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Abstract: Essential genes contain key information of genomes that could be the key to a comprehensive
understanding of life and evolution. Because of their importance, studies of essential genes have
been considered a crucial problem in computational biology. Computational methods for identifying
essential genes have become increasingly popular to reduce the cost and time-consumption of
traditional experiments. A few models have addressed this problem, but performance is still
not satisfactory because of high dimensional features and the use of traditional machine learning
algorithms. Thus, there is a need to create a novel model to improve the predictive performance of this
problem from DNA sequence features. This study took advantage of a natural language processing
(NLP) model in learning biological sequences by treating them as natural language words. To learn
the NLP features, a supervised learning model was consequentially employed by an ensemble deep
neural network. Our proposed method could identify essential genes with sensitivity, specificity,
accuracy, Matthews correlation coefficient (MCC), and area under the receiver operating characteristic
curve (AUC) values of 60.2%, 84.6%, 76.3%, 0.449, and 0.814, respectively. The overall performance
outperformed the single models without ensemble, as well as the state-of-the-art predictors on the
same benchmark dataset. This indicated the effectiveness of the proposed method in determining
essential genes, in particular, and other sequencing problems, in general.

Keywords: essential genetics and genomics; ensemble learning; deep learning; continuous bag of
words; DNA sequencing; fastText; prediction model
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1. Introduction

Essential genes and their encoded proteins are regarded as the bases of life because they are
indispensable for the survival of organisms [1]. Essential genes contain the key information of
genomes and therefore could be the key to the comprehensive understanding of life and evolution [2].
Additionally, since essential genes play a critical role in synthetic biology, they are of great importance
to genome construction [3]. A comprehensive understanding of essential genes can enable scientists
to elucidate the biological nature of microorganisms [4], produce minimal gene subsets [5], develop
promising drug targets, and generate potential medicines to combat infectious diseases [6]. Because of
their importance, studies of essential genes have been considered crucial in genomics and bioinformatics.
Diverse laboratory techniques, e.g., single-gene knockout approaches [7], conditional gene knockouts [8],
transposition mutagenesis [9], and RNA interference [10] have been developed to characterize essential
genes in microorganisms. Though these experimental methods have many advantages and are
relatively reliable, they are still costly and time-consuming.

On the other hand, Rancati et al. [11] recently suggested that the essentiality of genes could
change during short- or long-term evolution as a result of changes in environmental and genetic
contexts. This could render the prediction of gene essentiality difficult since many factors may affect
such a property. The question of how essential genes are indispensable for cells or what underpinning
mechanisms regulate their behaviors and functions remains elusive. In addition, with the robust
development of experimental techniques, scientists are currently able to access a growing body of
experimental data related to genomic sequences, epigenetic patterns, diseases, etc., thus enabling them
to conduct more comprehensive research [12]. Therefore, the computational identification of essential
genes could shed light on the understanding of its fundamental role in life.

Given the biological meaning of essential genes, a lot of computational models, especially machine
learning models, have been developed to identify these genes [13]. Different methods of feature
extraction and model construction have been created for this purpose. High throughput genome
sequencing and homology mapping offer a diverse group of features for predicting essential genes,
including network-based properties [14–16], homology [17,18], gene expression [19,20], and functional
sites [20]. These features have been used for the construction of several prediction models, including
support vector machines (SVMs), decision trees [14], and naïve Bayes classifiers [15]. For example,
Deng et al. [21] used hybrid features such as an intrinsic and context-dependent genomic features
in an attempt to train an essential gene classification tool. By using ten-fold cross-validation, this
model achieved area under the receiver operating characteristic curve (AUC) scores from 0.86 to
0.93 when testing in the same organism and scores from 0.69 to 0.89 for the prediction of cross
organisms. In 2005, Chen and Xu successfully combined high throughput data and machine learning
approaches to determine protein dispensability in Saccharomyces cerevisiae [22]. In 2006, Seringhaus et al.
trained a machine learning model using various intrinsic genomic features to detect essential genes
in S. cerevisiae [23]. Similarly, Yuan et al. developed three machine learning approaches to predict
knockout lethality in mice based on informative genomic features [24]. A review of different studies
using many computational methods for essential gene prediction in the same organism and other
organisms using network features can be seen in the work of Zhang et al. [25]. Lloyd et al. successfully
discovered the distinguishing features of the Arabidopsis thaliana genome that are helpful for building
within- and cross-species predictors, and they subsequently applied this model to detect essential genes
in the Oryza sativa and S. cerevisiae genomes [26]. Additionally, a significant contribution was made by
Zhang et al. [27], who combined both sequence- and network-based properties to identify essential
genes and found a valuable result. In this research, a deep learning-based model was implemented to
learn the features derived from sequence data and protein–protein interaction networks. This research
also showed the efficiency of the deep learning model in learning sequence and network-based features.
They showed significant improvements in identifying human-essential genes with an average AUC
performance of higher than 94%, an area under precision–recall curve of higher than 90%, and an
accuracy of higher than 90%.
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Though these context-dependent features are linked to gene essentiality, the majority of them
mainly depend on experimental omics data, which seem to be unavailable in most microbial species.
Additionally, not every feature has a high predictive power, and some features are likely to increase
biological redundancy. As a result, most machine learning models based on biological properties
tend to be limited to merely a handful of species [28]. For instance, Liu et al. [29] could use biological
features to predict essential genes among 31 diverse species, but there were some species that
received low accuracies such as Mycobacterium tuberculosis H37Rv (19.7%), Pseudomonas aeruginosa
UCBPP-PA14 (18.21%), Salmonella enterica subsp. enterica serovar Typhimurium str. 14028S (20.29%),
and Salmonella typhimurium LT2 (27.65%). Essential genes are likely to remain conserved in long-term
evolution [30]; therefore, collecting features based on non-biological properties and utilizing them to
characterize gene essentiality could help to bridge the gap between organisms with essential genes.
In this present study, we addressed the above-mentioned problems in a benchmark dataset in Archaea
by extracting intrinsic features from DNA sequence information (biological sub-word features that have
been employed from natural language processing (NLP) techniques [31–33]) and then subsequently
training our ensemble learning-based classifier to make the prediction efficiency better and faster.
We also validated the performance results on cross-species datasets to ensure the effectiveness of our
model for different species.

