and resolved by SDS-PAGE. To analyze

protein binding from pellets, inclusion bodies were washed with 5

volumes of TNG and unfolded in TNG buffer containing 9 M

urea. 50 ml of the urea-unfolded solubilized pellet was mixed with

TalonH beads prewashed with TNG+9M urea. TalonH binding

assay of unfolded insoluble fractions was performed similarly as the

soluble assay above except that 9M urea was included in the

buffer(s) throughout the experiment.

Directed evolution of M. tuberculosis targets
Mutant library construction and screening was performed as

previously described [1,4]. For Rv0113 engineering, GFP insertion

reporters FR/SF and SF/FR were used instead of the C-terminal

folding reporter GFP (See [34] for a detailed protocol).

Methionine substitutions in Rv0113 artifact
A pET_C6HIS plasmid containing the artifactual Rv0113

variant was used for construction of single methionine (ATG) to

leucine (CTG) substitutions (Dmet mutations) using overlap

extension PCR. Two PCR were performed with each one of the

mutagenic primers and the corresponding vector specific primer.

Single PCR fragments gel-purified and assembled in a subsequent

PCR using vector specific primers to generate the full-length

mutant DNA. Construction of Dmet1+Dmet2 Rv0113 trunc and

Dmet1+Dmet3 Rv0113 trunc substitutions used single met1Rleu

variant as template. Finally, Dmet1+Dmet2 Rv0113 trunc plasmid

template was used to generate the Dmet1+Dmet2+Dmet3 Rv0113

trunc variant and mutagenic substitution was introduced at

Dmet3.

Fluorescence measurements from liquid cultures
GFP fusions (insertion or C-terminal) were grown and expressed

in liquid culture as described [1]. Cell pellets were resuspended in

100 mM Tris HCl pH 7.4, 0.1 M NaCl, 10% glycerol v/v (TNG

buffer) and diluted 5 fold in TNG. Fluorescence was measured in

white 96-well assay plates with low fluorescence background

(Nunc-ImmunoTM) using a FL600 Microplate Fluorescence

Reader (Biotek, Winooski, VT). The background fluorescence of

a blank sample (E. coli lysate expressing an irrelevant protein) was

subtracted from final fluorescence values. Cell density of each

dilution was assessed by measuring optical density at 600 nm.

Fluorescence was normalized by dividing by cell density.

Supporting Information

Figure S1 Schematic diagram of the four GFPi 9/8 insertion

vectors. Constructs start at amino-acid 173 (beginning of beta-

strand 9 of GFP) and end at amino-acid 172 (end of beta-strand 8

of GFP). Stringency decreases as the number of superfolder

mutations increase going from FR/FR to SF/SF. Folding

mutations from superfolder GFP are shown in bold.

Found at: doi:10.1371/journal.pone.0002387.s001 (0.34 MB TIF)

Figure S2 Schematic diagram of the four GFPi 8/7 insertion

vectors. These constructs start at amino-acid 157 (beginning of

beta-strand 8 of GFP) and end at amino-acid 156 (end of beta-

strand 7 of GFP). Stringency decreases as the number of

superfolder mutations increase going from FR/FR to SF/SF.

Folding mutations from superfolder GFP are shown in bold.

Found at: doi:10.1371/journal.pone.0002387.s002 (0.32 MB TIF)

Figure S3 Amino-acid sequence of Rv0113 wild-type Sanger

Database reference sequence (Rv0113 TB DB) (http://www.

doe-mbi.ucla.edu/TB/) and cloned Rv0113 (Rv0113 Cloned). DNA

sequencing of the cloned Rv0113 revealed a single base deletion at

bp 537, and a two-base deletion at bp 572 relative to the original

Rv0113 reference sequence (black boxes indicated by arrows). This led

to the replacement of 13 amino acids near the C-terminus of the

original protein (pink box) with a frame-shifted peptide (red box) in

the cloned Rv0113. This resulted in a net single amino acid

deletion keeping the first and last amino acids in the native frame

with no stop codon.

Found at: doi:10.1371/journal.pone.0002387.s003 (1.06 MB TIF)
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Figure S4 (A) SDS-PAGE of TalonH resin-binding of soluble

and insoluble fraction of wild type Rv0113 type ((Rv0113 wt)-GFP),

truncated Rv0113 ((Rv0113 trunc)-GFP), and truncated Rv0113

with three methionine-to-leucine substitutions ((Rv0113 truncDmet)-

GFP) variants as N6HIS-X-GFP fusions. Soluble extracts were

bound to TalonHbeads under native conditions (N), whereas

insoluble pellets were unfolded in 9M urea and bound to TalonH
resin under denaturing conditions in 9M urea (D). Total extract

(T), unbound protein (U) and bound protein (B). (B) Fluorescence

of corresponding samples, total extract (T), unbound protein (U)

and bound protein (B), measured using a BioTEK plate reader.

Found at: doi:10.1371/journal.pone.0002387.s004 (2.93 MB

DOC)

Figure S5 Amino acid sequence alignment of Rv0113 starting

variant and brightest mutants from successive rounds of directed

evolution using the GFP insertion reporters. DNA sequences of

five optima obtained after three rounds (Rd3) in the least stringent

FR/SF reporter (shown below the dotted line in each set). Round 5 DNA

sequences of six optima obtained after taking the round 3 optima

through two additional cycles in the most stringent FR/FR vector

(Rd5) (shown above the dotted line in each set). Mutations found in some

optima of round 3 were highly enriched after round 5 (orange

highlight). One additional mutation N54D appeared only after

round 5 and is correlated with increased solubility of the new

mutants (yellow highlight).

Found at: doi:10.1371/journal.pone.0002387.s005 (0.70 MB TIF)

Acknowledgments

The authors wish to acknowledge Jean-Denis Pédelacq for helpful
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