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In recent decades, the high incidence of infectious and parasitic diseases has been
replaced by a high prevalence of chronic and degenerative diseases. Concomitantly, there
have been profound changes in the behavior and eating habits of families around the
world, characterizing a “nutritional transition” phenomenon, which refers to a shift in diet in
response to modernization, urbanization, or economic development from undernutrition to
the excessive consumption of hypercaloric and ultra-processed foods. Protein malnutrition
that was a health problem in the first half of the 20th century has now been replaced by
high-fat diets, especially diets high in saturated fat, predisposing consumers to overweight
and obesity. This panorama points us to the alarming coexistence of both malnutrition and
obesity in the same population. In this way, individuals whose mothers were
undernourished early in pregnancy and then exposed to postnatal hyperlipidic nutrition
have increased risk factors for developing metabolic dysfunction and cardiovascular
diseases in adulthood. Thus, our major aim was to review the cardiometabolic effects
resulting from postnatal hyperlipidic diets in protein-restricted subjects, as well as to
examine the epigenetic repercussions occasioned by the nutritional transition.
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INTRODUCTION

In the second half of the 20th century, a change in the dietary habits of the population, mainly in the
western part of the world, was observed, called a phenomenon of “nutrition transition” (Hasan et al.,
2016; Herran et al., 2016). The nutritional transition was characterized by a reduction in the
prevalence of malnutrition in its various dimensions (energy and macro- or micronutrients),
accompanied by excessive consumption of hypercaloric and ultra-processed foods, with a
consequent increase in body weight (Abdullah, 2015), a high incidence of chronic diseases, and
a high prevalence of obesity (Batista Filho and Rissin, 2003a; Batista Filho and Batista, 2010; Ribeiro
et al., 2015). Concomitantly, it was possible to observe profound changes in the behavior and eating
habits of families around the world (Popkin, 2015). Higher levels of undernutrition have been
replaced by higher rates of overweight and obesity related to hyperlipidic and hypercaloric food
consumption (Di Pietro et al., 2015). Epidemiological evidence has shown that nutritional deficiency
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in the first years of life accompanied by overnutrition, a posteriori,
may increase the risk of dyslipidemia and other cardiometabolic
diseases in adulthood, such as hypertension and type 2 diabetes
(Figure 1) (Barker, 2007). In this context, individuals subjected to
maternal protein undernutrition in utero have been considered
those with a high risk of developing cardiometabolic dysfunctions
in adulthood (Ashton, 2000; Hemachandra et al., 2006; Antony
and Laxmaiah, 2008; Conde and Monteiro, 2014; Costa-Silva
et al., 2015; Parra et al., 2015). Furthermore, studies have
suggested that when these individuals are additionally
subjected to inappropriate postnatal nutrition, especially
hyperlipidic diets, they may significantly suffer heightened
energy balance dysfunctions in adulthood (Desai et al., 2007).

Thus, the eating habits and nutritional conditions in early phases
of life play a key role in the etiology of these diseases by inducing
physiological dysfunctions (Lucas, 1998; Victora et al., 2008;
Wells, 2012). Many studies have suggested that external
environmental inputs, such as nutrition, may modify the
phenotype, leading to physiological adaptations without
genetic changes. This phenomenon can be understood in the
context of phenotypic plasticity. (West-Eberhard, 2003).

Phenotypic plasticity is molecularly based on epigenetic
changes, such as DNA methylation, post-translational histone
modifications, and microRNA expression (Wells, 2011). The
epigenetic landscape was first described by Conrad
Waddington in 1940 who studied the relationship between the