2. Results and Discussion

2.1. Hyperparameters Optimization

Hyperparameter optimization plays a very important role in achieving high-quality models in
most machine learning and deep learning tasks (e.g., in [31,34]). Since our model was created by
combining different algorithms from NLP, machine learning, and deep learning, we also performed
pre-experiments on our data to find the optimal parameters of each model. Here, a five-fold cross
validation training was also applied to perform this hyperparameter optimization on D1 dataset. First,
to deal with fastText, we defined different combined sets from potential hyperparameters that could
have reached the best performance. Some tuning parameters were ranged as follows: the number
of epochs was from 0 to 500 (step size = 25), the learning rate was from 0.05 to 0.5 (step size = 0.05),
wordNgram was from 1 to 10 (step size = 1), and there were three different types of loss functions
(ns, hs, and softmax). The other parameters were gathered from previous research [31] on a similar
type of fastText applied to DNA sequences (dim = 100, ws = 5). After re-checking all the potential
parameters, we found that the most important factor that could affect our model’s performance was the
number of sub-word n-grams, as shown in Figure 1. As illustrated in this figure, the performance of
the 6 g level slightly outperformed other levels, so we selected 6 g as our optimal n-gram and applied
it to further experiments. The other parameters were an epoch of 200, a learning rate of 0.1, and the
softmax loss function.

The second optimization step was for different types of machine learning and deep learning
techniques. According to the previous experience on k-nearest neighbors (kNN) algorithm, we set
k = 10 in our experiments. Furthermore, the “gridsearchCV” was performed in random forest (RF)
and SVM classifiers to find the best set for them. In detail, we ranged the number of estimators
from 100 to 1000 (step size = 100) and the number of features from 10 to 100 (step size = 10) in RF,
while the log2c (for cost) varied between −5 and 5 and log2g (for gamma) varied between −4 and 0
in SVM. For multi-layer perceptron (MLP) and convolutional neural network (CNN) architectures,
we performed a comprehensive hyperparameter-tuning process to find their optimal parameters.
This process was done by evaluating different combinations of layers and values in a grid search.
We report the final parameters in Table 1.
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Figure 1. Identification of essential genes at different levels of fastText n-grams. The performance of 6-g
(area under the receiver operating characteristic curve (AUC) = 0.78) was better than the other levels.

Table 1. Hyperparameters of different machine learning and deep learning classifiers used in this
study. KNN: k-nearest neighbors; RF: random forest; SVM: support vector machine; MLP: multi-layer
perceptron; and CNN: convolutional neural network.

