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Abstract

Aims: To present a new approach for estimating the ‘‘true prevalence’’ of malaria and apply it to datasets from Peru,
Vietnam, and Cambodia.

Methods: Bayesian models were developed for estimating both the malaria prevalence using different diagnostic tests
(microscopy, PCR & ELISA), without the need of a gold standard, and the tests’ characteristics. Several sources of
information, i.e. data, expert opinions and other sources of knowledge can be integrated into the model. This approach
resulting in an optimal and harmonized estimate of malaria infection prevalence, with no conflict between the different
sources of information, was tested on data from Peru, Vietnam and Cambodia.

Results: Malaria sero-prevalence was relatively low in all sites, with ELISA showing the highest estimates. The sensitivity of
microscopy and ELISA were statistically lower in Vietnam than in the other sites. Similarly, the specificities of microscopy,
ELISA and PCR were significantly lower in Vietnam than in the other sites. In Vietnam and Peru, microscopy was closer to the
‘‘true’’ estimate than the other 2 tests while as expected ELISA, with its lower specificity, usually overestimated the
prevalence.

Conclusions: Bayesian methods are useful for analyzing prevalence results when no gold standard diagnostic test is
available. Though some results are expected, e.g. PCR more sensitive than microscopy, a standardized and context-
independent quantification of the diagnostic tests’ characteristics (sensitivity and specificity) and the underlying malaria
prevalence may be useful for comparing different sites. Indeed, the use of a single diagnostic technique could strongly bias
the prevalence estimation. This limitation can be circumvented by using a Bayesian framework taking into account the
imperfect characteristics of the currently available diagnostic tests. As discussed in the paper, this approach may further
support global malaria burden estimation initiatives.
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Introduction

Though malaria remains a major public health problem

worldwide, particularly for the poorest countries [1], a decreasing

trend of its burden, including in sub-Saharan Africa, has been

recently reported [2]. Such a change has been attributed to large-

scale indoor residual spraying (IRS) campaigns [3] to IRS together

with the distribution of insecticide-treated bed net (ITN) [4], and

to the introduction of artemisinin-based combination treatments

(ACT) together or not with ITNs [5]. These encouraging results

are probably due to the increased attention malaria is receiving

and the corresponding mobilization of resources. There has also

been a recent and radical shift from control to elimination with

eventually eradication as a goal, first proposed by the Melinda and

Bill Gates Foundation in 2007 and then rapidly endorsed by the

World Health Organisation (WHO) and the Roll Back Malaria

(RBM) Partnership. The latter developed a Global Malaria Action

Plan (GMAP) for a substantial and sustained reduction of the

malaria burden in the near and mid-term, and when new tools

would make it possible, the eventual global eradication in the long

term (http://www.rollbackmalaria.org/gmap/). Within this con-

text, being able to estimate with confidence the malaria prevalence

in a given country/district is essential for targeting control/

elimination efforts, monitoring the progress towards established

goals, e.g. the Millennium Development Goals, and documenting

achievements [6]. Without an accurate estimation, established
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with one or several diagnostic method, one has difficulties in setting

and reaching objectives, ordering diagnostics and interventions, and

attracting funding agencies that are often result-focused. Microsco-

py is often taken as the gold standard for diagnosis. However,

considering that its sensitivity is limited by low parasite densities, a

common feature in low endemic areas, it is a rather imperfect one.

In addition, the technique is laborious and requires experienced

laboratory technicians, both for the staining and for the reading of

the slides so that often, in field conditions, its sensitivity is even lower

than expected [7,8]. Over the past two decades, alternative

diagnostic tests have been developed [9] and their sensitivity and

specificity have been evaluated against the less-than-optimal

reference microscopy test [10–14]. In a different approach, no gold

standard was designated [9] and the evaluation was done according

to the methods described by Hui and Walter [15] that assumed a

single, true but unobserved prevalence for each study and common

sensitivity and specificity of each diagnostic test across the group of

studies [9]. Such assumption may not be true as the sensitivity and

specificity may vary according to external factors, which can be field

related, e.g., sampling season, age, presence of other cross-reacting

diseases [16,17], and laboratory related factors, e.g., in case of

microscopy the experience of the readers [9].

