
biomolecules

Review

The Role of Estrogens and Vitamin D in Cardiomyocyte
Protection: A Female Perspective

Clara Crescioli

����������
�������

Citation: Crescioli, C. The Role of

Estrogens and Vitamin D in

Cardiomyocyte Protection: A Female

Perspective. Biomolecules 2021, 11,

1815. https://doi.org/10.3390/

biom11121815

Academic Editor: Pietro Scicchitano

Received: 1 November 2021

Accepted: 30 November 2021

Published: 2 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Movement, Human and Health Sciences, Section of Health Sciences, University of Rome “Foro
Italico”, 00135 Rome, Italy; clara.crescioli@uniroma4.it; Tel./Fax: +39-06-36733395

Abstract: Women experience a dramatical raise in cardiovascular events after menopause. The decline
in estrogens is pointed to as the major responsible trigger for the increased risk of cardiovascular
disease (CVD). Indeed, the menopausal transition associates with heart macro-remodeling, which
results from a fine-tuned cell micro-remodeling. The remodeling of cardiomyocytes is a biomolecular
response to several physiologic and pathologic stimuli, allowing healthy adaptation in normal
conditions or maladaptation in an unfavorable environment, ending in organ architecture disarray.
Estrogens largely impinge on cardiomyocyte remodeling, but they cannot fully explain the sex-
dimorphism of CVD risk. Albeit cell remodeling and adaptation are under multifactorial regulation,
vitamin D emerges to exert significant protective effects, controlling some intracellular paths, often
shared with estrogen signaling. In post-menopause, the unfavorable association of hypoestrogenism-
D hypovitaminosis may converge towards maladaptive remodeling and contribute to increased CVD
risk. The aim of this review is to overview the role of estrogens and vitamin D in female cardiac
health, speculating on their potential synergistic effect in cardiomyocyte remodeling, an issue that is
not yet fully explored. Further learning the crosstalk between these two steroids in the biomolecular
orchestration of cardiac cell fate during adaptation may help the translational approach to future
cardioprotective strategies for women health.
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1. Introduction

Sex-related differences consistently contribute to the clinical heterogeneity charac-
terizing aging in respect to cardiovascular diseases (CVD), which currently represent the
leading cause of illness and death in the Western world [1]. Indeed, women show a higher
prevalence of age-related cardiac defects, including left ventricular hypertrophy, increased
end-diastolic pressure, diastolic dysfunction, fibrosis, inflammation, oxidative stress and
lower exercise capacity [2].

The midlife estrogen withdrawal is recognized as being the main traditional cause
of CVD increase and heart failure (HF) in post-menopausal women [3]. Indeed, the
menopausal transition associates with adverse organ macro-remodeling, which is in turn
ascribable to cardiac and endothelial cell micro-remodeling (which occurs in a sex-specific
mode [4,5]). Those effects largely depend on the presence of estrogen receptors (ER) within
the myocardium and endothelium, and encompass many cellular biological functions
by genomic and non-genomic mechanisms [6–8]. Nevertheless, estrogens/ER alone are
unlikely to entirely explain heart disease presentations and outcomes in women, so that
the identification of bio-factors contributing to the higher risk in females is still subject to
ongoing debate.

Low vitamin D can critically promote molecular alterations toward an aberrant cell
remodeling. Indeed, vitamin D deficiency increases the risk of CVD development, im-
pacting cell morphology, metabolism and function [9,10]. Upon binding with its specific
receptor VDR present in vascular and cardiac cells, vitamin D affects several biomolecular
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and cellular processes. As for estrogens, whereas vitamin D actions onto vascular cells
are quite exhaustively covered in literature, its molecular effect onto cardiomyocytes is
still incompletely understood, especially from sex-dependent standpoint. Yet, an aberrant
remodeling of cardiomyocytes, as occurring in unfavorable environment, is pointed to
as the main trigger of a compromised cardiac function [11,12]. Conversely, in normal
conditions, cardiac cell remodeling allows adaptive responses and favors cardio-protection.
Women after menopause tend to have pronounced hypovitaminosis D, which, along with
hypoestrogenism, seems to permit more relevant negative effects on heart health.

This review aims to offer first an overview on the role of estrogens and vitamin D in
cardiovascular female health, focusing on cardiomyocyte remodeling. Then, the potential
synergistic effect of low estrogens-low vitamin D combination, both hormone-deficient
conditions typically occurring in postmenopausal life, is speculated. Brief comments on
the impact of possible protective interventions, such as a combined supplementation of
these hormones or physical activity are mentioned in the conclusive part.