Classifier Optimal Parameters

kNN k = 10
RF n_estimators = 500, n_features = 20

SVM c = 23768, g = 0.001953125
MLP 100–50 nodes, dropout = 0.5, optimizer = adam, learning rate = 0.001
CNN n_filters = 64, dropout = 0.1, optimizer = adadelta

2.2. Effectiveness of Ensemble Model

We randomly divided the essential and non-essential gene data into five different sets and
performed five-fold cross-validation; Table 2 illustrates the performances of five different predictive
modeling approaches using the full 100 features extracted from fastText. The training and testing
data here, different from most of the experiments throughout this study, were not exclusive to
those prior to exposure. The parameters for each classifier were determined as described in the
previous section on hyperparameter optimization. All the five single models—kNN, RF, SVM, MLP,
and CNN—demonstrated that the special information of the essential genes could be learned. The CNN
and MLP models performed best among the four (with better accuracy, Matthews correlation coefficient
(MCC), and AUC values) and was followed closely by the SVM model. Though the superiority was
not greater, it still showed that deep neural networks could be a better choice for this kind of dataset
because of a sufficient amount of training data and the possibility of generating hidden features of
deep neural networks. The measurement metrics strongly showed that we could achieve significant
improvement by using deep neural networks for generating the hidden features in comparison with a
shallow network.

However, the overall performance of deep neural networks was satisfactory, so an ensemble neural
network was applied. This means that during our experiments, we chose these five machine/deep
learning methods as basic classifiers and assembled them via a stacking strategy. To verify the
ensemble’s effectiveness, we calculated the average accuracies of the individual classifiers by five-fold
cross-validation and compared them with the final ensemble model. The final ensemble model was
a combination of MLP, CNN, and SVM after we validated the efficiencies by increasing the number



Int. J. Mol. Sci. 2020, 21, 9070 5 of 16

of component models (Supplementary Table S1). As presented in Table 2, the ensemble model could
achieve a better performance compared to the single models alone. In detail, the ensemble model
reached an average sensitivity of 50.2%, a specificity of 90.2%, an accuracy of 77.3%, an MCC of 0.452,
and an AUC of 0.814. It could improve by about 2–4% compared to the other single models in terms of
all measurement metrics. Therefore, the ensemble model has potential to solve this problem with high
performance. It can be used to learn handcraft features better than just a single SVM classifier or a
deep learning classifier, as in [31,32].

Table 2. Five-fold cross-validation performance in identifying essential genes using different machine
learning, deep learning, and ensemble learning techniques. MCC: Matthews correlation coefficient.

Classifier Sens (%) Spec (%) Acc (%) MCC AUC Time (s)

kNN 43.5 87.6 73.2 0.348 0.747 0.27
RF 46.9 86.6 73.6 0.367 0.762 12.85

SVM 35.9 92.3 74 0.353 0.775 3.37
MLP 43.5 89.9 74.8 0.385 0.775 94.32
CNN 42.3 90.4 74.7 0.381 0.775 105.18

Ensemble 50.5 90.2 77.3 0.452 0.814 208.12

2.3. Comparison with Other State-of-the-Art DNA Sequencing Features

We employed different sequencing features to evaluate the performances of our model in
classifying essential genes, including k-mer and different forms of pseudo k-tuple nucleotide
composition (PseKNC). PseKNC and k-mer are state-of-the-art feature sets that have been used
in a lot of bioinformatics works with high performance, even in previous work on essential genes [35].
Here, we used four common types of PseKNC: PseDNC, PCPseDNC (for dinucleotide), PseTNC
(for trinucleotide), and PCPseKNC to extract features from DNA sequences. We inserted these features
into our optimal ensemble model and compared the results of each feature type with the performance
of our fastText-based features (6 g). Table 3 summarizes the results of the above-mentioned feature
extraction techniques and our feature on five-fold cross-validation data. Compared to the other
features, our proposed features achieved a higher performance for all the measurement metrics. It is
strongly convincing that this NLP feature is efficient at identifying specific problems in essential
gene identification.

Table 3. Five-fold cross-validation performance in identifying essential genes using different features.
PseDNC: pseudo k-tuple dinucleotide composition; PseTNC: pseudo k-tuple trinucleotide composition.

Features Sens (%) Spec (%) Acc (%) MCC AUC

k-mer 35.9 90.2 72.4 0.316 0.698
PseDNC 36.5 91 73.2 0.337 0.637
PseTNC 31.7 93.4 73.3 0.331 0.625

PCPseDNC 37.6 89.5 72.6 0.322 0.704
PCPseTNC 33.4 93 73.5 0.341 0.72

fastText 50.5 90.2 77.3 0.452 0.814

2.4. Imbalance Solving

We aimed to identify essential genes from a set of non-essential genes. Using binary classification,
it was important to see that the number of positive samples in each training period was much
fewer than the number of negative samples. In other words, our datasets were slightly imbalanced,
and this affected the predictive performance. As shown in Table 2, the sensitivity was much lower
than specificity, and this suggests that our model could not be considered a good model. It is very
important to adjust sensitivity according to imbalance techniques. Therefore, the syntactic minority
over-sampling technique (SMOTE) [36] was employed to handle this imbalance. The SMOTE algorithm
was implemented by the imblearn package in python, in which we selected SVM as an over-sampling
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type to generate more data points in positive training datasets. In order to avoid data leakage and
overfitting, SMOTE was only applied to a training dataset during the cross-validation procedure.
To the end, this process helped our sensitivity come close to the specificity, and the imbalance issue
could be solved accordingly. After this step, our model achieved a sensitivity of 60.2%, a specificity
of 84.6%, an accuracy of 76.3%, an MCC of 0.449, and an AUC of 0.757. Compared to the original
performance, the specificity and AUC were a little bit lower; however, we could boost the sensitivity to
create a better model with fewer imbalanced results.