The other assumption made by Hui and Walter is that

diagnostic tests are conditionally independent given the true (but

latent) prevalence of infection. From a practical point of view, such

assumptions can be incorrect and several approaches to circum-

vent them have been suggested [18,19].

The performance of different diagnostic techniques depends on the

malaria species, the parasite density, previous treatment, gametocy-

taemia and the quality of the diagnostic method [20]. Test sensitivity

and specificity, as traditionally defined, are thus purely theoretical

concepts, not necessarily established in the conditions where the test is

actually used. In a given setting, the local characteristics (season,

presence of cross-reacting organisms, experience of the laboratory

technicians) should be considered when obtaining an ‘‘adjusted’’

estimate of the test’s sensitivity and specificity [21]. The purpose of

this paper is to present a methodological framework for estimating a

‘‘true prevalence’’ and evaluating optimally, in a single analysis

different malaria diagnostic tests.

Given that the diagnostic tests’ characteristics, i.e. sensitivity and

specificity, can be variable and context-specific and that no gold

standard is available, combining all available information can be an

interesting approach. Indeed, results obtained by different diagnostic

tests are related more or less closely to the ’’true’’ malaria prevalence

so that it may be useful to estimate it by considering the results

obtained by all tests available. As already shown [19], this is only

possible by combining test results with expert opinions on the tests’

characteristics. In addition, conflicts can be checked by identifying

any difference occurring both among experts and between the expert

opinions and the actual results, leading to the optimal estimation of

the ‘‘true’’ malaria prevalence and of the context-specific diagnostic

test characteristics. New diagnostic tests could be easily inserted into

this model and their unknown characteristics estimated. With this

approach, the prevalence estimations can be optimized (i.e. ‘‘true’’)

and made comparable across different settings, i.e. a site specific

analysis would be possible. This is important as there is the need of

standardizing malaria prevalence estimates.

Materials and Methods

Estimating the malaria prevalence without a reference
(gold standard) diagnostic test

The concept of analyzing multiple diagnostic tests can be

explained by as an example assuming that only two diagnostic tests

are available. The model also assumes that there is a single true

but unknown prevalence of P. falciparum infection, i.e., a case is

defined as a currently infected individual, and that the sensitivity

and specificity of the two diagnostic tests are unknown. The class

of models in which the infection status is unknown is sometimes

referred to as latent class models, i.e. the infection status is latent as

it exists but is not evident or detected by a diagnostic test. In the

analysis of the diagnostic test characteristics, the following

notations can be used (with j = 1, 2…indicating diagnostic test 1,

diagnostic test 2,…) and ‘‘|’’meaning conditional on (or ‘‘given’’):

– infection status D: D = 1: infected, D = 0: not infected

– test result: Yj = 1: positive, Yj = 0: negative

– sensitivity of test j (Sej): P(Yj = 1 | D = 1)

– specificity of test j (Spj): P(Yj = 0 | D = 0)

– prevalence of infection in the study population (p): P (D = 1)

Assuming independence of Y1 and Y2 and given the infection

status, then:

P(Y1~1,Y2~1)~

P(D~1) � P(Y1~1, Y2~1 jD~1)zP(D~0)�

P(Y1~1,Y2~1 D~0)~(due to independence)j

P D~1ð Þ � P Y1~1 jD~1Þð � P Y2~1 jD~1Þð zP D~0ð Þ�

P Y1~1 jD~0Þð � P Y2~1 jD~0Þð ~

p � Se1 � Se2z(1{p) � (1{Sp1) � (1{Sp2)

Expanding this to all possible outcomes of two tests’ results in a

set of 4 equations ( = model):

P(Y1~1,Y2~1)~p � Se1 � Se2z(1{p) � (1{Sp1) � (1{Sp2)

P(Y1~1,Y2~0)~p � Se1 � (1{Se2)z(1{p) � (1{Sp1) � Sp2

P(Y1~0,Y2~1)~p � (1{Se1) � Se2z(1{p) � Sp1 � (1{Sp2)