FIGURE 1 | Diets low in protein in the first years of life, followed by high consumption of high-fat diets, can increase the risk of cardiometabolic diseases in
adulthood, such as hypertension, dyslipidemia, and type 2 diabetes.
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cause and effect in genes to produce a phenotype (Jablonka and
Lamb, 2002). Currently, this concept is used for the process of
gene expression and its link to modifications in the chromatin
structure without altering the DNA sequence (Chong and
Whitelaw, 2004; Egger et al., 2004). Changes in the chromatin
structure are related to the increase or decrease in the electrostatic
affinity of the DNA structure. DNA methylation, post-
translational modifications of histones, and expression of
microRNAs are capable of altering a chromatin structure
(Sadakierska-Chudy and Filip, 2015). DNA methylation is
related to the addition of methyl groups to DNA cytosine
residues, usually cytosine, followed by the guanine residue
(CpG dinucleotides), which can produce inhibition of gene
expression by impairing transcription factor binding
(Waterland and Michels, 2007; Mansego et al., 2013; Chango
and Pogribny, 2015; Mitchell et al., 2016). As post-translational
histone modifications (acetylation, methylation, ubiquitination,
and phosphorylation) correspond to the addition of methyl,
acetyl, or other groups to the histone tails, they increase or
decrease the electrostatic affinity between histone proteins and
DNA, thus promoting a structure of chromatin that is more or
less permissive to gene transcription (Bowman and Poirier, 2015).
The addition of acetyl groups to histones is regulated by the
action of histone acetyltransferases (HATs), while the removal of
acetyl groups is catalyzed by histone deacetylases (HDACs) (Graff
and Tsai, 2013). MicroRNAs are small endogenous non-coding
RNA molecules involved in gene regulation and function in
protein-coding introns, non-coding gene introns, or non-
coding gene exons; they have been implicated in many cellular
processes, including proliferation, apoptosis, differentiation,
senescence, and responses to stress and immunological stimuli
(D’Ippolito and Iorio, 2013).

This provides the basis for an investigation on how the
nutritional aspect can induce these epigenetic changes. The
hypothesis is that epigenetic modifications are an extended
mechanism that links maternal nutrition to the modulation of
phenotypes in the offspring (Mazzio E. A. and Soliman K. F. A.,
2014; Szarc vel Szic et al., 2015). Thus, this review will address the
main cardiometabolic effects elicited by postnatal hyperlipidic
diets in protein-restricted subjects during pregnancy and
lactation.

MATERNAL PROTEIN UNDERNUTRITION
AND DEVELOPMENT OF
CARDIOMETABOLIC DISEASES
Developmental origins of health and diseases as proposed by
Barker and colleagues in 1986 have been extensively studied as
physiological consequences of perinatal nutritional factors
(Barker and Osmond, 1986; Barker et al., 1989; Barker et al.,
1993; Barker, 2007). This field of research proposes that
cardiometabolic diseases can be “programmed” by the
“adaptive” effects of both under- and overnutrition during
early phases of growth and development, changing the cell
physiology in the phenotype but without altering the genotype
(Barker et al., 2005; West-Eberhard, 2005; Labayen et al., 2006;

Andersen et al., 2009; Biosca et al., 2011). In this context,
phenotypic plasticity has molecular basis, epigenetic alterations
such as DNA methylation, histone acetylation, and microRNA
expression (Wells, 2011). These epigenetic marks are established
early in development and can persist for a lengthy period of time
(John and Rougeulle, 2018).

Epigenetic modifications are widely hypothesized to be an
overarching mechanism linking maternal nutrition to metabolic
health phenotypes in the offspring (Mazzio EA. and Soliman KF.,
2014; Szarc vel Szic et al., 2015). In this context, a low-protein diet
(8% protein) during gestation and lactation has been associated
with growth restriction, asymmetric reduction in organ growth,
elevated systolic blood pressure, dyslipidemia, and increased
fasting plasma insulin concentrations in most studies on rat
offspring (Ozanne and Hales, 2004; Costa-Silva et al., 2009;
Falcao-Tebas et al., 2012; Leandro et al., 2012; Fidalgo et al.,
2013; de Brito Alves et al., 2014; Ferreira et al., 2015; de Brito
Alves et al., 2016; Paulino-Silva and Costa-Silva, 2016; Barbosa
et al., 2020). However, it is known that the magnitude of the
cardiovascular and metabolic outcomes is dependent on both
time exposure to a protein restricted-diet (Zohdi et al., 2012;
Zohdi et al., 2014) and the growth trajectory throughout the
postnatal period (Wells, 2007; Wells, 2011).