Subsequently, we used the independent dataset to validate the performance of our model on
unseen data. A total of 1516 essential genes and 10,499 non-essential genes (D2 dataset) were fed
into our final model. Thereafter, our proposed model could predict these sequences with a sensitivity
of 79.4%, a specificity of 73.4%, an accuracy of 74.2%, and an MCC of 0.372. Compared to the
cross-validation results (in Table 2), the performance was consistent, and it showed that our model did
not have an overfitting problem. Another interesting point is that even though we used the original
model without the imbalance technique, the independent test results were still balanced between
sensitivity and specificity.

2.5. Comparison to the Existing Predictors in Identifying Essential Genes

Aiming at evaluating the efficiency of our model in identifying essential genes, we retrieved
the results from the other published models that focused on the same problem. For this comparison,
the first selected study was the recently reported tool iEsGene-ZCPseKNC [35]. The reason for choosing
this study was that it used the same dataset as us (D1), and this made the comparison fair and accurate.
iEsGene-ZCPseKNC used Z curve pseudo k-tuple nucleotide composition as their feature and SVM
as the machine learning classifier. Furthermore, we also compared our performance results to the
other works in terms of methods and features. At testing time, most previous web servers were
not publicly available or not available upon request from the authors. Therefore, we decided to
replicate their methods on our dataset to make comparisons. There were a variety of sequence-based
predictors that were generated using their methods, such as auto covariance, k-mer [37], nucleotide
composition [38,39], intrinsic and context-dependent methods [20], information theory [40], and even
feature selection on hybrid features [29,41,42]. In summary, the detailed evaluation criteria of both
classifiers are presented in Table 4 (including our results of the original and SMOTE versions).

Table 4. Prediction of essential genes using different state-of-the-art predictors. SMOTE: syntactic
minority over-sampling technique; NLP: natural language processing; LASSO: least absolute shrinkage
and selection operator; WPCA: weighted principal component analysis.

Predictors Feature Sens Spec Acc MCC

Original Aromolaran [37] Auto covariance, pseudo nucleotide composition, k-mer 40.8 90.7 74.4 0.371
Campos et al. [38] Nucleotide composition, correlation features 38.5 93 75.2 0.39

Liu et al. [29] Sequence-based features and LASSO 41.3 89.7 73.8 0.361
Tian et al. [41] Hybrid features 36.5 93.9 75.2 0.389
Deng et al. [20] Intrinsic and context-dependent genomic features 34 93.5 74.1 0.355

Xu et al. [42] Hybrid features and WPCA 42.7 86.9 72.6 0.331
Nigatu et al. [40] Information theoretic features 38.8 92.1 74.8 0.377

Lin et al. [43] Hybrid features 35.6 92 73.5 0.345
Pheg [39] Nucleotide composition 35 94.4 75.1 0.383

iEsGene-ZCPseKNC [35] Nucleotide composition 44.6 89 74.5 0.38
Ours NLP-based features 50.5 90.2 77.3 0.452

SMOTE Aromolaran [37] Auto covariance, pseudo nucleotide composition, k-mer 55.3 82.2 73.5 0.384
Campos et al. [38] Nucleotide composition, correlation features 52.9 85 74.5 0.399

Liu et al. [29] Sequence-based features and LASSO 45.2 89.2 74.8 0.389
Tian et al. [41] Hybrid features 50.5 85.5 74.1 0.384
Deng et al. [20] Intrinsic and context-dependent genomic features 45.2 85.9 72.6 0.341

Xu et al. [42] Hybrid features and WPCA 54.8 82.7 73.6 0.386
Nigatu et al. [40] Information theoretic features 46.6 86.9 73.8 0.368