P(Y1~0,Y2~0)~p � (1{Se1) � (1{Se2)z(1{p) � Sp1 � Sp2

This provides 3 independent equations (because the sum of all

left-side proportions in the equations sum to 1) and 5 parameters

to estimate. In mathematical terms this is consequently not

estimable but it would be when fixing in a deterministic way some

parameters or using in a probabilistic way prior information for

some of them, e.g., inclusion of the experts’ opinions. This

approach allows the incorporation of knowledge, such as historical

information from experiments similar or related to the one under

study, an educated guess about outcomes or even subjective beliefs

of the investigator (i.e. expert opinion). These prior probabilities

are then updated in a rational way after data collection. Bayesian

Malaria Prevalence: A Bayesian Approach
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statistics have recently experienced an explosive growth, with

many applications in different areas. Powerful computers and

software packages as R and WinBUGS are now common and

Bayesian statistics theory is now commonly applied in the

development of powerful algorithms and models that process data

in new ways [22].

Extending the example to 3 tests will result in 7 independent

equations and 7 parameters to estimate, meaning that the

equations are ‘‘estimable’’. With 4 or more tests, there are more

equations than parameters and the number of estimable

parameters exceeds that to estimate. The model (set of equations)

is then over specified. Table 1 shows for 1 to 5 tests, the maximum

number of estimable parameters and the number of parameters to

be estimated in the absence or presence of conditional indepen-

dence as a function of the number of tests per subject.

For many years, it has been assumed that two (or more)

diagnostic tests are conditionally independent given the true (but

latent) prevalence of infection [15,23], i.e. (see before), P(Y1 = 1,

Y2 = 1 | D = 1) = P(Y1 = 1 | D = 1)*P(Y2 = 1 | D = 1), and that

this applies to other possible test results and to disease/infection-

free subjects. However, when the two diagnostic tests have a

similar biological basis, as is often the case, the conditional

independence assumption is untenable [18]. It is possible to insert

conditional dependence into the model in several ways [19], but

this always entails the need to estimate more parameters then the

available equations permit (even with four or more tests).

Consequently, the need for a Bayesian approach (i.e. prior

information) in these circumstances is even more relevant.

The Bayesian philosophy and diagnostic testing
Since none of the diagnostic tests included in this study can be

considered as the gold standard, a Bayesian approach can be used,

i.e. combining data with prior information to estimate the malaria

prevalence and the test characteristics. In this paper, a

multinomial Bayesian model adapted from Berkvens et al. [19]

was used (WinBUGS-code available upon request). This method

has been validated for a number of pathogens, e.g. cysticercosis

[24] and campylobacter [25]. Prior distributions on the param-

eters from experts’ opinions can be obtained in several ways

[26,27] but the approach used in [19] is well adapted to the way

experts think about the test’s diagnostic performances as they often

know them in relation to a reference test (very often one with a

very high specificity). The approach has certain mathematical

advantages as well. The final priors of the model are presented in

Table 2.

Within the multi-diagnostic Bayesian framework, there are

mostly more parameters to estimate than equations, especially

when conditional dependence is taken into account. This requires

the inputs from experts for some of the parameters, i.e. the

sensitivity and specificity. They are asked to provide both their

estimations and an expression of uncertainty (i.e. credibility

intervals). In this study, prior information on the test character-

istics was obtained from four experts at the Institute of Tropical

Medicine, Antwerp, Belgium, and was expressed as conditional

probabilities.

The match between the experts’ opinions, any other prior

information and the observations can be evaluated through the

Bayesian p-value (Bayes-p), the Deviance Information Criterion

Table 1. Maximum number of estimable parameters, number
of parameters to be estimated in the absence and presence of
conditional independence as a function of the number of
tests per subject.

Number
of tests

Maximum
number of
estimable
parameters

Parameters
to be estimated
under conditional
dependence

Parameters
to be estimated
under conditional
independence

1 1 3 3

2 3 7 5

3 7 15 7

4 15 31 9

5 31 63 11

doi:10.1371/journal.pone.0016705.t001

Table 2. Prior information (uniform distributions) based on expert opinion.

