
Actin on trafficking
Could actin guide directed receptor transport?

Tobias Zech,* Simon D.J. Calaminus and Laura M. Machesky*
Beatson Institute for Cancer Research; Bearsden, UK

Keywords: trafficking, endosomes,
receptor trafficking, exocytosis, WASP
family proteins, Arp2/3 complex

Submitted: 04/30/12

Revised: 06/15/12

Accepted: 07/05/12

http://dx.doi.org/10.4161/cam.21373
*Correspondence to: Tobias Zech
and Laura M. Machesky;
Email: t.zech@beatson.gla.ac.uk
and l.machesky@beatson.gla.ac.uk

Commentary to: Zech T, Calaminus SD, Caswell P,
Spence HJ, Carnell M, Insall RH, et al. The Arp2/3
activator WASH regulates a5b1-integrin-
mediated invasive migration. J Cell Sci 2011;
124:3753–9; http://dx.doi.org/10.1242/jcs.080986

Here, we present emerging ideas
surrounding the interplay between

the actin cytoskeleton and receptor
transport and activation. The bulk of
actin dynamics in cells is thought to
contribute to architecture and mobility.
Actin also contributes to trafficking,
acting as a molecular scaffold, providing
force to deform membranes, facilitating
vesicle abscission or propelling a vesicle
through the cytoplasm1,2 and recent
studies highlight important connections
between the directed trafficking of
receptors and the impact on cell migra-
tion and actin dynamics. Additionally, a
number of newly described actin nuc-
leation promoting factors, such as the
vesicle associated protein WASH, reveal
unexpected roles of actin in membrane
traffic and suggest that the cell dedicates
a significant proportion of its regula-
tion of actin dynamics to controlling
trafficking.

Multiple Endocytic Compartments
Display Arp2/3-Mediated Actin

Assembly Dynamics

Cells often communicate with their
environment via transmembrane receptors
that receive signals from the extracellular
milieu and transmit them internally.
Regulation occurs not only at the level of
receptors binding to ligands, but can
critically depend on the numbers of
receptors displayed on the cell surface
and the endocytic trafficking pathways
shuttling receptors and receptor-ligand
complexes away from and back to the
plasma membrane (for recent reviews see
refs. 3–5).

As a general rule, new actin assembly in
cells occurs near a membrane interface.
One of the main drivers of new actin
filament formation adjacent to membranes
is the Arp2/3 complex (actin-related
protein 2/3 complex), which is activated
by the WASP-family (Wiskott-Aldrich
syndrome family) proteins (for recent
reviews see refs. 1, 6 and 7). During cell
migration, new filament assembly occurs
mostly underneath the plasma membrane,
but also on internal membrane systems.
Actin on intracellular vesicles is often in
very small patches (# 1 mM diameter) and
is usually transient and dynamic, requiring
very sensitive high-speed imaging. Only
recently has technology developed to a
point where we are able to begin to
capture some of the intricacies of intracel-
lular actin/membrane interactions.

Mammalian genomes encode at least
five types of WASP family proteins and
surprisingly, at least three (N-WASP,
WASH and WHAMM), likely have
important and evolutionarily conserved
roles in membrane trafficking.3 WASP
proteins generate branched actin networks
by bringing the Arp2/3 complex and actin
monomers together to nucleate a new
branch from a mother filament.1 In
addition to WASP proteins, formins (such
as FMNL1/2 and Diaphanous), which
nucleate and processively promote elonga-
tion of unbranched filaments also can
polymerize actin on vesicular structures.8-12

Likewise, Spire1, which contains multiple
WASP-homology domains and can nucle-
ate actin independently of Arp2/3 com-
plex, may cooperate with Arp2/3 complex,
as well as formin-2 (Cappuccino) to
somehow control progression of early to
late endosomes.9
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Here we highlight recent research
surrounding the vesicle associated WASP-
family protein WASH and we propose
that actin assembly has an important role
in trafficking of various receptor cargoes
through multiple endocytic compart-
ments. WASH was originally identified
as a gene upregulated in breast cancer cells
that is located in the subtelomeric regions
of multiple human chromosomes.13,14 In
humans, there are several WASH copies
in the genome, with most of them
currently curated as pseudogenes. WASH
is found in a complex of five proteins,
containing SWIP, FAM21, Strumpellin
and CCDC53 (Fig. 1) and termed the
WASH regulatory complex (SHRC).15-17