2. Cardiovascular Health: A Sex Hormone Matter

Although sex-dependent differences in cardiac aging and CVD development are
multi-factorial, there is evidence pointing out the role of estrogens/ERs. Indeed, the drastic
difference between aging women and men is unquestionably related to the rapid decline
of female sex hormones, associated with menses ending. Female heart is known to better
resist different insults, and, accordingly, women are better protected from heart diseases
compared to men. This remarkable “female advantage” is lost with menopausal transi-
tion or metabolic diseases such as diabetes, which significantly increased the incidence of
cardiovascular morbidity and mortality in post-fertile women life, as summarized else-
where [13,14]. Indeed, some functional and structural sex-dependent intrinsic differences,
including heart contractility and rhythm, which affect contraction and relaxation, less left
ventricular mass, lower chamber volume, thinner wall thickness or electro-mechanical
function as seen in females, might explain at least in part, the sex dimorphism in clinical
manifestations and responses to treatments. In general, women present less severe clin-
ical symptoms, but the prognosis after heart attack is worse, with about 40% mortality
in women vs. 25% in men within a year [14]. Women are more frequently affected by
hypertension (which likely contributes to the different left ventricular dysfunction and
arterial stiffness) and are more prone to cardiometabolic syndrome (which exacerbates
sex-related bias in cardiac disease occurrence) and disease sequelae, as addressed later
in this manuscript. In particular, left ventricular diastolic dysfunction, the typical clini-
cal presentation of HF with preserved ejection fraction (HFpEF) predominant in women,
seems to be facilitated by estrogen deficiency, affecting intra-cellular calcium homeostasis,
cyto-skeleton and extra-cellular matrix rearrangements [15].

From the pioneering studies, the role of estrogens in cardioprotection has been essen-
tially related to the arterial vasodilation through direct genomic and non-genomic actions
onto vascular cells [16–19].

In endothelial and vascular smooth muscle cells, in fact, estrogens—especially 17β-
estradiol/E2, the predominant biologically active form—upon binding with α and β

subtype ER (ERα and ERβ) and with G-protein coupled estrogen receptor (GPER), ac-
tivate a cascade of intra-cellular signaling paths, such as phosphoinositide 3-kinase-
serin/threonine-specific kinase B (PI3K/Akt)/endothelial nitric oxide synthase (eNOS)
and mitogen-activated protein kinases (MAPK)/eNOS, allowing nitric oxide (NO) release,
vascular relaxation and vasodilation [20–22]. These effects converge towards the regulation
of the vascular tone against hypertension and protect from high pressure-induced damage
of arteries and atherosclerosis [23]. In addition, atherosclerosis prevention also depends on
the anti-oxidant action of estrogens, which reduces the deposition of circulating cholesterol
in arteries wall and limits inflammation [24]. With the menopausal transition, estrogen-
induced protection is lost, as endogenous hormone concentration in women drops to the
small amount produced in extra-gonadal sites (adrenal cortex cells, aortic smooth muscle
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cells, adipose tissue, brain, bone), similarly to ovariectomized women or men [25]. The
scheme in Figure 1 summarizes the main effects of estrogens in vascular and cardiac cells.
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Figure 1. Estrogen-induced regulation in vascular and cardiac cells. Estrogens work against hyper-
tension and atherosclerosis through anti-oxidant/anti-inflammatory activity and regulate vascular
tone, acting on endothelial and smooth muscle cells. In cardiomyocytes, estrogens regulate cell con-
tractility affecting Ca2+ dependent signaling, mitochondria function and sarcoplasmic/endoplasmic
reticulum Ca2+-ATPase 2a (SERCA2a) system.

Estrogens in Males, Androgens in Females

The conversion of testosterone to estrogens by aromatase seems to exert some protect-
ing effects in males as well [26]. In fact, men with E2 deficiency or E2 resistance, due to
specific mutations in the cytochrome P450 aromatase gene (Cyp19a1) or in the ERα gene
(ESR1), respectively, show an increased risk of CDV in association with total cholesterol
level rise, insulin resistance (IR) and type 2 diabetes (T2D) development, defects in glucose
tolerance and vasodilation [27–31]. Treatment with estrogens can normalize the cardiac
function in male mice with HF, induced by aromatase activity suppression [32]; in line with
this experimental observation, a reduced risk of CVD events from endogenous estrogens is
reported in elder men [33].