Parameters Constrains

Sensitivity of the microscopy for the detection of infected individuals [0.7–1]

Specificity of the microscopy for the detection of non-infected individuals [0.9–1]

Probability to have a positive result for the ELISA if the individual is infected and positive for the microscopy [0.7–1]

Probability to have a positive result for the ELISA if the individual is infected and negative for the microscopy [0–1]

Probability to have a negative result for the ELISA if the individual is not infected and negative for the microscopy [0–1]

Probability to have a negative result for the ELISA if the individual is not infected and positive for the microscopy [0–1]

Probability to have a positive result for the PCR if the individual is infected and positive for the microscopy and the ELISA** [0.98–1]

Probability to have a positive result for the PCR if the individual is infected, positive for the microscopy and negative for the ELISA** [0.98–1]

Probability to have a positive result for the PCR if the individual is infected, negative for the microscopy and positive for the ELISA** [0.75–1]

Probability to have a positive result for the PCR if the individual is infected and negative for the microscopy and the ELISA** [0.75–1]

Probability to have a negative result for the PCR if the individual is not infected and negative for the microscopy and the ELISA** [0.95–1]

Probability to have a negative result for the PCR if the individual is not infected, negative for the microscopy and positive for the ELISA** [0.9–1]

Probability to have a negative result for the PCR if the individual is not infected, positive for the microscopy and negative for the ELISA** [0.9–1]

Probability to have a negative result for the PCR if the individual is not infected and positive for the microscopy and the ELISA** [0.9–1]

ELISA = Enzyme-Linked Immunosorbent Assay; PCR = Polymerase Chain Reaction.
**for Vietnam. Peru Iquitos and Peru Jaen only.
doi:10.1371/journal.pone.0016705.t002
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(DIC) [28] and the number of parameter effectively estimated by

the model (pD) [19] which quantifies the impact of the constraints.

The correspondence between the pD and DIC values calculated

in the posterior mean of the multinomial probabilities and in the

posterior mean of the parameters of the model (parent nodes) was

checked. The trend of the Bayes-p [29] towards 0 when narrowing

the constraints on the estimates was determined.

The analysis was done in WinBUGS 4 and R 2.11.0. Three

chains, 20,000 iterations, following a burn-in of 5,000 were used to

assess the convergence of the results. The sensitivity and specificity

of the diagnostic tests and the malaria prevalence were estimated

by the model. The prevalence was defined as the proportion of

individuals infected by P. falciparum. The credibility intervals for

differences between the characteristics of the diagnostic tests in

different conditions with both limits having the same sign (i.e., zero

not included in the interval) can be interpreted as the equivalent of

a significant difference in a frequentist approach.

Diagnostic Tests Used
To detect specific antibodies against P. falciparum infections, an

antibody detection ELISA test was used using a specific antigen for

Plasmodium. falciparum (GLURP, conserved region R2) (Claes et al.

2010, submitted). For the detection of the specific Plasmodium

species DNA, a semi-nested multiplex PCR was used as described

by [30]. Samples showing a specific P. falciparum amplicon of

395 bp were considered positive while samples showing no

amplification or a PCR product of a different size (indicating

infection with another species) were considered negative. Samples

showing mixed infections of P. falciparum with other species were

considered positive. A parasitological diagnosis was performed

using standard microscopic reading of thick and thin blood films.

Details of slide preparation and reading procedures were

published elsewhere [31]. Samples were considered negative when

no asexual form was found after reading 1000WBC.

Study areas and ethical clearance
The 3 diagnostic tests were performed on blood samples

obtained from individuals living in 3 different countries, Vietnam,

Cambodia and Peru, the latter contributing with 2 sites while

samples from Cambodia were obtained in the same site but at 2

different time points. Therefore, 5 different datasets were used for

this analysis. All the named institutional review boards or ethics

committees specifically approved the study. Each study protocol

had been reviewed by the ethical committee of the ITM and

University of Antwerp as well as by respective national ethical

committees for each country (Peru, Cambodia, Vietnam).

Vietnam
Samples were collected during a cross sectional survey carried

out in November-December 2004 (end of the rainy season) in 33

rural communities located in 2 forested districts of Ninh Thuan

Province, Central Vietnam. Malaria transmission in the study area

was relatively low but perennial with 2 peaks (May-June &

October-November), with the sylvatic species Anopheles. dirus sensu

stricto being the main vector. The survey was part of a community-

based trial aimed at determining the effectiveness of long-lasting

insecticidal hammocks (LLIH) in preventing forest malaria [31].