Actin Has an Important Role in
Multiple Endocytic Events/Stages
and WASH Facilitates Receptor
Retrieval Back to the Plasma

Membrane

The most well understood aspect of actin
in trafficking is probably the role of
actin assembly in clathrin-mediated endo-
cytosis. This has been extensively reviewed
elsewhere,18-20 so we will only briefly
summarize the main ideas. Clathrin
coated pits associate close to the plasma

membrane with both dendritic actin net-
works and actin comet tails.21 Notably, the
comet tails observed in a recent correlative
EM study were not always visible in the
matching immunofluorescence pictures
suggesting that small/subtle membrane
associated actin structures still need high
magnification microscopy to distinguish
them from the high “background” of other
cellular actin structures.21 N-WASP con-
tributes to the generation of branched
actin networks on clathrin-coated vesicles.
Actin is thought to form a cage around the
newly forming neck of a nascent vesicle
together with BAR domain proteins and
eventually dynamin. Actin polymerization
helps to physically stabilize the tubular
neck of a nascent vesicle as the clathrin
coat assembles and the force from actin
assembly pushes against the inherent
membrane tension.22,23 Once dynamin
assembles onto the neck, scission can
begin via dynamin’s GTPase powered
squeezing mechanism, although the actual
mechanical forces involved here are still
debated.24 Finally, when the new vesicle
breaks free, the clathrin coat is dis-
assembled and actin may then polymerize
at one pole to push the new vesicle away
from the plasma membrane as it journeys
to become an early endosome.

Once the vesicle becomes an early
endosome, it is likely to be associated with
WASH rather than N-WASP. It isn’t clear
how N-WASP dissociates and WASH
associates or even when, but EEA1
positive early endosomal vesicles contain
WASH puncta that co-localize with actin
and Arp2/3 complex.15,16,25,26 WASH
mediated actin polymerization is main-
tained on endosomes until the multi-
vesicular body (MVB) stage, or
presumably until late endosomes (LE) lose
the ability to recycle receptors and merge/
mature to lysosomes.27

Receptor transport back to the plasma
membrane from an endocytic vesicle is
much less defined than the endocytic
internalization process. The common view
is that tubulin is the cytoskeletal element
contributing to outward vesicular traffic
via kinesins, and WASH contains a
putative tubulin binding motif, which
may link actin and microtubule based
transport (reviewed in ref.7). But secre-
tion, in a variety of cell types, shows little
change upon tubulin depolymeriza-
tion.28,29 Rocketing of vesicles with endo/
lysosomal content might be facilitated by
N-WASP and actin comet tail forma-
tion30,31 and a recent publication on
vesicular transport in oocytes showed
evidence for a novel mechanism of
outward vesicle movement that is facili-
tated by actin cables assembled by
Formin2 and Spire 1/2.32 Thus, there are
still many questions about the relative
importance of actin and microtubules in
delivery of vesicles back to the plasma
membrane from internal endocytic com-
partments and likely different cell
types and compartments have different
mechanisms.

WASH localizes on many different
endosomal compartments, including early
endosomes, late endosomes and, in
Dictyostelium, post lysosomes.15,16,25,26,33

It co-localizes with the retromer complex,16

in support of the idea that WASH-
mediated actin networks work together
with retromer in salvaging cargo such
as receptors for retrograde transport.
Furthermore, depletion of WASH led
to a redistribution of CI-MPR (cation-
independent mannose 6-phosphate recep-
tor), a cargo of retromer that is retrieved
from endosomes back to the trans Golgi.16