A relationship between maternal protein restriction,
sympathetic overactivity, and hypertension has been suggested
(Johansson et al., 2007; Franco et al., 2008; Barros et al., 2015).
Currently, it is well accepted that perinatal protein malnutrition
(6–9% protein) raises the risks of hypertension by mechanisms
that have been shown to include abnormal vascular function in
the adult rat male (Brawley et al., 2003; Franco et al., 2008),
altered nephron morphology and function, and stimulation of the
renin-angiotensin system in the adult rat male (Nuyt and
Alexander, 2009; Siddique et al., 2014) as well as disruption in
respiratory control in the rat male at 30 and 90 days of life (Chen
et al., 2010; de Brito Alves et al., 2014; Barros et al., 2015; Costa-
Silva et al., 2015; Paulino-Silva and Costa-Silva, 2016; de Brito
Alves and Costa-Silva, 2018). Offspring from dams subjected to
perinatal protein restriction had relevant short-term effects on
the carotid body (CB) and sensitivity and respiratory functions as
well as enhanced baseline sympathetic activity and amplified
ventilatory and sympathetic responses to peripheral
chemoreflex activation, prior to the establishment of
hypertension (de Brito Alves et al., 2014; de Brito Alves et al.,
2015). The mechanism involved in these effects seems to be
linked with upregulation of the hypoxic inducible factor (HIF-1α)
in the CB peripheral chemoreceptors (Ito et al., 2011; Ito et al.,
2012; de Brito Alves et al., 2015; Nogueira et al., 2018). Studies
showed that CB peripheral chemoreceptors in malnourished
offspring were responsible for the enhanced respiratory
frequency and CO2 chemosensitivity in early life and the
production of autonomic imbalance and the development of
hypertension in adulthood (Nogueira et al., 2018). In addition,
it was demonstrated that these cardiorespiratory disruptions
observed in offspring were attenuated from mothers who
performed physical activity during the perinatal period
(Nogueira et al., 2019). Regarding epigenetics mechanisms
involved in cardiometabolic effects elicited by protein
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malnutrition, it was described as a decrease in the methylation at
various positions of the ACE-1 promoter region in rat brain and
an increase in transcription of this gene involved in the renin-
angiotensin system and the maintenance of arterial blood
pressure (Goyal et al., 2010). Similarly, in humans, the DNA
methylation in the ACE gene promoter of peripheral blood
leukocytes seems to be significantly lower in children of age
ranging from 6 to 12 years born with low birth weight, resulting in
greater ACE activity (Ajala et al., 2012; Rangel et al., 2014).

Maternal protein restriction affects insulin sensitivity in the
offspring. Previous studies found that in rats, maternal protein
restriction throughout pregnancy and lactation induced insulin
resistance in the male offspring (Zambrano et al., 2006; Berends
et al., 2018). This central insulin resistance is related to reduced
protein levels of the p110β subunit of phosphoinositide 3-kinase
(PI3K) and increased serine phosphorylation of IRS-1 in the
arcuate nucleus (ARC) of the hypothalamus. The expression of
the gene encoding protein tyrosine phosphatase 1B (PTP1B;
Ptpn1) was also increased in the region of the hypothalamus
(Berends et al., 2018); themechanism appeared to increase insulin
receptor signaling mediated by protein kinase C (PKC)-ζ in
skeletal muscle of the offspring of rats fed with a low-protein
diet during pregnancy and lactation (Chen et al., 2009). The
ability of skeletal muscle to respond to maternal protein
restriction is an adaptation to optimize the use of nutrients
available during the life-span, and an important response in
this process is the activation of genes that ameliorate or
compensate for protein deficit by stimulating the expression of
glucose transporters and glycolytic and lipolytic enzymes that
attenuate the altered function of the mitochondria (da Silva
Aragao et al., 2014; Claycombe et al., 2015). At 30 days, the
transcriptional key enzymes of the glycolytic pathway were
downregulated in extensor digitorum longus muscle in
offspring. However, these effects were only observed at 90 days
in soleus muscle of rats subjected to protein maternal
undernutrition. PDK4 was the enzyme that was more affected.
One important finding was that the observed acute (30 days)
transcriptional changes did not remain in adult LP rats (90 days),
except for PDK4. The robust PDK4 mRNA downregulation,
observed in both soleus and EDL, at both ages, and the
consequent downregulation of the PDK4 protein expression
can be responsible for a state of reduced metabolic flexibility
of skeletal muscle in response to maternal low-protein diet (de
Brito Alves et al., 2017).