To date, whereas in men the exact role of E2 with regard to heart function remains
questionable, estrogens seem undeniably protective in women, considering the CVD risk
before and after menopause when disease incidence becomes equal or even greater than
that one observed in men-making CVD the leading cause of death in both sexes [26,34,35].

Nevertheless, it should be recalled that long-term treatment with estrogens (especially
synthetic drugs), as contraceptives or hormone replacement therapy (HRT), is associated
with super-oxide radical accumulation, inflammation and hypertension [36,37], processes
that can worsen cardiac myopathic changes. According to the “theory of timing and
opportunity”—based on menopausal stage and time of hormone administration—the
cardiovascular benefit seems limited to younger women, who initiated HRT in early peri-
menopausal stage [21,38–40]. Particular attention should be given to HRT in women
with a condition known as metabolic or cardiometabolic syndrome, a cluster of diseases,
including obesity, dyslipidemia, hypertension and IR, which increases with menopause
(present in 40% of post-menopausal women) and shows some sex dimorphism as well. In
fact, although this condition represents a primary risk factor for diabetes and CVD in both
sexes, it is speculated that it contributes to the different cardiovascular sequelae in men
and women. Whereas HRT confers beneficial effects on metabolism, acting onto abdominal
fat, blood lipid, adipokine profile, vascular resistance and oxidative stress, it does not
provide sufficient cardio-protection in women with pre-existing diabetes, CVD or related
risks [13,14]. This discrepancy might be partially due to estrogen bio-molecular interactions
with the cardiovascular system, leading to differences in response to the treatment [41].
Further studies are mandatory to fully explain the underlying mechanism(s). Meanwhile,
given the existing controversy on HRT pros and cons, a careful evaluation of potential real
benefits is recommended when considering this therapeutic strategy.

The cardiovascular health in females seems under androgen control as well. The excess
of androgens produced by ovary in menopause, not balanced by estrogen production, is
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hypothesized to negatively affect women cardiovascular function and to increase the
cardiovascular risk in association with T2D and diabetic cardiomyopathy [13,42]. The
link between hypoestrogenism, hyper-androgenism and cardiometabolic risk in women
is still a challenging issue and surely deserves further studies [43,44]. Nevertheless, it is
undeniable that estrogens broadly impact women’s cardiovascular health through rapid
and genomic mechanisms exerted onto endothelium and vascular cells, as exhaustively
covered in a recent report [19] and not discussed in this review. Herein, the attention is on
some significant direct effects of estrogens onto cardiac cell remodeling, which represents
the critical event driving toward health maintenance or disease development.

The physiological remodeling of the cardiomyocyte, both in males and females, is
under control of different factors finely orchestrated to allow compensatory functional
adaptation in response to various stimuli, i.e., aging, stress, physical exercise or pathological
challenges. If, for any reason, an adaptive cell remodeling is not properly maintained,
maladaptive processes take place, and, consequently, cardiac function is not safeguarded.

3. Estrogens and Cardiomyocyte Remodeling

The protective effect of estrogens on female heart against various stress challenges,
such as hypertrophic, ischemic or cytotoxic stimuli, involves direct actions of these hor-
mones in the cardiomyocyte. The sex difference underlying this process undoubtedly
includes multi-factorial reasons, but the major evidence points to a causal role of the
sex steroid hormone E2 and its receptors (ER) in the physiology and pathophysiology of
the heart. Interestingly, key events like cardiac calcium (Ca2+) ion channel activity and
mitochondrial function are regulated in a sex-specific manner, as discussed below.

3.1. Estrogen Receptors

The presence of α and β cardiac ERs in ventricular and atrial cells of adult and
neonatal heart is known since quite ago, and successively confirmed in female and male
mice [45–48]. ER subtypes are present in cardiac cell cytosol with different subcellular
localization (being ERα located in or adjacent to plasma membrane) and exert transla-
tional and post-translational regulatory mechanisms [48–50]. Studies in animals carrying
cardiomyocyte-specific deletion or overexpression of ERα (ERKO-mice or csERα-OE mice,
respectively) documented that this receptor subtype leads female cardiomyocytes to more
efficient recover after cardiac injury, albeit it is dedicated to heart mass regulation in both
sexes [50–53].

