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ABSTRACT

Objective: Microbiology culture reports contain critical information for important clinical and public health

applications. However, microbiology reports often have complex, semistructured, free-text data that present a

barrier for secondary use. Here we present the development and validation of an open-source package

designed to ingest free-text microbiology reports, determine whether the culture is positive, and return a list of

Systemized Nomenclature of Medicine (SNOMED)-CT mapped bacteria.

Materials and Methods: Our concept extraction Python package, MicrobEx, is built upon a rule-based natural

language processing algorithm and was developed using microbiology reports from 2 different electronic

health record systems in a large healthcare organization, and then externally validated on the reports of 2 other

institutions with manually reviewed results as a benchmark.

Results: MicrobEx achieved F1 scores >0.95 on all classification tasks across 2 independent validation sets with

minimal customization. Additionally, MicrobEx matched or surpassed our MetaMap-based benchmark algo-

rithm performance across positive culture classification and species capture classification tasks.

Discussion: Our results suggest that MicrobEx can be used to reliably estimate binary bacterial culture status,

extract bacterial species, and map these to SNOMED organism observations when applied to semistructured,

free-text microbiology reports from different institutions with relatively low customization.

Conclusion: MicrobEx offers an open-source software solution (available on both GitHub and PyPI) for bacterial

culture status estimation and bacterial species extraction from free-text microbiology reports. The package was

designed to be reused and adapted to individual institutions as an upstream process for other clinical applica-

tions such as: machine learning, clinical decision support, and disease surveillance systems.
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LAY SUMMARY

Microbiology culture reports are a type of medical laboratory report created by laboratory specialists to summarize their

findings after detecting and characterizing bacteria and other organisms present in a patient sample (like blood, urine, etc).

The data contained within large collections of microbiology reports can be helpful for numerous clinical and public health

applications. However, extracting this relevant information from large collections can be time consuming and challenging as

these reports are stored as text, and both the language and format of these reports vary widely across different report writ-

ers and clinical settings. This research sought to develop an open-source software tool to enable users to extract relevant in-

formation from microbiology reports automatically. Our software tool, MicrobEx, uses a variety of rule-based logic and text

pattern collections to ultimately classify whether a bacterial infection is described in the text report (yes/no) and to catalogue

all relevant bacteria mentioned in the report. MicrobEx was developed against data collated from Northwestern Medicine

and subsequently validated against reports from 2 distinct institutions that had been manually reviewed by an expert. Over-

all, our results suggest MicrobEx can achieve improved performance over other methods and comparable performance to

manual chart review.

INTRODUCTION

Microbiology culture reports are relied upon for myriad healthcare

applications ranging from guiding clinical treatment decisions to

global disease surveillance. In a clinical setting, microbiology culture

reports are helpful in answering if an infection is present and what

organisms are driving that infection.1 Outside of the clinical setting,

microbiology data are used to monitor disease outbreaks, improve

healthcare operations (eg, monitor nosocomial infection rates), and

are leveraged in a variety of observational studies.2–5 Thus, the data

within microbiology reports impact clinical treatment and public

policy decisions and are therefore critical for secondary use.2,6

Unlike many other structured laboratory test results, microbiol-

ogy culture reports are often complex, semistructured reports that

pose unique challenges for large-scale secondary use applications.

Samples sent to a microbiology laboratory routinely undergo numer-

ous tests, such as gram stains and antibiotic susceptibility tests, each

of which have different turnaround times, can produce more than a

single result, and need to be linked to the original accession num-

ber.1,2 Additionally, results from each test can include both quanti-

tative and qualitative data, and need to be reported as they become

available to facilitate treatment decisions.1,2 Unfortunately, al-

though there are efforts to standardize reporting and analysis of clin-

ical microbiology data, the suitability of existing microbiology

reports for secondary use are hindered by reporting variability and

analysis practices.7–9 Finally, microbiology reports contain varying

amounts of protected health information as defined by the Health

Insurance Portability and Accountability Act, thus limiting the flexi-

bility of this data for data sharing projects.

OBJECTIVE

There is critical need for informatic tools that can navigate microbi-

ology report data challenges and extract information to facilitate

their secondary use. The goal of this study was to develop, validate,

and release an open-source microbiology concept extraction

(MicrobEx) system to facilitate secondary use of microbiology

reports.