Studies in rodents subjected to perinatal protein malnutrition
have observed an impact on liver function with the suppression of
gluconeogenesis by a mechanism mediated mainly by the
decrease in the level of hepatic phosphoenolpyruvate
carboxykinase mRNA (Toyoshima et al., 2010), increase in
blood cholesterol and triglycerides in the offspring at 110 days
of life, and reduced gene expression for the glucokinase (GCK)
enzyme, the glucose sensor in the liver, impairing the detection of
glucose levels (Sosa-Larios et al., 2017); these effects have been
accompanied by DNA hypomethylation and increased
expression of genes involved in lipid metabolism (Radford
et al., 2014) and hypomethylation of glucocorticoid receptors
and PPAR-α promoters, which conditioned changes in the

expression of their target genes (Sandovici et al., 2011); at
21 days, the mice showed a reduction in the microRNAs,
namely, mmu-miR-615, mmu-miR-124, mmu-miR-376b, and
mmu-let-7e, while mmu-miR-708 and mmu-miR-879 were
increased after microarray analysis; bioinformatics analysis
showed that target genes were mapped to inflammatory
pathways, accompanied by elevation of serum levels of tumor
necrosis factor-α (TNF-α) (Zheng et al., 2017).

POSTNATAL OVERNUTRITION AND
DEVELOPMENT OF CARDIOMETABOLIC
DISEASES IN MATERNAL
PROTEIN-RESTRICTED SUBJECTS

Nutritional transition is a phenomenon well documented in
developing countries in the 20th and 21st centuries and has
induced a high incidence of the chronic diseases and a high
prevalence of obesity (Batista Filho and Rissin, 2003b; Batista
Filho and Batista, 2010; Ribeiro et al., 2015; Leocádio et al., 2021).
It is evident that protein malnutrition was a health problem in the
first half of the 20th century. Now, this has been replaced by a diet
enriched in saturated fat or other high-fat diets, predisposing the
population to overweight and obesity (Batista et al., 2013).
Nowadays, it is suggested that two billion people in the world
are overweight and obese individuals, with a major prevalence
related to diet-induced obesity, which has been associated with
cardiovascular and endocrine dysfunctions (Hotamisligil, 2006;
Aubin et al., 2008; Zhang et al., 2012; Ng et al., 2014; Wensveen
et al., 2015).

In the late 1980s–1990s, Barker et al. provided epidemiologic
evidence of the programming of offspring metabolic syndrome,
demonstrating that low birth weight was a significant predictor of
adult obesity, diabetes, and cardiovascular disease, for promoting
changes in the fetal environment, which can trigger genetic
alterations and reflect on the maturation of fetal organs and
systems (Barker, 1999; Barker, 2007). In a recent global survey
conducted in 30 low-income countries, Abdullah (2015) related
that the pattern of body weight gain of the population of
developing countries is almost identical to that found in those
countries and calculated the estimate of overweight over time,
being higher in groups with less and less education. The
coexistence of malnourished children and obese mothers in
the same residence is a reality in Mexico (Kroker-Lobos et al.,
2014), Colombia (Sarmiento et al., 2014), China (Feng et al.,
2015), sub-Saharan Africa (Steyn and McHiza, 2014), and also in
Brazil (Sousa et al., 2016). Short stature and obesity may reflect
malnutrition and a poor quality diet in the first 2 years of life,
followed by excess energy intake later in childhood (Abdullah,
2015).

Some studies have tried to mimic the nutritional transition,
with peri- and postnatal nutritional mismatch, producing animal
models that are based on maternal protein restriction during
pregnancy and/or lactation, followed by the consumption of
high-fat diets by the offspring, after weaning. Epidemiological
studies have demonstrated that low birth weight makes
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individuals more susceptible to hypercholesterolemia only when
combined with postnatal consumption of a high-fat diet
(Robinson et al., 2006). These results suggest that the
postnatal nutritional environment may affect cholesterol
metabolism differently in low birth weight individuals
compared to their normal weight peers. One mechanism that
may explain the link between prenatal growth and adult disease is
a permanent change in gene expression in response to the early
environment (Gluckman and Hanson, 2004).