ERβ dysfunction is linked to cardiomyocyte disarray and important alterations in
tissue architecture, including nuclear structures and gap junctions [54]. Of note, females,
not males, lacking ERβ show a significantly reduced post-ischemic cardiac recovery [55,56].
These findings support an ERβ-dependent protective role after cardiac injury in females.
In presence of cardiomyocyte-specific ERβ over-expression (csERβ-OE mice), differences
between sexes were present neither in basal cardiac morphology/function/weight, nor
in recovery/survival after cardiac injury [54]. Female and male mice, indeed, showed the
same improvements in several cardiac parameters, except for left ventricular volume and
ejection fraction, being both more pronounced in males. This effect likely depends on a
reduced cardiomyocyte remodeling towards fibrosis, as observed in males. The main pro-
tective action of ERβ seems to rely on a better protection of the sarcoplasmic/endoplasmic
reticulum Ca2+-ATPase 2a (SERCA2a) system and Ca2+ reuptake post-injury.

In addition to ER α and β, cardiomyocytes express GPER, a membrane receptor essen-
tially mediating non-genomic rapid actions [57]. Only male GPER-knock out (KO)-mice
seem to develop impairments in cardiac function. Defects in heart structure and func-
tion observed in cardiomyocyte-specific GPER-KO animals were exacerbated in aging
males [58]. This difference observed between males and females likely mirrors the differ-
ence found in gene expression profile related to cardiomyocyte GPER-deficiency and sex,
as mitochondrial genes were enriched only in female GPER-deleted cardiomyocytes vs.
wild type [58,59].
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Of note, mitochondria seem to play one of the major roles in orchestrating biomolecular
events in cardiac cell remodeling and function.

3.2. Sex-Dimorphic Mitochondrial Function

A marked sexual dimorphism is reflected in different mitochondrial calcium handling,
higher oxidative capacities, and greater resistance to oxidative stress. Mitochondria content
from female cardiomyocytes seems lower but with higher efficiency and differentiation
levels, as compared to male ones [60]. Mitochondria from cardiac cells express both
ER subtypes, which contribute to ER-related regulation of these organelles by affecting
contractility (involving ATP supply), Ca2+ homeostasis, reactive oxygen species (ROS)
formation and cell apoptosis [61–63]. E2 are reported to enhance mitochondrial respiration
and reduce ROS, both processes associated with a lower incidence of CVD in women before
menopause; accordingly, during aging, estrogen decline is associated with mitochondrial
damage, tissue/cell loss of function and increased risk of disease, as exhaustively described
elsewhere [60]. Estrogens and ER play a pivotal role also in the regulation of Ca2+ ion
channel signaling and contractility. Sex difference in contracting function, i.e., excitation–
contraction (EC) coupling, involving cardiac L-type channels, are observed in humans
and animals. Human ventricular cardiomyocytes of female failing heart retain greater
contractility and enhanced L-type Ca2+ current, as compared to men [64–66]. So far,
estrogen decline is largely engaged in Ca2+ signaling deregulation and mitochondria
defective functioning, the two main mechanisms pointed to as the most important events
involved in aging heart and CVD development/progression [63,67,68].

A study in ovariectomized mice documents the importance of AMP-activated protein
kinase (AMPK) in estrogen-mediated cardio-protection via intra-cellular Ca2+ and cell
contractility regulation [69]. This signaling molecule involved in energy metabolism
and cardiac function regulation is documented to be permissive for estrogen-mediated
maintenance of cardiac homeostasis, and, noticeably, can restore a correct cardiac glucose
transport, impaired after ovariectomy. The effect of estrogens in cardiomyocytes are
schematized in Figure 1.

Hence, the role of estrogens onto these cellular processes within cardiac myocytes is
unquestionable; nevertheless, it should be underlined once more that sex hormones are
not the unique steroids controlling cardiomyocyte function. In particular, the following
paragraph will describe how cardiovascular health and cardiac cell remodeling depend
on vitamin D, another steroid hormone exerting important biological actions, beyond its
classical skeletal effects. The main functions mediated by ER different subtypes and VDR
are summarized in Table 1.

Table 1. Estrogen receptor (ER) and vitamin D receptor (VDR) in cardiomyocytes. The table summarizes the main
intra-cellular effects mediated by ER sub-types and VDR, affecting cardiomyocyte remodeling.

Receptor Type Mediated Function Refs.