MATERIALS AND METHODS

Datasets
The 2 derivation datasets for this study were extracted from 2 source

systems (Epic Systems Corporation and Cerner Corporation) within

the Northwestern Medicine (NM) Enterprise Data Warehouse

(EDW). Data from source systems 1 and 2 were extracted into sepa-

rate respective derivation sets in order to reflect different world con-

ditions and preserve their unique microbiology report structures and

language characteristics. The regular expressions and logic flow of

our extraction system were developed using 216 372 raw free-text

microbiology reports extracted from critical care patients treated at

1 of 10 Northwestern Medicine intensive care units between January

1, 2010 and January 1, 2020. To define microbiology reports, we

queried the NMEDW and manually curated 235 unique procedures

associated with microbiology culture orders. The collection of mi-

crobiology reports had highly heterogeneous formatting and lacked

consistent template features such as concept-value pairs and table

structures. Additionally, our corpora contained full microbiology

reports, as well as individual microbiology components such as

gram stains and antibiotic susceptibility reports. To address these

challenges, rules were crafted to separate reports into sections wher-

ever possible. For cultures with multiple report entries tied to the

same accession number, only the notes with the latest report update

time were selected for downstream processing and analysis. Testing

and validation of our extraction system was performed on 2 external

datasets with 65 448 expertly annotated free-text microbiology

reports from University of Chicago (validation 1) and Ann & Robert

H. Lurie Children’s Hospital (validation 2). The validation sets of

microbiological culture results were part of prior study and details

have been previously published.6 The reports from both hospitals

were annotated by the same senior clinical research coordinator. All

4 datasets included microbiologic cultures reports from blood, urine,

respiratory, and cerebral spine fluid samples.

Algorithm overview
A summary of our algorithm workflow is presented in Figure 1. Our

concept extraction algorithm uses a comprehensive set of rules, as

well as context, keyword, and morphologic features that capture

overall bacterial infection status and identify bacterial species pre-

sent in a microbiology report. Rulesets and regular expressions were

developed through an iterative process based on document struc-

tural and context features in addition to clinical criteria and domain

knowledge. For bacterial species captures, we wrote regular expres-

sions to capture the genus and species for bacteria present in a dic-

tionary of clinically relevant organisms collated from

knowledgebases.1,10 Organisms captured were mapped to Observa-

tional Health Data Sciences and Informatics (OHDSI) and System-

ized Nomenclature of Medicine (SNOMED) IDs via a dictionary
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included in the source code. The mapping dictionary for microor-

ganism to OHDSI and SNOMED IDs was constructed by passing

the collated microorganism list into Usagi software indexed on

SNOMED vocabulary and restricted to class “ORGANISM” and

domain “OBSERVATION”.11 During each iteration, concept ex-

traction performance was reviewed manually using a variety of dif-

ferent pattern occurrence-based audits on our training data sets.

Customized regular expressions were created to capture remaining

complex patterns. Each regular expression was developed with gen-

eralizability in mind to maximize dissemination and reusability. For

all false positive and negative cases, we reviewed the associated case

context, assigned a reason for misclassification. We addressed the

cases by either refining existing rules or implementing new ones.

This iteration process was repeated until all remaining uncaptured

cases were caused by report noise, uncommon misspellings, or lack

of report clarity.12

Validation
Figure 2 includes example reports annotated with extracted con-

cepts, species, and estimated bacterial culture positive status. Both

species extraction and binary bacteria positive culture status (yes/

no) were evaluated as outcomes for validation of our algorithm and

compared to the manually annotated results in the validation sets.

For species extraction, we compared species captured across all re-

port sections by our algorithm and the expert annotation. We

encoded our species extraction binary outcome as positive only if

MicrobEx captured every species identified by the expert. Cases

where MicrobEx captured bacterial species not identified by the ex-

pert were manually reviewed and coded on a case-by-case basis. For

positive culture status, MicrobEx assigned a binary classification to

all report sections. A report was classified as culture status positive

if any of the corresponding report sections were assigned a positive

classification. The resulting report level classifications were then

compared to expert annotation. Supplementary Table S1 presents a

report-level bacteria culture status classification example.