Figure 1. The WASH containing regulatory complex (SHRC) activates actin polymerization on
endosomes. Schematic of the pentameric WASH containing SHRC complex in an inactivated state
with sequestered VCA domain (depicted in analogy to the WAVE/Scar complex; see ref. 17 for
description) and when polymerizing actin on an endosome. The complex is likely tethered to the
membrane by multiple lipid-protein interactions.
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WASH strongly localizes to the Rab7
positive late endosome/multivesicular body
(LE/MVB),26 a compartment that is also
marked by the retromer complex, which is
thought to interact with Rab7.34 Seaman
and colleagues identified the SHRC sub-
unit strumpellin, as a retromer interacting
protein and showed that the other subunits
of the WASH regulatory complex also co-
interact with retromer complex.35,36 How
WASH functions together with retromer is
not fully understood, but a recent study
links the FAM21 subunit of SHRC to
retromer directly37 and the SHRC is likely
to be important in the formation and/or
organization of structures known as retro-
mer tubules.38 Retromer tubules form when
receptors are to be recycled back to the
plasma membrane from endosomes.
Temkin and colleagues found WASH in
association with the retromer tubule asso-
ciated sorting nexin SNX27 as an import-
ant component for recycling of the β-2
adrenergic receptor.38 However, this is a
Rab4-dependent process,38 so may be
distinct from the Rab7-dependent sorting
of other receptors. The mechanism for
WASH uncoupling from retrograde vesicles
when they reach their destination is not
known and it is unclear whether retromer
and WASH always co-cycle together.

Actin Has Emerging Roles
in Membrane Tubulation, Sorting
of Receptor/Cargo Complexes

and Determining the Fate
of Particular Membrane Proteins

Increased imaging capability has allowed
detection of multiple actin networks on
various vesicle compartments, including
tubules that emerge from endosomes,
which often are associated with retrieval
of cargo back to the plasma membrane or
in the case of the CI-MPR, to the Golgi.
The nature and function of actin on these
emerging tubules and the small vesicles
that bud from them is just beginning to be
understood.

Deforming membranes to bud vesicles
requires energy to overcome membrane
tension and to induce curvature, move-
ment and scission, which could come from
actin polymerization.24 The Arp2/3 activ-
ator WHAMM (WASP homolog asso-
ciated with actin, membranes and

microtubules) localizes to the endoplasmic
reticulum and Golgi complex39 and is
proposed to form a link between micro-
tubules and nascent membrane tubules
forming in ER to Golgi transport.
WHAMM is proposed to nucleate
branched actin networks on nascent
tubules and drive their active formation.
In direct contrast, WASH is proposed to
oppose membrane tubulation, since
knockdown of WASH can result in
increased appearance of tubules in
cells.7,15,16 WASH was proposed to estab-
lish an actin network on a nascent tubule,
allowing dynamin to be recruited and thus
promote vesicle scission from the tubule.
This idea fits with previous studies of BAR
domain proteins showing that when actin
assembly was prevented, the tubules failed
to be cleaved.40 The arrival of branched
actin allowed dynamin to be recruited and
efficiently cleave nascent tubules. It is
unclear if WHAMM and WASH actually
work by such contrasting mechanisms,
with WHAMM promoting tubulation and
WASH promoting scission, but clearly
further studies are needed.

Whether WASH and WHAMM pro-
mote tubulation or scission of vesicles, it is
clear that at least WASH is important for
efficient receptor recycling. Several endo-
somal receptor cargos have now been
analyzed for their dependence on WASH
function, actin polymerization and other
members of the SHRC. All studies agreed
that WASH depletion led to a redistribu-
tion of recycling receptors from the plasma
membrane, Golgi or lysosomes to endo-
somal membranes indicating a retention of
receptors at that level.15,16,26,41 WASH
depleted cells display slower recycling
kinetics of multiple cargoes.15,26 This was
less pronounced for the constitutive recyc-
ling transferrin receptor, which was only
modestly affected15,26 or even unaffected25

by WASH depletion, than for receptors
that are regulated by signal transduction
and degradation like the integrin
a5β1.26,42-44 Perhaps surprisingly, it is
increasingly becoming apparent that
a5β1 integrins primarily recycle from a
late endosomal compartment when cells
are migrating in a 3D environment19,26,45

in agreement with WASH’s partial co-
localization with Rab7 positive endo-
somes.15 Recycling from a mature MVB/

LE compartment had been long suggested
for trafficking of the MHCII in immune
cells, which relies on the late endosomal
environment for loading with cognate
peptides.46