Lin et al. [43] Hybrid features 44.2 87.8 73.5 0.359
Pheg [39] Nucleotide composition 53.8 86.4 75.7 0.426

iEsGene-ZCPseKNC [35] Nucleotide composition 63.7 77 72.6 0.396
Ours NLP-based features 60.2 84.6 76.3 0.449
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As shown in Table 4, our mode achieved a comparable performance in terms of different
measurement metrics compared to the previously published works—especially the work used the
same dataset with us (iEsGene-ZCPseKNC). Apart from sensitivity and AUC, our model was improved
by at least 4% compared to iEsGene-ZCPseKNC in terms of the other metrics. Moreover, we also
validated our performance on the independent test (D2) retrieved from Pheg [39]. This result reached
a sensitivity of 79.4%, a specificity of 73.4%, an accuracy of 74.2%, and an MCC of 0.372. Compared
to the reported result from Pheg [39], our model achieved more balance than and outperformed the
results of Pheg [39] on the same dataset. The results suggested that our ensemble model was more
efficient in identifying essential genes than current state-of-the-art models. Therefore, it was observed
that the ensemble methods can provide many advantages over these methods such as a reduction in
false positive rates and, therefore, better precision. In addition, with the use of biological sub-words,
we only needed to use one set of features compared to the others (e.g., the others used a combination
of adjacent phase-specific w-nucleotide Z curve variables in the work of Pheg [39] or 1194 features in
the work of Zhang et al. [44]). Finally, we also took advantage of an ensemble neural network to boost
the predictive performance from the weak learners.

Moreover, because our study only used sequence features, it made it difficult to compare our
work with previous work that used different properties such as network- or structure-based ones [27].
To address this issue, we used the dataset from DeepHE [27] that contained sequence-based and
network-based features for comparison. There were a total of 16 human essential gene datasets (D3) in
this study, and we re-used all of them for analyses. In addition, previous works [27,39] used positive
predictive value (PPV) to refine the actual essential genes in their predicted results, so we also took
this metric for comparison. As a result, we applied our methods to these 16 datasets and achieved
an average PPV of 82.74%. Compared to the results reported in previous works, we reached an
improved PPV of 9.69% greater than a sequence-based study [39] and 5% greater than a network-based
study [27]. Therefore, the NLP model might hold potential in learning and identifying essential genes
from sequence information without the use of network-based features.

Comprehensive comparisons showed a promising result of our ensemble model and NLP-based
features in learning and classifying essential genes from sequence information. However, there were also
limitations to the comparison that could be addressed and discussed. First, the use of different species
datasets made the comparison inaccurate and unfair. However, we highlighted the comparison between
our results and the iEsGene-ZCPseKNC’s results because we used the same dataset. Further studies
could look at a general dataset that would perform well on different species and make a comparison
accurate and fair. Secondly, as mentioned in the literature review, deep learning-based methods that
combine both network- and sequence-based properties have been developed [27,45]. Because our
study only used sequence features, it could not take full advantage of different properties such as
network- or structure-based ones [27]. Therefore, we hope to include more features in further studies to
improve our performance results, as well as make accurate comparisons. NLP itself can be combined
with deep learning to learn both network- properties and sequence-based properties.

2.6. Validation of the Proposed Model on Cross-Species Datasets

As shown in the study of Liu et al. [29], it was important to evaluate our model on multiple
species to generalize our study. Therefore, we also tested the performance of our model on a variety of
datasets with different species (D4). In detail, we retrieved the essential genes of 53 diverse bacteria
species from DEG [46], which is a large database of essential genes. The validation range was larger
than the previous study [29] that had validated on 31 species. Figure 2 shows the predictive accuracies
among representative species, and it can be observed that our model performed well on most of
the species. There are some species that achieved especially high accuracies such as Bacillus subtilis
168 (95.9%), Porphyromonas gingivalis ATCC 33277 (98.27%), Burkholderia pseudomallei K96243 (99.6%),
Pseudomonas aeruginosa PAO1 (99.4%), and Agrobacterium fabrum str. C58 (90.3%). Detailed information
and predictive accuracy on all species are shown in Supplementary Table S2. We also compared our
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performance results to a previous study [29] to understand the efficiency of the two models on different
species datasets. As shown in Supplementary Table S2, our model was superior to the previous work
in terms of the predictive accuracy of essential genes. We also improved the performance for some
species that reached a low accuracy in previous work such as Mycobacterium tuberculosis H37Rv (71%),
Pseudomonas aeruginosa UCBPP-PA14 (83.88%), Salmonella enterica subsp. enterica serovar Typhimurium
str. 14028S (53.33%), and Salmonella typhimurium LT2 (51.3%). Our results also suggested that the
hyperparameter optimization learned from gridCV for one species is transferable to other species with
acceptable performance. Though there were few datasets that had a weak performance, the large
number of high-performance datasets showed the significance of our model in identifying essential
genes over multiple species. Future studies could be conducted to create a model to help to improve
the predictive performance of all cross-species datasets.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 16 
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Figure 2. Performance results of identifying essential genes in representative cross-species datasets
using the proposed model. Detailed information and predictive accuracy of all species are shown in
Supplementary Table S2.