Performance benchmark
In order to benchmark our algorithm’s performance against a well-

established clinical natural language processing (NLP) tool, we ap-

plied MetaMap13 to both validation sets and built a rule-based deci-

sion workflow to predict positive bacterial culture status and

capture bacterial species.

Dataset customization
The detailed code, documentation, and Python package installation

instructions have been made available at: https://github.com/geick-

elb/microbex. To identify and address dataset-specific patterns capa-

ble of causing misclassifications, we audited our workflow as

described in the github documentation prior to final validation. See

the AlgorithmDetails section for Regular expression examples and

the audit_example section for a description and example on how to

deploy and customize our package to a new dataset. Algorithm

details are additionally presented in Supplementary Section C.

RESULTS

Validation
Table 1 summarizes the distribution of positive bacterial culture sta-

tus in the 4 datasets. The ratio of positive to negative cases across

our training set predictions is consistent with that seen in the 2 cu-

rated validation sets.

Table 2 summarizes the validation results across both species

and positive bacterial culture status classification tasks. The algo-

rithm had excellent and consistent performance, with validation sets

1 and 2 having F1 scores of 0.99 and 0.96 for positive culture classi-

fication and species capture, respectively. To estimate the improve-

ments made by introducing customized regular expressions from the

data audits, each validation set was reanalyzed using a codebase

with the associated regular expressions deactivated. From this, we

estimate that culture positivity classification increased from 0.93 to

0.96 and 0.69 to 0.96 for validation sets 1 and 2, respectively. The

Figure 1. The MicrobEx algorithm structure. The input of our algorithm is a whole or parsed section of a free-text microbiology culture reports. Within the algo-

rithm, a series of regular expression collections are applied to the text input and the captures are associated with bacterial absence (negative), bacterial presence

(positive), microbiological species, potential bacterial contamination, and uncertainty. Bacterial species captured are subsequently mapped to both OHDSI and

SNOMED concept IDs. Hierarchical decisions are applied to the regular expression collection captures to categorize the culture as positive or negative for bacte-

ria.
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addition of customized regular expressions was found to cause little-

to-no effect on species capturing across both validation sets.

Supplementary Table S2 presents the results from our custom-

ized MetaMap based benchmarking algorithm against both valida-

tion sets. Across both positive culture classification and species

capture, MicrobEx matched or surpassed the benchmark algorithm

performance. These results suggest that our task-specific classifier

can outperform more general-use clinical NLP tools like MetaMap.

Supplementary Section D presents our MicrobEx “Run Report” for

validation sets 1 and 2, detailing report- and report section-level

data regarding regular expression captures, binary classification de-

cision data, and descriptive statistics.

Error analysis
In the error analysis we identified a collection of 5 patterns in which

our concept extraction workflow had the majority of errors. Figure 2

presents annotated visual examples of the classification hierarchical

logic for the different patterns observed, with examples for both cor-

rect classifications as well as misclassifications. Examples 5 and 6

depict the 2 most common types of false positive patterns and exam-

ples 7 and 8 present the most common patterns found in false nega-

tives in the validation sets. We can summarize these patterns as a

combination of multiple positive and negative organisms where the

negative regex capture supersedes the positive captures, and the use

of the term “contaminant” leading to a false negative classification.

DISCUSSION

In this study, we developed and validated an open-source, rule-

based framework to extract and map clinical concepts from micro-

biology reports to standardized terminologies to facilitate second-

ary use of microbiology reports. Our main finding is that our

algorithm can reliably estimate binary bacterial culture status, ex-

tract bacterial species, and map these to SNOMED organism

observations when applied to semistructured, free-text microbiol-

ogy reports from different institutions with relatively low customi-

zation.