Animal studies have shown that a high-fat diet significantly
increased weights and body fat of malnourished rats in
gestation and/or lactation, reduced lean body mass, and
accentuated plasma leptin, an increase in glucose levels with
increased insulin levels and hypertriglyceridemia in male rats
(Desai et al., 2015). Assessing the effects of a nutritional
transition model with incompatibility between peri- and
postnatal diets in mice, Sellayah et al. (2014) offered a
control diet (18% protein) or protein-restricted diet (9%
protein) during pregnancy and lactation to mothers. After
weaning, the male pups began to receive a standard diet
(7% fat) or a high-fat diet (45% fat) until 30 weeks of age.
The authors observed that offspring maternal protein
restriction to those who consumed high-fat diet resulted in
an increase in body adiposity, even without changing the total
weight or increasing the lipid content in muscle tissue. While
the consumption of a high-fat diet by animals that had not
suffered previous malnutrition promoted an increase in energy
expenditure and expression of proteins related to
thermogenesis (uncoupling protein 1 - UCP1; adrenergic
receptor beta 3 - β-3AR) in brown adipose tissue, the
maternal protein restriction did not show the same
response. These results suggested that a mismatch can
attenuate diet-induced thermogenesis and contribute to the
development of obesity. Animals with maternal protein
restriction (5% protein) fed for 4 weeks with a high-fat diet
showed a relatively dangerous increase in the white adipose
tissue and a decrease in gross gastrocnemius muscle weight in
males even without causing changes in bodyweight; in
addition, males and females exhibited anxiety-like behaviors
(de Almeida Silva et al., 2020).

The increase in white adipose tissue may be one of the factors
that contribute to the development of cardiometabolic diseases in
maternal protein-restricted individuals. A continuous intake of
an HF diet can promote adipocyte hypertrophy and dysfunction
and induce the infiltration of pro-inflammatory macrophages in
adipose tissue, increasing the production of pro-inflammatory
cytokines in this tissue (Ouchi et al., 2011). An increased immune
activity is associated with a high consumption of high-fat diets
and favors the maintenance of chronic systemic inflammatory
processes, originating in adipose tissue (Wensveen et al., 2015;
Ertunc and Hotamisligil, 2016; Lyons et al., 2016). Using a mouse
model of a prenatal low-protein diet (LP, 8% protein) followed by
a normal or postnatal diet high-energy in fat (HE, 45% fat) for 12
weeks, maternal protein restriction added to a high-fat diet
interacts to affect growth recovery and leads to an increase of
the offspring’s adipocyte tissue, which correlates with the
phenotype of inflammation in adipose tissue (Xie et al., 2017).

In this study, adipose tissue macrophage infiltration was not
affected by the LP diet, as evidenced by the lack of difference in
the number of CD68 cells in the adipose tissue. However, after
postnatal treatment of HE, there were fewer cells of adipose tissue
macrophages M1b subtypes (CD11c + CD206+) in f1 offspring
from maternal LP dam than those on the normal protein
maternal diet. The maternal LP diet interacts with the
postnatal high-fat diet to impact the macrophage phenotypes
of the existing adipose tissue, although the prenatal LP diet may
not influence the ability of monocyte/macrophage migration
from adipose tissue in F1 mouse offspring. At 60 days of age,
the interaction between low maternal protein during pregnancy
and lactation (9% casein) and offspring’s high-fat diet, after
weaning (45% lipids), increased retroperitoneal and
epididymal fat deposits and increased the production of nitric
oxide by adipocyte macrophages (Alheiros-Lira et al., 2017).
Adipose tissue with dysfunctional signaling has been
considered to trigger reduced insulin sensitivity (Caricilli et al.,
2008; Calder, 2012) and change the plasma and tissue lipid profile
(Ralston et al., 2017) in addition to promoting cardiovascular
disorders (Wang andHu, 2017). A high production of nitric oxide
has been implicated in the apoptosis of macrophages (Sarih et al.,
1993) and pathogenesis of inflammatory diseases (Borges et al.,
2013), suggesting high immunoreactivity induced by dietary fatty
acids after metabolic programming with maternal protein
restriction. Maternal prenatal malnutrition appears to modify
the programs of the gene expression profile of offspring adipose
tissue over the long term; this, combined with obesogenic
nutrition, predisposes prenatal malnourished individuals to an
altered lipid metabolism and fat accumulation in adulthood
(Lukaszewski et al., 2011).