3. Materials and Methods

The aims of this study are summarized as follows:

1. A benchmark dataset that was verified and used in previous publication with high confidence
was retrieved.

2. The genes were extracted by using an NLP model that aimed to integrate the hidden information
of gene sequences.

3. Different machine learning and deep learning-based methods were developed to learn and
analyze the extracted features.

The important steps of our proposed method are meticulously described in Figure 3 and the
subsequent subsections.



Int. J. Mol. Sci. 2020, 21, 9070 9 of 16

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 16 

 

 
Figure 2. Performance results of identifying essential genes in representative cross-species datasets 
using the proposed model. Detailed information and predictive accuracy of all species are shown in 
Supplementary Table S2. 

3. Materials and Methods 

The aims of this study are summarized as follows: 

1. A benchmark dataset that was verified and used in previous publication with high 
confidence was retrieved. 

2. The genes were extracted by using an NLP model that aimed to integrate the hidden 
information of gene sequences. 

3. Different machine learning and deep learning-based methods were developed to 
learn and analyze the extracted features. 

The important steps of our proposed method are meticulously described in Figure 3 and the 
subsequent subsections. 

 

0 10 20 30 40 50 60 70 80 90 100

Bacillus subtilis 168

Burkholderia pseudomallei K96243

Burkholderia thailandensis E264

Caulobacter crescentus

Mycobacterium tuberculosis H37Rv

Porphyromonas gingivalis ATCC 33277

Pseudomonas aeruginosa PAO1

Pseudomonas aeruginosa UCBPP-PA14

Shewanella oneidensis MR-1

Streptococcus sanguinis

Accuracy

Figure 3. Work flow of the study in identifying essential genes using sequence information. The
input was comprised of genes with different lengths and containing different nucleotides. The
word-embedding features were extracted by using the fastText package and then learnt by an ensemble
deep neural network. After the ensemble network, the output contained binary probabilities to show
whether the represented genes belonged to essential genes. Red, green triangles, green circle, blue
squares and red pentagons are examples of data points.

3.1. Benchmark Dataset

Generalizing a benchmark dataset is an important part of bioinformatics studies to create an
effective prediction model. In this study, we chose the training set defined by Chen et al. [35],
which is the most complete and comprehensive dataset of this kind of problem. From this dataset,
they retrieved the whole genome of Methanococcus maripaludis from the Database of Essential Genes
(DEG) (version DEG15.2) [46], which is a comprehensive database containing all the essential genes
that are currently available. To minimize the redundancy and eliminate the homology bias that would
overestimate the predictor, they excluded the sequences that had >80% similarity in their structures.
Finally, the benchmark dataset was represented as:

S = S+ ∪ S− (1)

where S is the whole benchmark dataset, S+ is the positive subset containing 518 essential genes, S− is
the negative subset including 1072 non-essential genes, and the union of these two sets is assigned as
∪. We used this benchmark dataset (namely D1) to train our model on essential gene prediction.

Moreover, we also expanded the validation of the method by retrieving an alternative dataset
(namely D2) on human essential gene prediction [39]. The original paper retrieved the dataset
from the consensus coding sequence (CCDS) database, and it contained 1516 essential genes and
10,499 non-essential genes. It was used as an independent dataset to evaluate the performance of
our model on unseen and cross-species data. Other essential gene datasets were also used in our
study, including 16 human datasets (namely D3) and 53 bacteria datasets (namely D4). These D3
and D4 datasets were used to validate the network-based features, as well as the efficiency of diverse
species datasets.
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3.2. Feature Engineering

To effectively extract underlying information from a DNA sequence with minimal features, all
the DNA sequences were encoded into biological sub-words features from which the NLP models
could be used to capture the hidden information and meaning of biological sequences. As represented,
we divided our DNA sequences into different individual nucleotides that could be treated as words in
natural sentences. We then trained NLP models to learn and extract information from these biological
sequences. Since fastText [47] has recently attracted a lot of attention from biologists [31,48], we also
took advantage of this tool in learning our DNA sequences. The features were extracted using the
fastText model and the detailed steps are explained as follows:

(1) We split each DNA sequence into a “sentence” comprising biological sub-words (token) in
an overlapping manner. A detail explanation of generating different n-gram levels for DNA
sequences is shown in Supplementary Figure S1.

(2) We trained the language model to generate word embeddings for each word. No matter the
sequence length, the NLP model could generate the word embeddings with the same vector sizes.
Thus, we did not apply any padding approach on DNA sequences.

(3) We concatenated these word embeddings to become a vector that represented for whole
DNA sequence.

(4) Consequently, these word vectors were fed into our ensemble neural network to evaluate the
potential of the network in learning such kinds of features.

3.3. Ensemble Neural Network

Our ensemble neural network was the combination of five machine learning and deep learning
classifiers, as follows.