ERα growth control
post-injury recovery (more efficient in females) [50,51]

ERβ
cell/tissue structure, gap junction

post-ischemic recovery (only in females)
anti-fibrotic activity (more efficient in males)

[54–56]

ERα/ERβ
(in mitochondria)

mitochondria sex-dimorphism
Ca2+ homeostasis, ROS formation, cell apoptosis, EC coupling (more efficient in females)

cardiotoxicity protection, injury resistance
(more efficient in females)

[60–66]

GPER structure and function protection (more efficient in males) [58,59]

VDR

anti-hypertophic/anti-fibrotic activity
contractility/relaxation control

E2-dependent fatty acid uptake/β-oxidation reduction (females)
anti-inflammatory/anti-autophagic activity

[70–76]
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4. Cardiovascular Health beyond Sex Hormones: Vitamin D Matters

The effect of vitamin D on cardiac aging, function and disease still represents a hot
issue in research. Since quite a long time ago, vitamin D is known to encompass a wide
spectrum of biological actions, which significantly affect cardiovascular homeostasis, as
suggested by the clinical association between vitamin D deficiency and different cardiovas-
cular events [77–79].

It should be kept in mind that vitamin D is a molecule with quite a special identity,
presenting features typical of a nutrient, a hormone and a rapid regulating factor; it is
able to affect human health through a fine-tuned regulation of cell functions, by actively
participating in biomolecule networking, as recently reported [80–82].

Concerning basal vitamin D level, males seem to retain higher serum hormones
than females (likely due to body composition [83]), albeit some controversial data exist,
maybe depending on several variables. Data from cross-sectional studies in more than
2000 Norwegian morbidly obese subjects and in about 4000 Indian obese and diabetic
patients document higher odds of vitamin D deficiency in men, likely related to abdominal
adiposity, and higher cardiometabolic risk in association with lower vitamin D, respec-
tively [84,85]. Conversely, studies in coronary artery disease report that lower vitamin
D levels, as found in women associate with disease severity [86]. However, rather than
absolute differences between male and female vitamin D basal levels, some sex-specific
determinants of vitamin D status (i.e., body fat, presence/absence of pathologies, exposure
to sun, diet and hormone supplementation and sedentary lifestyle) should be considered,
especially in scenarios evaluating preventive strategies in diseases with a strong female
bias, as shown, i.e., in auto-immune diseases [87–89].

Despite data controversy on sex-related difference in basal vitamin D and unsubstanti-
ated remarks regarding D level and heart health in females and males, the need to improve
vitamin D status related to cardiovascular health in the general population is unequivocally
recognized [90].

From previous human and experimental studies, the last ones performed in restriction
diet models, vitamin D deficiency emerges to associate with increased arterial blood pres-
sure, vascular oxidative stress, modifications in cardiac gene expression, left ventricular
hypertrophy, cardiac inflammation, coronary artery disease severity, fibrosis and apopto-
sis [78,91,92]. In humans, low serum vitamin D level associates with impairments of left
ventricular structure and function [93,94]. The scheme in Figure 2 summarizes some of the
main detrimental effects of vitamin D deficiency on CVD.
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Hypovitaminosis D enables several cardiovascular alterations associated with CVD
development and severity (CAD: coronary artery disease).

Indeed, vitamin D, upon binding VDR, can control cardiovascular homeostasis by
affecting a variety of mechanisms, including cellular proliferation/hypertrophy, blood
pressure and renin–angiotensin system. Clinical evidence indicates that vitamin D, like
estrogens, directly impacts on vasculature and endothelial cells, as shown by the positive
correlation between vitamin D level and arterial compliance, improvements in endothelial
function, a reduction in vascular fibrosis in response to injury and a decrease in those
inflammatory cytokines underlying HF development [79,95–99]. To date, concerning
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cardiovascular disease prevention based on endothelial function protection, the beneficial
effects of vitamin D on the vasculature are still under debate, especially in light of the
possible dose-related vasculature calcification during hormone supplementation. This
specific issue is beyond the aim of this review and is plenty covered elsewhere [100–102].

Conversely, vitamin D actions directed onto the cardiomyocyte are less covered in
literature and, understandably, the main reports are on animal models, which not always
can be translated to humans. Another gap (even greater) in literature concerns possible sex-
specific associations between vitamin D deficiency and CVD. Those topics are addressed in
the following paragraphs.

5. Vitamin D and Cardiomyocyte Remodeling

Nowadays, it is widely recognized that vitamin D level affects cardiovascular health
and cardiac cell adaptation, impinging on several intra-cellular processes, including Ca2+-
dependent mechanisms such as Ca2+-binding protein synthesis, adenylate cyclase activa-
tion, voltage-dependent Ca2+ channel rapid activation and sarcoplasmic reticulum Ca2+

uptake and release [70]. Although the heart is not considered a traditional target tissue of
vitamin D, functional vitamin D receptors (VDR) are present in human and animal cardiac
myocytes and exert some biological protective actions [103,104] (please see Table 1).