Maternal protein restriction (8% casein) during pregnancy
and lactation followed by a post-weaning HF diet (41% fat)
induced an increase in the percentage of visceral fat, reduced
insulin sensitivity, and increased food intake in rat males at
90 days of age (Gosby et al., 2010). In an experimental design
with Sprague–Dawley rats, Iwasa et al. (2017) demonstrated that
the consumption of a post-weaning high-fat diet (62.2% of
calories from fat) induced an increase in the serum leptin level
and a trend toward a reduction in the hypothalamic POMC
mRNA level in the offspring of undernourished dams, whereas it
had no effect on the levels of orexigenic factors or other
anorexigenic factors. Male mice at 220 days of life
malnourished during pregnancy and lactation and fed with a
high-fat postnatal diet showed increased gene expression of
POMC and MC4R in the hypothalamus and hypomethylation
of the POMC promoter in the hypothalamus (Zheng et al., 2021).
Vickers et al. (2000) studied the interaction between restricted
maternal diet and amplification by a post-weaning high-fat diet
and demonstrated that deep adult hyperphagia is a consequence
of fetal programming and an essential contributing factor to adult
pathophysiology.

At the serum level, the activity of adipokines, such as leptin,
in malnourished organisms, presents divergent behavior and
suggests action and selective sensitivity, both with endocrine
regulation function (do Prado et al., 2009), in both immune
(Arroyo Hornero et al., 2020) and physiological systems. A
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study by Sellayah et al. (2014) sought to evaluate the effects of
incompatibility between the fetal nutritional environment
poor in proteins and a lipid-rich environment in the post-
weaning period; Wistar rats received a control diet (18%
casein) or with protein restriction (9%) during pregnancy
and standard diet during lactation. Pups, including males
and females, started to receive a control diet (7% lipids and
15% casein) or a high-fat diet (45% lipids and 26% casein),
from weaning to 16 weeks of age, when they were evaluated.
The study demonstrated that the nutritional mismatch
exacerbates the increase in blood pressure promoted by
maternal malnutrition, regardless of increased body
adiposity, glucose, or leptin levels, modulated upward only
by the high-fat diet and not by the maternal diet during
pregnancy. Post-weaning hyperlipidic diets have numerous
impacts on glycolipid metabolism in offspring with
maternal protein restriction, insulin intolerance, decreased
insulin sensitivity, higher triglyceride/high-density
lipoprotein ratio and high levels of leptin and interleukin-6
in adipose tissue and low adiponectin (Wu et al., 2020).

Another organ that appears to be particularly affected by the
nutritional transition and which is at the central core of the
development of a range of metabolic diseases is the liver. The
liver is sensitive to dietary modulations. A shortage of amino
acids, for example, has been related to liver diseases (Nishi
et al., 2018). In an experimental model of protein malnutrition,
hepatocytes isolated from rats fed with 5% casein protein for
14 days showed increased triglyceride synthesis (Taguchi et al.,
2017). Transcription factors, such as the carbohydrate-
sensitive response element-binding protein (ChREBp),
peroxisome proliferator-activated receptors (PPAR), and the

sterol regulating element-binding protein, (SREBp) respond to
excessive lipid consumption, and they control energetic
homeostasis and can activate pathways related to lipogenesis
and inflammatory processes in liver tissue (Mello et al., 2016;
Shimano and Sato, 2017; Li et al., 2019). Chmurzynska et al.
(2012) showed that the altered response to a high-fat diet
programmed by maternal nutrition during pregnancy was
detected as an altered gene expression in 10-week-old rats
and central adiposity in 16-week-old rats. Hepatic
transcription of PPARγ in response to the high-fat diet was
dependent on maternal nutrition. Male rats subjected to
maternal protein restriction and fed with a high-fat diet
showed an increase in PPAR levels, while rats with a
normoprotein maternal diet and a postnatal diet rich in
fatty acids showed a reduction in PPAR levels. Likewise,
activation of the PPARα gene by a high-fat diet was
dependent on prenatal nutrition (Chmurzynska et al., 2012).