Following the trial protocol, over 4,000 individuals (aged 2 to 60

years) were randomly selected from the census for the survey. The

trial protocol was approved by the Ethical Committees of the

National Institute of Malariology, Parasitology & Entomology,

Hanoi, Vietnam, and by the Institutional Review Board of the

Institute of Tropical Medicine and the Ethical Committee of the

University Hospital, both in Antwerp, Belgium.

Peru (Jaen)
The cross sectional survey was carried out in April-May 2006

(end of rainy season), in the peri-urban area of Jaen city, the

capital of Cajamarca Dept, Northern Peru. Households were

chosen randomly and all family members screened for malaria

parasites in order to reach a total sample size of 504 individuals

(age 6 months–50 years). This study was submitted for ethical

approval to the Ethics Review Board of the Universidad Peruana

Cayetano Heredia, Lima, Peru (Code SIDISI: 051675).

Peru (Iquitos)
This study was carried out in several communities (peri-urban &

rural) near Iquitos City, the capital of Loreto Department, situated

in the Peruvian Amazon, within the activities of the Multi-Country

Malaria Project ‘‘Malaria control on the cross border areas of the

Andean Region: A community based approach’’ - PAMAFRO

together with the National Malaria Control Program. Blood

samples were collected in all febrile patients presenting at their

health posts or health centers between November and December

2006 (beginning of the rainy season). This study was submitted for

ethical approval to the Ethical Review Committee of the

Universidad Peruana Cayetano Heredia (EC-UPCH), Lima.

Cambodia
A malariometric surveys were conducted in August-September

(rainy season – survey 1 (S1)), and in November-December 2005

(end of rainy season - survey2 (S2)) in 12 villages located in the

forest areas of north-east (Rattanakiri -6 villages) and west

Cambodia (Pailin -3 villages; Pursat 3 villages). A representative

sample of the inhabitants of each village has been examined (tick

film, filter papers, questionnaire, symptoms). The protocol was

approved by the Commission of Medical Ethics of the Prince

Leopold Institute of Tropical Medicine (Ref: 05 10 4 491).

In all surveys, selected individuals were explained in the local

language the study objectives, methodology, risks and benefits, and

were asked to give their informed consent. In both Peruvian

studies, written informed consent was given by all study

participants.

In Vietnam and Cambodia, verbal informed consent was given

by all study participants. The institutional review board of the

Institute of Tropical Medicine approved this verbal consent.

Positive patients were treated according to the national

guidelines. Blood samples for microscopic examination (thick

and thin blood film) and for later genotyping and serology on filter

paper (Whatman filter paper grade 3) were collected. PCR analysis

was not carried out on the Cambodia samples.

Results

The apparent prevalence was relatively low in all sites, with

ELISA giving the highest estimates (Table 3), as confirmed by the

higher number of positive individuals for ELISA among all

positives by any test (Table 4). According to the Bayes-p

estimations, the initial prior information was in agreement with

the tests’ results for all countries except for Vietnam, where both

the constraint on the sensitivity of the microscopy and the experts’

opinion on the probability of a positive ELISA in an infected

individual with a positive blood slide, did not match the actual

results. Both were relaxed from a [0.7–1] to a [0.4–1] uniform

distribution (implying less knowledge or more uncertainty than the

initial information) to allow agreement between the prior

information and the Vietnamese data. After this adaptation all

models converged.

Malaria Prevalence: A Bayesian Approach
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Several significant differences were observed between the test

characteristics in the 5 different conditions. Notably, the

sensitivities of microscopy and ELISA were statistically lower in

Vietnam than in Peru-Iquitos, Peru-Jaen and Cambodia (S1 and

S2). Similarly, except for the ELISA in Cambodia S2, the

specificity estimates for microscopy, ELISA and PCR were

significantly lower in Vietnam compared to the corresponding

ones in the other sites. The estimated true prevalence was

significantly higher in Vietnam than in the other 4 sites among

which Peru-Iquitos had the highest prevalence (Table 5).

A comparison between the ‘‘true’’ and apparent prevalence

provides the degree of bias when this is estimated with only one

diagnostic test. In Vietnam and Peru, microscopy was closer to the

‘‘true’’ estimate than the other 2 tests (Tables 3 and 5) while

ELISA, with its lower specificity, usually overestimated the true

infection prevalence (Table 5).