Some investigations suggest the importance of vitamin D/VDR system in controlling
cardiac hypertrophy, a dominant feature of several heart disease, and diastolic function.

I.e., cardiomyocyte-specific VDR deleted mice (VDRKO mice) and VDR-deleted rats exhibit
ventricular hypertrophy, increased matrix turnover and kinetics alteration [71,105,106]. In those
experimental models, liganded VDR works against hypertrophy by counteracting the
pro-hypertrophic calcineurin/nuclear factor of activated T-cells (NFAT) and modulatory
calcineurin inhibitory protein 1 (MCIP 1), and ameliorates contractility and relaxation
kinetics, respectively [70–72]. Another example of heart cell protection upon VDR activation
comes from a model of diabetic fatty rats (Zucker), in which the treatment with vitamin
D can limit cardiomyocyte autophagic activity and damage through the inhibition of
FoxO1 translocation and transcriptional activity [73]—the same mechanisms described in
osteoblasts (the classical cell target of this hormone) [107].

In human cultured cardiomyocytes exposed to maximal pro-inflammatory challenge,
a VDR agonist blunts the intra-cellular activation of signal transducer and activator of
transcription 1 (Stat1), induced by interferon (IFN)γ, and notably, almost prevents phos-
phorylation/nuclear translocation of nuclear factor-kB (NF-kB), induced by tumor necrosis
(TNF)α [74]. The latter effect seems particularly intriguing, considering the relevant role
played by this prototypic inflammatory cytokine in adverse cardiac remodeling toward
heart failure and disease outcome [108,109].

Deficits in VDR expression and low vitamin D are shown to allow detrimental alter-
ations in metabolism, signaling and ionic currents of cardiomyocytes. As an example, in
presence of vitamin D insufficiency, ROS generation is enhanced, and, in turn, promotes a
cascade of pro-hypertrophic intracellular signaling, i.e., MAP kinase cascade, extra-cellular
signal-regulated kinase 1/2 or ERK 1/2, ERK 5, and NFκ-B, c-Jun NH2-terminal kinase
1/2 (JNK), p38 mitogen-activated protein kinase [110], all converging towards fibrosis
development. The length of vitamin D deficiency seems to determine the intensity of
cardiomyocyte alterations, and, noticeably, the restoration of adequate vitamin D level can
protect cardiomyocytes from aberrant signaling [111].

Membrane-bound VDR is shown to mediate rapid non-genomic processes and control
the contraction of cardiomyocyte sarcomere, through caveolin 3 interaction, an integrated
mechanism also reported in other cells [112–115].

Non-genomic VDR activation is also described to regulate post-translational events
through epigenetic effects by the generation of specific microRNA (miRNA) [116,117]. Of
note, miRNA gene regulation by VDR may represent an important mechanism involved
in the control of signal transduction through the recognition and degradation of target
mRNAs level and translated proteins [118]. Indeed, the miRNA regulatory network may
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largely affect signaling molecules that exert pleiotropic effects all through the body, such as
vitamin D. In fact, since miRNA targets may number up to hundred, it is conceivable that
this mechanism can largely amplify the pleiotropic effects of vitamin D/VDR in cardiac
cells, as occurs in other tissue and cells, i.e., adipose, cancer or bone cells, striated muscle
cells, in which a mutual interaction is described [119–125]. Figure 3 schematically reports
some of the main regulatory actions of vitamin D in cardiomyocytes.
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Vitamin D and Sex-Dimorphic Cardiac Metabolic Flexibility

Another cardioprotective mechanism of vitamin D is the regulation of mitochondrial
metabolism and energy supply [75].