Top performing rule-based concept extraction applications com-

monly employ a well-established clinical NLP tool that can map men-

tions to a corresponding medical concept(s) for broad medical

corpora, such as cTAKES14 and MetaMap.13 Like the well-established

tools, MicrobEx performs concept matching by leveraging existing mi-

crobiology knowledgebases as described in Materials and Methods

section. In contrast to these tools however, MicrobEx uses custom

rules and regular expressions tailored to microbiology reports for ne-

gation detection. MicrobEx’s higher performance on bacterial positive

culture status prediction suggests that for this classification task,

MicrobEx’s more tailored approach provides advantages over an out-

of-the-box approach using a well-established NLP tool. To illustrate,

validation set 1 had a language pattern (n¼88 report-level occur-

rences) where the results from the antibiotic susceptibility report were

mentioned alongside the microorganism summary (eg, “Many methi-

cillin resistant Staphylococcus aureus Inducible Clindamycin Resis-

tance not detected”). Our MetaMap benchmarking algorithm, which

used a Negex negation detection engine, classified culture status nega-

tive while MicrobEx correctly classified culture status positive for such

cases. By including specific regular expressions to distinguish between

susceptibility and resistance detection from microorganism detection

(eg, “(?<!resistance)(?<!susceptibility)\sþnot\sdetectedjindicated”),

MicrobEx was able to correctly classify binary bacteria culture status.

To further improve MicrobEx’s prediction performance, additional

institution-specific customized rules could be added. Figure 2 depicts 4

representative examples of cases misclassified for positive culture sta-

tus that could be addressed with institution-specific custom rules.

To our best knowledge, 3 previously published studies have ap-

plied clinical concept extraction methods to microbiology notes.15–

17 Jones et al16 applied a set of crafted rules to blood culture reports

from the Salt Lake City Healthcare system to extract organism infor-

mation, antibiotic susceptibilities, and infer if methicillin-resistant

Staphylococcus aureus (MRSA) was present. An evaluation was per-

formed against approximately 10 000 expertly annotated reports to

Table 1. Bacterial culture positive status distribution

Positive bacterial culture Negative bacterial culture

Derivation set 1 14 376 (20.7%) 55 065 (79.3%)

Derivation set 2 23 549 (16%) 123 382 (84%)

Validation set 1 2184 (14.5%) 12 916 (85.5%)

Validation set 2 7391 (14.7%) 42 957 (85.3%)

Figure 2. Examples of annotated reports for validation and error analysis on validation set reports. Colored underlines correspond to parts of the report captured

by the associated regular expression collection. For bacterial culture positive status classification, the concepts captured in each block are considered in a hierar-

chical decision structure according to Figure 1. Examples 1 to 4 demonstrate algorithm annotation on cases found to be correctly classified as positive and nega-

tive. Examples 5 to 8 depict 4 examples representative of common misclassifications. FN: false negative; FP: false positive; TN: true negative; TP: true positive.
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measure successful identification of MRSA. Yim et al15 and

Matheny et al17 used hybrid and rule-based systems to capture com-

binations of microorganisms species and antibiotic susceptibilities

from blood and multiple sample types, respectively. Our algorithm

is notably different from the previously published systems in the fol-

lowing ways: (1) we estimate positive bacterial culture status, (2)

our algorithm was designed to work with a variety of disparate mi-

crobiology report formats from different institutions, (3) we per-

formed external validation on 2 expertly annotated microbiology

datasets, and (4) our software is entirely open-source and available

as a python package that can be further adapted to the reports of

other institutions as described in our github documentation and sup-

ported by our results.

We recognize several limitations of our study. First, for users of

this software, classifying positive culture status is the prediction task

with the largest potential error. Compared to species extraction,

which is largely string matching, estimating infection status requires

significantly more complex logic. The hierarchical logic involved

with positive bacterial culture status estimation is potentially suscep-

tible to syntactic heterogeneity and report complexity, as depicted in

Figure 2. Additionally, we focused on bacterial cultures for the de-

velopment and validation of the algorithm given the importance of

antibiotic stewardship, antibiotic resistance, and bacterial sepsis in

hospitalized patients. While our algorithm captures other microor-

ganism species (including fungal and viral species), we did not vali-

date the performance on those. Finally, we included logic to extract

relevant quantitative and semiquantitative concepts, however the

performance of this was variable due to syntactic heterogeneity. As

a result, we continue to provide quantitative captures as a feature of

the MicrobEx algorithm, however these were not included in our

validation.

CONCLUSION

In this article we detail the development, validation, and use of our

open-source microbiology concept extractor (MicrobEx) algorithm

and package. Our workflow achieved excellent performance in 2 in-

dependent validation sets with minimal customization, improved

performance versus a well-established alternative, and comparable

performance to manual chart review by an expert. Our concept ex-

traction Python package is designed to be reused and adapted to in-

dividual institutions as an upstream process for other clinical

applications such as machine learning, clinical decision support, and

disease surveillance systems.
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