Assessing the structure of liver tissue, a study by Souza-Mello
et al. (2007) demonstrated that nutritional mismatch with a low
protein maternal diet (9% during pregnancy and lactation) and a
postnatal diet rich in lipids (50% of the total caloric component)
induces an increase in blood pressure and gonadal adiposity, in
addition to worsening liver steatosis in male rats. However, the
mechanisms are still unclear, but they may be related to an
increased activity of lipid synthesis and oxidation as a strategy
to save proteins in conditions of scarcity and in the regulation of
transcription factors and gene expression related to glycolipid
metabolism. In an experimental study with sheep, a 50%
reduction in dietary proteins during pregnancy and lactation,
followed by post-weaning consumption of a high-fat diet (38%
fat), increased the hepatic triglyceride content in lambs, with

FIGURE 2 | Graphic summary of the repercussions of the postnatal consumption of high-fat diets in individuals subjected to protein restriction during pregnancy
and lactation.
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permanent reduction induction in the expression of genes that
regulate energy homeostasis (GLUT1, PPAR, SREBP1c, and
phosphoenolpyruvate carboxykinase gene—PEPCK) (Souza-
Mello et al., 2007).

During fasting states, the use of fatty acids as an energy
substrate occurs through β-oxidation, mainly in a
mitochondrial environment (Reddy and Rao, 2006), with the
action of key enzymes such as acyl-CoA dehydrogenase, enoyl-
CoA hydrolase, and β-hydroxycil CoA-dehydrogenase (Jones,
2016). Elevated insulin and glucose levels regulate the synthesis of
triacylglycerols, stimulating the activity of transcription factors
such as ChREBp and the sterol regulatory element-binding
protein SREBp and activated by peroxisome proliferator
receptors PPAR. These factors increase the expression of
lipogenic enzymes such as acetyl-coenzyme A carboxylase
(Zhao et al., 2012) and fatty acid synthase FAS (Canbay et al.,
2007). Imbalances in transport mechanisms or in the activation of
transcription factors can then induce excessive accumulation of
triglycerides within hepatocytes and trigger liver diseases
(Titchenell et al., 2017).

The increase in energy levels induces a reduction in
mitochondrial oxidative activity, while the increase in lipid
peroxidation induces damage to mitochondria. In the liver, a
maternal protein restriction of Wistar rats (casein 8%) during
pregnancy and lactation, followed by a diet with post-weaning HF
until 90 days of life (32% of the caloric percentage originated in
lipids and 59% at more than saturated fatty acids), induced a
reduction in all respiratory states of liver mitochondria, (Vickers
et al., 2000) greater mitochondrial edema compared to controls
enhanced after the addition of Ca2+ and prevented in the presence
of EGTA (calcium chelator) and cyclosporine A (transition pore
inhibitor of mitochondrial permeability), and greater oxidation of
liver proteins and lipid peroxidation, with a reduction in catalase
and glutathione peroxidase activities. These data suggest that adult
rats subjected tomaternal protein restriction weremore susceptible
to liver mitochondrial damage caused by a diet rich in saturated
fatty acids after weaning (Simoes-Alves et al., 2019). Figure 2
summarizes the repercussions of the consumption of high-fat diets
postnatally in individuals subjected to protein restriction during
pregnancy and lactation.

CONCLUSION

A shift in the nutritional status of the perinatal and postnatal
environment induces accelerated recovery growth and
adjustments in autonomic modulation and insulin sensitivity
as well as mitochondrial dysfunction. A post-weaning high-
caloric/high-fat diet potentiates these adjustments,
exacerbating deleterious changes in important metabolic
organs, namely, hepatic, adipose, and muscular tissue. The
epigenetic repercussions of postnatal metabolic overload may
be etiological sources of cardiometabolic diseases, which affect the
subjects suffering nutritional transition.
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