The energetic regulation of the cardiomyocyte is a quite complex process characterized
by substrate promiscuity (fatty acids, carbohydrates, amino acids, lactates and ketons) to
allow for multiple substrate utilization for energy production, in view of the high energy
demand. Cardiac cells predominantly utilize fatty acids and rapidly shift to other substrates
as they become abundantly available, to warranty an adequate ATP supply [126]. This
process, known as metabolic substrate flexibility, permits the cell to adapt in response to
physiologic conditions (i.e., during exercise) or pathologic challenge, such as hyperglycemia
or inflammation [12]. Cardiac energetics and metabolic substrate flexibility display some
degree of sex-dimorphism as well. As an example, according to human in vivo studies in
healthy young adults, a women’s heart appears to utilize more oxygen and less glucose
as compared with the heart of age-matched man [76]. This effect is dependent, in part,
on estrogen-induced eNOS upregulation, which decreases glucose transporter (GLUT)-
4 translocation to cell surface and, in turn, reduces glucose uptake/utilization by the
cardiomyocyte [127,128]. Thus, female cardiac cell energetics depends more on fatty acid
oxidation, which requires more oxygen consumption. The well-perfused oxygenation is
one of the mechanisms underlying cardio-protection in healthy female heart. However,
recent studies on exercise-induced remodeling in males and females show that female
cardiac cells likely retain a lesser degree of metabolic flexibility to adaptation in stress or
disease conditions [129]. Noticeably, in cardiac cells vitamin D is reported to impinge on
the energy substrate balance, regulating fat uptake/fatty acid β-oxidation via sirtuin 3 [75].

In this scenario, we could figure the cardiomyocyte as the cellular crossroad where
the hormonal signaling from estrogens and vitamin D may meet and intersect to regulate
cell remodeling and drive cardiac function towards adaptation or, in case of simultaneous
hormone deficiency, maladaptation, as depicted in Figure 4.

To date, the research on this specific topic is still in its infancy, but the cooperation
between vitamin D and estrogen in the regulation of some other important biological
functions may provide mechanisms and models as examples.
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6. Vitamin D and Estrogen Cooperation: Learning from Examples

The classical example of interaction between vitamin D and estrogens comes from
bone health in women: both hormones act in synergy to promote osteoblast proliferation
and differentiation, in association with E2-induced VDR upregulation, via MAPK, ERK1/2
signaling, as well documented in past studies [130–132].

The cooperation between vitamin D and estrogens in mice striated muscle cells results
in a potentiated induction of cAMP response element binding (CREB) phosphorylation
and c-Fos protein expression, via MAPK and ERK-dependent intracellular cascade acti-
vation [133]; this observation discloses hypothesis on fast non-transcriptional responses
evoked by hormone combination to promote muscle recovery and function.

Another example of vitamin D and estrogen signal cooperation is elegantly shown
by human and experimental studies in autoimmune multiple sclerosis (MS), a disease
with higher female bias and marked hypovitaminosis D. In mice with autoimmune en-
cephalomyelitis (EAE, resembling human MS), only intact females can achieve protective
effects via vitamin D [134,135]. After estrogen implants, EAE ovariectomized females fully
retrieve vitamin D-induced beneficial effects. The protective effect relies on an enhanced
E2 biosynthesis promoted by vitamin D and an increased VDR expression induced by E2,
allowing the two hormones to act together toward disease remission [135]. This vitamin
D-mediated protection is female specific and is observed neither in ovariectomized females
nor in males. Of interest, similar results come from a human large prospective study in MS
subjects: the higher level of vitamin D naturally occurring in summer inversely associates
with MS incidence and MS disability only in women, suggesting that estrogens, somehow,
are selectively permissive for the beneficial effects of vitamin D [136].

The importance of vitamin D-estrogens mutual crosstalk in health/disease discrim-
ination is not so surprising when thinking of some pioneering investigations in women,
which showed that vitamin D level is higher in high estrogen conditions (i.e., pregnancy,
ovulation, HRT in post-menopause) [137,138]. Hypovitaminosis D and low free testos-
terone associate with particularly adverse clinical outcome in men referred for coronary
angiography, suggesting some interplay of these hormones in males [139]. Low vitamin
D and testosterone deficiency are considered typical features in men with advanced HF;
however, vitamin D supplementation in this group of patients cannot prevent the decline
in testosterone indices [140].

Concerning the specific topic on female heart function, a quite recent study postulates
a synergistic role of vitamin D and E2 in postmenopausal women with metabolic syn-
drome, a cluster of simultaneous cardiovascular risk factors, leading to an increased risk of
heart disease, stroke and T2D, as previously mentioned [141]. The study shows that low
vitamin D likely increases the risk of disease in women with hypoestrogenism, document-
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ing a stronger inverse correlation E2-metabolic syndrome in women with D hypovita-
minosis vs. women with a normal vitamin D level. This observation is in line with a
previous study performed in African American women, who are most vulnerable than
other age-matched race or ethnic groups because of their higher risk for this disease, likely
related to further reduction in estrogen and vitamin D levels [142].