Discussion

An analysis of three tests for the detection of a malaria infection

and for estimating its prevalence was conducted using a Bayesian

framework. Bayesian techniques become exceedingly useful for

improved interpretation of diagnostic test performance in both the

medical and veterinary fields [26,27]. The Bayesian paradigm

clearly corresponds with the way of thinking of most scientists and

policy makers alike. Indeed, as results will never been interpreted

without any conscious or unconscious reflections, such a process is

formalized by a Bayesian framework. This is particularly useful in

the context of multiple diagnostic tests because it allows combining

different sources of information. A drawback of this approach is

the limited number of studies using several diagnostic tests.

However, within the Bayesian philosophy even the results of one

diagnostic test can be integrated in global estimations as far as the

uncertainty is properly acknowledged. It is important to notice that

the results (i.e. the true prevalence) depend on opinions obtained

from experts who need to be familiar with both malaria and the

tests used. In addition, the modelers need to known how to process

properly the prior information. Using Bayesian measures of

goodness-of-fit, i.e. the DIC and Bayes-p values appropriately

guarantee that the different parts of information (i.e., data and

expert opinion) are not conflicting, resulting in optimal estimates.

The approach corresponds with complex non-linear statistical

models where initial values are required. It should be noted that

the degree of freedom experts have in expressing opinions will

decrease with increasing number of diagnostic tests.

The characteristics of the diagnostic tests employed were

estimated without a gold standard. This contrasts with the

common practice of estimating the sensitivity and specificity of a

test by comparing its results with those obtained by microscopy

[13,14], an inappropriate reference [7,8]. In addition, both

sensitivity and specificity can be influenced by context-specific

factors.

The expert opinions originally provided for the 3 tests were not

in agreement with the data so that constrains (i.e. the level of

‘‘uncertainty’’) on the sensitivity of microscopy and ELISA in

Vietnam had to be relaxed. This adaptation allowed agreement

between prior information and actual data and resulted in a

significantly lower sensitivity for the microscopy in Vietnam

compared to the other regions, confirming the high variability of

this test’s sensitivity that depends both on the parasite density and

on the experience and skills of the slide reader. Indeed in Vietnam,

the parasite density is usually low and PCR data indicate a high

proportion of sub-patent infections, as well as mixed infections.

Therefore, sensitivity and specificity of a given test can vary

according to the setting and such variability can explain the wide

confidence intervals reported in other studies [9]. When including

in the analysis the variability of the tests’ sensitivity and specificity,

the malaria prevalence estimations are optimized and become

comparable across different settings, i.e. a site-specific analysis can

be done.

Table 3. Apparent prevalence figures of P. falciparum (exact
binomial 95% CI) for the different diagnostic tests by survey.

Sites Estimated prevalence % (95%CI)

Microscopy ELISA PCR

Vietnam 0.11 (0.10–0.12) 0.24 (0.22–0.26) 0.14 (0.12–0.15)

Peru (Iquitos) 0.04 (0.02–0.07) 0.14 (0.10–0.18) 0.03 (0.01–0.05)

Peru (Jaen) 0 (0–0.01) 0.11 (0.09–0.14) 0 (0–0.01)

Cambodia S1 0.04 (0.03–0.05) 0.11 (0.09–0.12) -

Cambodia S2 0.03 (0.02–0.04) 0.21 (0.19–0.24) -

ELISA = Enzyme-Linked Immunosorbent Assay; PCR = Polymerase Chain
Reaction; S1 = survey 1; S2 = survey 2.
doi:10.1371/journal.pone.0016705.t003

Table 4. Number of individuals according to the results of 2 or 3 diagnostic tests by survey.