The mechanism by which WASH
regulates sorting of receptors such as
a5β1 integrin and targeting for recycling
rather than degradation is not yet clear,
but two lines of evidence point toward a
possible role in actin-based sorting of
receptors. First, Dictyostelium WASH is
important for the recycling of the vacuolar
ATPase that allows lysosomes to be
neutralized and then exocytosed from
cells.33 Insall and colleagues demonstrated
that V-ATPase is an actin binding protein
and hypothesized that actin networks
created by WASH and Arp2/3 complex
capture V-ATPase in patches on the
surface of lysosomes and thus sort the V-
ATPase for removal and recycling.33

Second, in mammalian cells, a recent
study by Puthenveedu and colleagues
identified determinants of receptor recyc-
ling and found that β-2-adrenergic recep-
tors need to be sorted into actin rich
domains on endosomes to allow efficient
exit from the endosome.47 Actin binding,
either directly by the receptor or via
receptor-associated proteins, as in the case
of the β-2-adrenergic receptor, was the
only prerequisite for recycling of a subset
of signaling receptors.

A systematic survey of endosomal
transport discriminated between at least
two separate types of receptor cargo.48 The
first group, represented by the transferrin
receptor, had characteristics of passive
cargo where receptor accumulation was
positively correlated with the size of the
endosome the recycling of receptors pre-
sumably commenced at a constant rate.
The second group, represented in the
study by the EGFR (epidermal growth
factor receptor), showed signs of guidance
and adaptable regulation in the endosomal
system. The mean EGFR cargo content
remained constant independent of endo-
some size indicating tight regulation of
EGFR localization.48 After activation,
regulated receptors such as EGF receptor
are ubiquitinated and subsequently sorted
toward degradation.49 Ubiquitinated
EGFR is sorted into intraluminal vesicles
(ILVs) by the ESCRT (endosomal sorting

478 Cell Adhesion & Migration Volume 6 Issue 6



complex required for transport) family of
complexes and degraded after endosomal
fusion with lysosomes.50 Thus degradation
works by active sorting of receptors away
from the limiting membrane of the
endosome, suggesting that receptors are
otherwise sorted for recycling to the
plasma membrane or any other cellular
destination.

The ESCRT complex and WASH can
localize to the same endosome and our
preliminary data do not indicate direct co-
localization (Fig. 2). Actin binding of some
receptors is necessary for efficient recycling
from a distal endosomal compartment33,47

and we found that WASH overexpression
correlated with increased cell surface expres-
sion of a5β1 integrin.26 Recycling endo-
somes, a term used here for the
aforementioned endosomal population still
capable of retrograde receptor traffic, have
been shown to consist of distinct domains
and protrusions enriched in specialized sets
of molecules required for transport away
from endosomes.51

We propose that actin and the WASH
complex might act as a positive recycling
guide opposing ESCRT mediated sorting
into ILVs of MVBs. Reversible actin
binding—extrinsic or intrinsic—would
form an ideal way to sequester receptors
away from each other. Whenever receptors
are destined for degradation the actin
binding would be inhibited and sorting
into ESCRT rich region could proceed.
The continuous occurrence of actin-rich
domains from the plasma membrane to
late endosomes would be an ideal method
to hand over receptors that are destined for
reuse.

In summary, it is emerging that mam-
malian cells devote a considerable com-
ponent of their actin nucleation
promoting proteins to vesicle trafficking
functions. Actin is likely to be important
in more than its currently established role
in pushing against membranes to drive
protrusion and movement and these likely
include receptor sorting and directed

trafficking. The actin nucleation promot-
ing protein WASH has emerged as an
important regulator of receptor trafficking.
The roles of proteins such as WASH and
the actin networks that they generate are
still only beginning to be understood and
likely are complex.

A recent study demonstrated the pres-
ence of short cortical actin filaments on
the plasma membrane and predicted that
they would spontaneously form aster-
shaped clusters on the membrane surface,
due to myosins or to attractive forces
between the filaments.52 If receptors with
engineered actin binding motifs are added

to the system, nano-clusters spontaneously
formed.52 This showed that actin networks
on membrane surfaces are in general able
to organize receptors into clusters and
suggests a novel mechanism by which they
could alter sorting and/or signaling.
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