3.3.1. k-Nearest Neighbors

kNN is a non-parametric simple algorithm that stores all training samples at the time of learning.
In essence, a new case could be characterized based on the number of its neighbors’ votes. Among its
k nearest neighbors measured by a distance function, the case is assigned to the most common
class. For continuous variables, there are some distance measures—namely Euclidean, Manhattan,
and Minkowski. We used Euclidean, the most common distance metric in our experiments. Formula
(2) describes the Euclidean distance between p and q.

d(p, q) = d(q, p) =

√
(q1 − p1)

2 + (q2 − p2)
2 + . . .+ (qn − pn)

2 (2)

(p = (p1, p2... pn) and q = (q1, q2... qn) are two points in Euclidean n-space)

3.3.2. Random Forest

RF is a classification algorithm based on an ensemble of bagged decision trees with randomly
selected features [49]. The RF algorithm embeds the concept of random subset feature selection into
bagged decision trees that are trained on random samples with replacement to avoid overfitting.
To determine the class of the predicted case, each decision tree is split by a small fraction of randomly
selected features and then put through a vote independently under majority rule. In this work, each RF
classifier had 500 decision trees. Gini impurity was used to measure the quality of a split by a selected
feature, and when looking for the best split, the number of tried features was set to be the square root
of the total features.

3.3.3. Support Vector Machine

SVM is a well-known machine learning algorithm that has been used in a variety of fields,
especially in bioinformatics. SVM makes linear indivisible samples in original space separable by
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mapping the original sample features in low-dimensional space to high-dimensional space. It is also a
classification method that searches an optimal hyperplane to separate two classes with a maximum
margin [50]. In this work, a radial basis function kernel was used for our SVM model, the grid search
CV of which was executed to find the optimal kernel parameters for the cost (32768) and gamma
(0.00195313).

3.3.4. Multi-Layer Perceptron

MLP, which can distinguish linear non-separable patterns [51], is a feedforward neural network
with at least three layers: an input layer, a hidden layer, and an output layer. Compared to a single-layer
neural network, MLP adds hidden layers between the input and output layers. For each of our MLP
models, there were two fully connected hidden layers with 100 and 50 nodes, while the input nodes
represented the biological sub-words vectors and the output layer was used to predict the essential
gene outcome.

To simulate how neurons fire, nonlinear activation functions were used. In this work, a rectified
linear unit (ReLU) function [52] was used as the activation function in both input and hidden layers
because it could overcome the vanishing gradient for non-negative inputs. The ReLU function took
the maximum value between 0 and wTx + b, where w was a weight matrix, x was an input, and b was
a bias term. On the other hand, the output layer for a binary decision adopted a sigmoid function,
the outcome of which was strictly increasing between 0 and 1.

Each MLP model is trained to optimize the model parameters (weights) during iteration.
Each weight is adjusted based on the error in the next training epoch. To minimize the error
measured by cross-entropy loss, the adaptive moment estimation (ADAM) optimization function
was applied here during backpropagation. ADAM, which updated model weights using the moving
averages of the past gradient and squared gradient, was chosen because it could work effectively for
high-dimensional parameter spaces. In this study, 100 training epochs were run with a learning rate of
0.001 without weight decay. Additionally, a 50% dropout rate was applied to each hidden layer to
avoid overfitting.

3.3.5. Convolutional Neural Network

A CNN is one of the most commonly used deep learning methods, especially in image recognition.
Compared to MLPs, CNNs have additional convolutional and pooling layers. CNNs, which can
acquire the spatial relationships of data, can be divided into two sections. The first section extracts
features through alternate convolutional filters and pooling layers, and the second section learns
through fully connected layers. Many well-known image recognition models like AlexNet, GoogleNet,
and ResNet are CNNs. However, it remains unclear how CNNs perform in genomic sequence data.
In this study, the CNN models with eight layers were implemented by extending the 1D CNN that was
successfully applied in previous work on sequence data [31]. It has been considered as an effective
model for learning NLP vector data. In general, CNN models normally comprise an input layer,
two convolutional layers, two max-pooling layers, two fully-connected layers, and an output layer.

CNN models can be described simply as follows: the input is a tensor X f × c, where f represents
the number of features and c denotes the number of channels. The convolution transforms the input X
using m filter tensors with q zero-paddings and s strides into m feature maps

M ∈ R
(

w− n + 2q
s

+ 1
)
×

(
h− n + 2q

S
+ 1

)
×m (3)

where n is the order of filter kernels, q keeps the same number of channels as the input, and m
(which determines the number of the output channels) is the number of filter kernels. To effectively
reduce the dimensions of feature maps, the pooling layer takes similar steps. Instead of using
convolution kernels, the pooling layer transforms the feature map using a pooling filter tensor P ∈ R q
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× m into a pooled feature map, where q is the order of pooling kernels and m is the channel number of
feature maps. Next comes another round of the convolutional and pooling layers. The remaining is
the output layer for classification.