Although these papers are far from confirming that a low estrogen level favors the
disease via vitamin D deficiency, some mechanisms are conceivable, involving hormone-
dependent merged actions onto endothelial cells and cardiomyocytes. Meanwhile, in
vascular (endothelial and smooth muscle) cells, vitamin D and estrogens are known to
interdependently regulate blood pressure by the release of potent vasodilators, such as NO,
prostaglandins (PGs), nitric oxide and calcitonin gene related peptide (CGRP) [142,143],
the potential cooperating mechanism(s) of these hormones in cardiomyocytes are scarcely
described. However, as addressed before in this review, it is well recognized that vitamin D
can directly affect signal transduction mediators and ion channels in cardiomyocytes,
often sharing the same biomolecular signaling with E2, such as NO, eNOS, CGRP and
peroxisome proliferator activated receptor (PPAR)α—the latter one is involved in lipid
and glucose metabolism regulation [142]. Thus far, the recognition that cardiomyocytes
express all the isoforms of nitric oxide synthase (NOS), the three isoforms of PPAR, CGRP
and progesterone (PG) receptors [144,145] can hopefully open further hypothesis and
perspectives on possible synergic mechanisms in these cells, whose structure and function
likely respond to vitamin D-other hormone interplay.

7. Conclusions

Although sex undeniably matters in cardiac health, vitamin D tightly affects heart
function in females and males. The detrimental convergence of hypovitaminosis D and
estrogen deficiency, naturally occurring with menses ending, reveals the higher vulner-
ability of postmenopausal women experiencing this condition, associated, indeed, with
a significant increase in CVD rate vs. age-matched men. Estrogens, the molecules clas-
sically considered as the main responsible for the sex-dimorphism in cardiac function,
unlikely can fully cover this difference. vitamin D, like estrogens, finely impinges on
heart remodeling in response to different challenges (i.e., aging, volume or pressure over-
load, exercise, necrosis). Nowadays, cardiomyocyte remodeling, the cellular event driving
whole organ macro-remodeling (via adaptive or maladaptive responses) is recognized to
be sex-dimorphic and affected by vitamin D. In this scenario, supplementation with both
hormones apparently would offer a promising approach in women CVD prevention, espe-
cially in post-menopause life. However, beside the limit of HRT (useful only when taken
within a limited timeframe), data on the efficacy of vitamin D supplementation in CVD
prevention are contradictory [146–148]. In the U-shaped relationship between vitamin D
and cardiovascular risk, 20 ng/mL is considered the vitamin D serum level associated with
an apparent minimum risk, and a dose > 4000 IU/day as supplement seems necessary
to affect heart remodeling in vitamin D deficient subjects with HF [90,149,150]. Indeed,
general important concerns still exist in several aspects, including the lack of a clear indica-
tion of the optimal dose requirement to respond to extra-skeletal needs, or the lack of a
clear definition of vitamin D insufficiency/deficiency, based on well-defined serum ranges
(still missing as well) [151–153]. Data from trials on D hormone supplementation, either
alone or combined, are unsatisfactory likely due to the high variability in protocols and
heterogeneity of the studied populations, since general health status, ethnicity, sedentary
habit are often not defined, as recently summarized elsewhere [80,81]. Furthermore, recent
evidence highlights the major role of exercise-induced sex-dependent heart remodeling
during life of men and women at different ages, either sedentary or physically active [129].
This topic is not addressed in the present review, both for length limits and because, in our
opinion, it would deserve a dedicated issue.

Thus far, albeit epidemiological studies and metanalyses report an unequivocal associ-
ation between vitamin D status and heart remodeling, there are still inconclusive remarks
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from the sex-specific standpoint [90,150]. Research on this specific field is still in its in-
fancy and we are aware of the difficulty to consider, present and discuss hypovitaminosis
D and sex-related CVD as not separate but interconnected issues, within more complex
scenario(s).

Herein, the interest is confined and focused on the importance of vitamin D-estrogen
interplay in cardiomyocyte adaptation, to drive the attention on an issue still not fully
explored and, maybe, to be hypothesis generating.

While waiting for mandatory well-designed trials to overcome the existing bias,
further progress of basic research on estrogen–vitamin D crosstalk and their orchestration
of the cardiomyocyte remodeling would represent an important step forward to narrow
the large gap in the knowledge of this topic, in consideration of the translational approach
to future strategies in women health prevention and therapy.
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