Diagnostic tests Number of individuals

Microscopy ELISA PCR Vietnam Peru (Iquitos) Peru (Jaen) Cambodia S1 Cambodia S2

0 0 0 1530 292 447 1147 752

0 0 1 100 1 0

0 1 0 351 35 58 129 191

0 1 1 73 1 0

1 0 0 57 1 0 42 15

1 0 1 59 2 0

1 1 0 48 5 0 12 15

1 1 1 87 6 0

0 = negative test result. 1 = positive test result; number = number of individuals for each result category; S1 = survey 1; S2 = survey 2.
doi:10.1371/journal.pone.0016705.t004

Malaria Prevalence: A Bayesian Approach
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In Peru-Iquitos, comparable results were obtained with both

microscopy and PCR. This finding can be attributed to the

sampling of symptomatic patients in whom parasite density is

usually higher than in individuals, often healthy, selected

randomly for a population survey. The latter infections are

asymptomatic, hence with a lower parasite density, or even sub-

patent, i.e. undetectable by microscopy.

Combining several diagnostic tests does not imply that the

results of each separate test do not have any value. Although

positive serological tests may reflect persisting antibodies in non-

infected individuals, and hence the lower specificity, they have an

advantage of providing an indication of individuals having had a

past infection, a valuable information in areas where malaria

transmission is very low.

The approach based on the Bayesian framework may be useful

to re-examine data obtained with several malaria diagnostic tests

[32,33]. Estimating the malaria prevalence in a specific setting is

not straightforward, particularly when considering the lack of a

gold standard [9,34] and the variability of the diagnostic tests’

characteristics. A possible solution is combining the results

obtained with different tests. Indeed, assessing different diagnostic

techniques and estimating their sensitivity and specificity with the

assumption that none of them can provide perfect results can be

done through the integration of several sources of information.

Ochola and colleagues [9] were the first to point out the benefits of

combining results of several diagnostic tests for estimating malaria

prevalence. Nevertheless, the assumptions inherent to their

method are questionable [15], resulting in wide confidence

intervals that may in fact reflect real differences in the sensitivity

and specificity between different settings [9].

The recent shift from control to elimination with eventually

eradication as a goal will require a rigorous assessment of the

disease (i.e., infection) free state. Combining information from

different diagnostic tests may respond to this need and provide an

assessment on the uncertainty related to a disease (i.e., infection)

situation. Moreover, the approach based on the Bayesian

framework could be used for future studies and the obtained

‘‘latent’’ prevalence could then fit nicely within the global malaria

initiatives such as the malaria atlas project (MAP) [35], which is

already using the advantages of a Bayesian context. Indeed,

currently results are often not comparable from one location to

another because different diagnostics tests are used. Without a

gold standard, a standardized Bayesian approach for estimating

the ‘‘true’’ malaria prevalence can further strengthen the current

international efforts towards assessing and reducing the global

malaria burden.
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Table 5. Estimated prevalence and diagnostic tests’ sensitivity and specificity by survey.

Country Estimated true prevalence Estimated sensitivity and specificity

Microscopy ELISA PCR

se sp se sp se sp

Vietnam 0.12 0.53 0.95 0.55 0.80 0.95 0.97

CI lower 95% limit 0.01 0.42 0.94 0.42 0.78 0.89 0.95

CI upper 95% limit 0.15 0.70 0.96 0.70 0.82 1.00 1.00

Peru Iquitos 0.03 0.90 0.98 0.79 0.88 0.98 0.99

CI lower 95% limit 0.01 0.72 0.96 0.62 0.84 0.95 0.98

CI upper 95% limit 0.05 1.00 0.99 0.95 0.91 1.00 1.00

Peru Jaen 0.00 0.89 1.00 0.85 0.88 0.98 1.00

CI lower 95% limit 0.00 0.71 1.00 0.64 0.85 0.95 0.99

CI upper 95% limit 0.01 1.00 1.00 1.00 0.91 1.00 1.00

Cambodia S1 0.01 0.89 0.96 0.85 0.90

CI lower 95% limit 0.00 0.71 0.95 0.63 0.88

CI upper 95% limit 0.02 1.00 0.98 1.00 0.91

Cambodia S2 0.01 0.89 0.98 0.84 0.79

CI lower 95% limit 0.00 0.71 0.96 0.62 0.77

CI upper 95% limit 0.03 1.00 0.99 1.00 0.82

CI = credibility interval; Se = sensitivity; Sp = specificity; ELISA = Enzyme-Linked Immunosorbent Assay; PCR = Polymerase Chain Reaction; S1 = survey 1; S2 = survey 2.
doi:10.1371/journal.pone.0016705.t005
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