To improve performance and mitigate overfitting, an ReLU function [52] as the activation function
in the convolutional layers and fully connected layers, a max-pooling filter in the pooling layers,
10% regularization dropout between layers, and a softmax function in the output layer were used.
The softmax function is defined as follows:

f (y = j
∣∣∣x) =

exp
(
w jx j

)∑
j exp(w jx j)

(4)

where x is the input, w is the weight, and j is either the essential gene or not. The softmax function
normalizes the inputs into a probability space by amplifying the larger ones but suppressing those
significantly below the maximum. In our cases, the output layer had two neurons corresponding to
predictive possibilities of being genes with essential functions or not.

3.3.6. Ensemble Neural Network

An ensemble neural network could provide other advantages over these methods such as a
reduction in false positive rates and, therefore, better precision. Therefore, this study took these
advantages to create a stacking ensemble neural network model. This model took the outputs of the
base-learners (kNN, RF, SVM, MLP, and CNN) and input them to a metal-learner for second level
prediction. At this level, a simple linear regression function was created to predict the outcomes of the
input values. Sometimes, due to its smoothing design, the stacking model would outperform each of
the individual models, offsetting the shortcomings of the individual models and contributing to the
improved predictive results.

Our model was implemented and configured on a machine with i7-9700 CPU (Intel Corporation,
CA, USA) and NVIDIA GeForce RTX 2080 Ti GPU (Nvidia Corporation, CA, USA). All machine
learning and deep learning were implemented using Python 3, scikit-learn library, and tensorflow.
We have freely also released our source codes at https://github.com/khanhlee/eDNN-EG.

3.4. Validation Method and Performance Metrics

The experimental design of the rotation of samples between the test and training followed the
widely used statistical cross-validation protocol. The purpose of cross-validation is to lower the risk
of overestimating or underestimating the true performance of a proposed system, which is achieved
by out-of-sample testing. We used cross-validation to train and test the performance of the proposed
system. During this process, all the gene sequences were randomly allocated to five subsets with
an equal number of samples. Then, we trained five separate recognition systems using four out
of the five subsets and performed validation of the fifth hold-out subset. The above-mentioned
5-fold cross-validation procedure was repeatedly conducted 10 times to make our results statistically
meaningful, and the average values were then reported as the final results.

The performances of the predictive models were measured by their sensitivity, specificity, accuracy,
MCC, and AUC. These evaluation measurements are defined as follows [53]:

Sensitivity =
TP

TP + FN
(5)

Speci f icity =
TN

TN + FP
(6)

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

https://github.com/khanhlee/eDNN-EG
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MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(8)

where TP, TN, FP, and FN, respectively, denote true positives, true negatives, false positives, and false
negatives. Sensitivity, specificity, and accuracy are presented as the percentage of the correct predictions
on different sets of data, i.e., positive data, negative data, and all the data. AUC is used to evaluate
the overall performance of a binary classifier. It is based on dynamic positive–negative prediction
thresholds instead of a static threshold, as seen in its accuracy. It is the area under receiver operating
characteristic (ROC) that plots true positive rates (sensitivity) against false positive rates using different
prediction thresholds. The AUC is in the range [0,1], and the higher AUC, the better the classifier.
Meanwhile, a perfect classifier has an AUC equal to 1.

4. Conclusions

With advancements in genomic sequence discovery and the abundance of raw sequencing data,
there is a requirement for automated tools that can predict the functions of essential genes with
high precision and accuracy. In the present research, a machine learning-based approach was built
in an attempt to provide comprehensive insights into pathologies, life, and evolution. In detail,
we implemented an ensemble neural network to learn the word embedding-based features from
genomic sequences and to identify essential genes. Several experiments were conducted, and our
optimal model obtained significant results after 10 times of five-fold cross-validation. In detail,
our predictor was able to identify essential genes with a sensitivity of 60.2%, a specificity of 84.6%,
an accuracy of 76.3%, an MCC of 0.449, and an AUC of 0.814. The proposed performance appeared
to be more effective than other feature extractions, as well as previously published works. We also
validated our models on a lot of cross-species datasets, and the performance results were significant.
In summary, this study suggests that an ensemble neural network and word embedding could comprise
a solution for enhancing the performance of essential gene identification. Throughout the research of
this topic, biologists and scientists could have more information to study and conduct experiments on
essential genes especially.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/23/
9070/s1. Table S1. Comparative performance among different ensemble models; Table S2. Detail information and
predictive accuracy of all species datasets; Figure S1. Detail explanation of generating different n-gram levels for
DNA sequence (e.g., ‘ATGAC’ and n-gram levels is from 1 to 3).
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